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Abstract

If G is an abelian group� then G� denotes G equipped with the
weakest topology that makes every character of G continuous� This is
the Bohr topology of G� If G � Z� the additive group of the integers�
and A is a Hadamard set in Z� it is shown that� �i� A�A has � as its
only limit point in Z�� �ii� No Sidon subset of A�A has a limit point
in Z�� �iii� A�A is a 	�p� set for all p ��� This leads to an explicit
example of a set which is 	�p� for all p � � and is dense in Z�� If
f�x� is a quadratic or cubic polynomial with integer coe
cients� then
the closure of f�Z� in the Bohr compacti�cation of Zis shown to have
Haar measure �� Every in�nite abelian group G contains an I� set A of
the same cardinality as G such that � is the only limit point of A� A

in G��

� Introduction

Let G be an abstract abelian group� with the discrete topology� We use �G�
or just �� to denote the group of characters� or homomorphisms from G into
the circle group T� � is a compact abelian group� and� by the Pontryagin
Duality Theorem� we may identify G with the character group of � �that is�
the continuous homomorphisms into T�� by identifying each x � G with the
map � �� ��x�� We may also ignore the topology on �� view � as a discrete
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group� and form its character group� denoted by bG 	 ��G � consisting of all
homomorphisms from �G into T� Then bG is the Bohr compacti�cation of
G� The same identi
cation now makes G into a dense subgroup of bG� The
subspace topology on G � bG is called the Bohr topology� and G� denotes the
group G given this topology�

More concretely� basic neighborhoods of � in G� are of the form

W ��� ��� � � � � �n� 	 fx � G 
 j���x�� �j � � � � � � � j�n�x�� �j � �g �

where n is 
nite and ��� � � � � �n � �� Basic neighborhoods of other elements
are obtained by translation� Thus� the topology of G� is the weakest one
which makes all the characters of G continuous� When G 	 Z� the group of
integers� then � 	 T� and the characters are all of the form x �� eix� for some
real ��

Basic properties of G� can be deduced directly from this description� For
example� every group homomorphism � fromG to another abelian group K is
continuous� viewed as a map from G� to K�� To prove this� it is su�cient to
prove that � is continuous at �� which follows from the fact that the inverse
image of a basic neighborhood of � in K � that is� ����W ��� ��� � � � � �n�� �
is just W ��� �� � �� � � � � �n � ���� which is open in G�� It follows that every
subgroup H of G is closed in G�� since H 	 ���f�g� where � 
 G� G�H�

Now� bG may be characterized abstractly by its properties
 bG is the
unique �up to continuous isomorphism� compact group Y such that G is dense
in Y and every character of G extends to a continuous character of Y � From
this� it is easy to see that if H is a subgroup of G� then bH is a closed subgroup
of bG
 Let X be the closure of H in bG� Then H is dense in X� and every
character � of H extends to X by extending � 
rst to a character of G �which
is possible since T is divisible�� and then extending to bG� Hence� X is bH�

These basic constructions are contained in texts on harmonic analysis�
such as ������������ In addition� the literature contains some more detailed
structural information about G� and bG� which we review brie�y�

De�nition ��� A � G is called an I��set� or an interpolation set� i� for all
E � A� the closures of E and of AnE are disjoint in bG�

This is the same as saying that every bounded real�valued function on
A may be extended to a continuous function on bG� or� equivalently� to an
almost periodic function on G �since the almost periodic functions are exactly
the restrictions of such continuous functions to G�� So� the I� sets are the
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subsets of G which are relatively discrete in the topology G� and are C��
embedded in bG� For more details� see Kahane ���� Chapitre Xx�� In general�
a subset A of a compact Hausdor� space X is said to be C��embedded in
X i� every bounded f � C�A� can be extended to a function in C�X�� in
the special case at hand� when A is discrete in its relative topology� this is
equivalent to saying that E � AnE 	 	 for all E � A� For more on these
notions� see Gillman and Jerison ����

Theorem ��� �Hartman and Ryll�Nardzewski �	
� In every abelian
group G� there is an I��set A � G with jAj 	 jGj�

Here� we are using jXj for the cardinality of the set X�
Of course� when G is 
nite� we may take A 	 G� When G is in
nite� the

proof splits into cases� with the hardest case being G 	 Z�
If A is an I� set� then its closure in bG is homeomorphic to 	A �the �Cech

compacti
cation of A with the discrete topology�� So� if A is an in
nite I�
set� it will have ��

jAj
limit points in bG� All of these limit points lie outside of

G� however� by


Theorem ��� If A � G is an I��set� then no element of G is a limit point of
A in G��

This theorem was 
rst discovered by Ryll�Nardzewski ����� A di�erent
proof is due to L� T� Ramsey ����� Ramsey�s method of proof was discovered
independently by Arkhangel�skii �see ���� in the context of Cp theory� this
applies because G� is a subspace of Cp���� See ��� for more on the relations
between Cp theory and Bohr topologies�

In somewhat the opposite direction� K� P� Hart and J� van Mill ��� showed
that if G is an in
nite boolean group �
x�x�x 	 ���� then there is an in
nite
E � G such that � is a limit point of E and every point of E other then �
is isolated in E� Their E was of the form A � A 	 A � A� where A was an
independent subset of G� In fact� there is such an E for every G� We shall
show �after proving Lemma ����


Theorem ��
 Every in�nite abelian group G contains a subset A such that
jAj 	 jGj and�

�� A is an I��set�

	� � is the unique limit point of A�A in G��


� If the index of fx � G 
 x� x 	 �g in G equals jGj� then A�A has no
limit points in G��
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Regarding item �� note


Lemma ��� If A is any in�nite subset of the abelian group G� then � is a
limit point of A�A in G��

Proof� By compactness� A has some limit point p in bG� Then � 	 p � p
must be a limit point of A�A�

Note that the additional assumption in Theorem ����� is exactly what is
required� If the index of B 	 fx � G 
 x � x 	 �g in G is less than jGj� and
jAj 	 jGj� then in
nitely many elements of A lie in some coset� B � c� which
implies� as in the proof of Lemma ���� that c� c is a limit point of A�A�

As with Theorem ���� the proof of Theorem ��� splits into cases� If G 	 Z�
then A can be any Hadamard set �see De
nition ����� as we show in Section ��
Then� in Section �� we handle the other cases by examining more closely how
the algebraic structure of an abelian group G a�ects the character group �G�
This structure theory is also applied with G 	 T to describe the topology of
bZ� In Section �� we study uniformly distributed sequences in �G� In Section
�� this knowledge is applied to describe the topology on sequences de
ned by
polynomial functions� For example �Theorem ����� if f�x� is a non�constant
polynomial with integer coe�cients� then its range is dense in itself in Z��
When f�x� 	 xk� its range is also closed in Z� �Theorem ����� but this is
not true for all polynomials� For example� it is true for some� but not all�
quadratic polynomials �Theorem ����� Questions about the Haar measure of
the closure �in bZ� of the range of a polynomial are taken up in Section ��

In Section �� we study  �p� sets and Sidon sets in Z� In Lemma ��� above�
if A is an I� set� one can get a fairly simple description of the topology of
A�A� see Lemma ���� Now� if A is a Hadamard set� then A�A is a  �p� set
for all p ��� we use a similar argument� plus our description of the topology�
to construct another  �p� set which is dense inZ�� It is well�known that A�A
is not a Sidon set� In fact� we shall show that every Sidon subset of A�A is
discrete in Z�� It is still unknown whether there is a non�discrete Sidon set�

� Hadamard Sets

The following general result will be useful in proving theorems about A�A


Lemma ��� If A�B � G are both I� sets� and x � G is a limit point of A�B
in G�� then x is also a limit point of �AnP �� �BnQ� for all �nite P � A and
Q � B�
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Proof� If not� then x would be a limit point of either P � B or A� Q� and
hence of either fpg�B for some p � P � or A�fqg for some q � Q� But these
sets are also I� sets� so we contradict Theorem ����

We now turn to subsets of Z�

De�nition ��� For M � R� a subset A � Zsatis�es the Hadamard condition
with ratio M i� A 	 fan 
 n � Ng� where � � a� � a� � � � � and each
an���an 
 M � A is a Hadamard set i� it satis�es the Hadamard condition
with some ratio M 
 ��

Theorem ��� If A � Zis a Hadamard set� then�

�� A is an I��set�

	� � is the unique limit point of A�A in Z��


� A�A has no limit points in Z��

The fact that A is an I��set is well�known �see� e�g�� Kahane ���� Chapitre
Xxx����� but we include the proof� since all three parts follow by the following
general technique for constructing characters� which might be useful for other
!thin" sets of integers�

General Construction� For now� assume only that A 	 fan 
 n � Ng �
Zand that � � a� � a� � � � �� Say we are given !target angles" tn for n � N�
and we would like to construct a character � such that ��an� � eitn for each
n� So� ��x� 	 eix�� for some � to be determined� and we would like each an� �
tn�mod ���� To do this� we 
nd �n for n � N� with each an�n 	 tn � ��kn�
where the kn � Zwill be chosen inductively� Let 
n 	 �n�� � �n� we try
to keep these small so that the �n converge rapidly� We can let k� 	 � and
�� 	 t��a�� Given kn �and hence �n�� we choose an integer kn�� and then
set �n�� 	 tn���an�� � ��kn���an��� As kn�� varies over Z� these possible
values for �n�� are spaced ���an�� apart� so we can always choose kn�� so
that j
nj 	 j�n�� � �nj � ��an��� Assuming only that

P
n

�
an

� �� we know
that the �n converge to some limit �� If we set

Ln 	 �an

�
�

an��
�

�

an��
� � � �

�
�

we have

jan� � tn � ��knj 	 jan� � an�nj � an�j
nj� j
n��j� � � �� � Ln �

So� we have constructed � such that each ��an� lies on the arc of length �Ln

centered at eitn� Of course� this is useless unless Ln � ��
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Lemma ��
 Suppose A satis�es the Hadamard condition with ratio M �

�� If M 
 �� then A is an I��set�

	� If M 
 �� then � is the only limit point of A�A in Z��

Proof� We now have

jan� � tn � ��knj � �
�
�

M
�

�

M�
� � � �

�
	

�

M � � �

For ���� 
x any E � N� and apply the general construction� letting tn be �
for n � E and � for n �� E� Then �

M�� 	
�
� � � for some � 
 �� and we have

constructed � so that ��an� lies in the arc feix 
 ���� � � � x � ��� � �g
when n � E� and in the disjoint arc� feix 
 ��� � � � x � ���� � �g when
n �� E� So� for every E � N� the sets fan 
 n � Eg and fan 
 n �� Eg have
disjoint closures in bZ�since we have found a continuous function � which
maps them into disjoint closed sets�� hence� A is an I��set�

For ���� suppose r �	 � were a limit point of A�A� SinceA�A 	 ��A�A��
we may assume that r 
 �� Let Q � A be 
nite so that if b� 	 min�AnQ��
then b��r 
M � So� B 	 frg � �AnQ� satis
es the Hadamard condition with
ratio M � and r 	 b�� Let t� 	 � and tn 	 � for n 
 �� and apply the general
construction to B to get �� We have ���M��� � ���� so r 	 ��b�� lies in the
arc feix 
 ���� � x � ����g� while for m�n 
 �� each ��bm � bn� lies in the
arc feix 
 ���� � x � ���g� But this contradicts the fact that� by Lemma
���� r is a limit point of f�bm � bn� 
 m�n 
 �g�

To handle smaller values of M � we need


De�nition ��� If K�L 
 �� then A satis�es the compound Hadamard con�
dition with ratios K�L i� an���an 
 K when n is even� and an���an 
 L
when n is odd�

Lemma ��� Suppose that A satis�es the compound Hadamard condition with
ratios K�L 
 �� Let A� 	 fa�n 
 n � Ng and A� 	 fa�n�� 
 n � Ng� Then

�� If �L�K � ����KL � �� � �� then A� and A� have disjoint closures in
bZ�

	� If ��L�K �����KL��� � �� then the closures of A��A� and A��A�

in Z� contain neither a� nor �a��
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Proof� We now have

jan� � tn � ��knj � �� �
K
� �

KL
� �

K�L
� �

K�L�
� � �� 	 ��L���

KL�� �n even�

jan� � tn � ��knj � �� �
L
� �

KL
� �

KL�
� �

K�L�
� � �� 	 ��K���

KL��
�n odd�

For ���� let tn be � if n is even and � if n is odd� and construct � as in the proof
of lemma ���� Then ��A�� and ��A�� lie on subarcs of T� centered at � and ��
respectively� with lengths ���L���

KL��
and ���K���

KL��
respectively� Our assumption

on K and L implies that these lengths add up to less than ��� so that the arcs
are disjoint�

For ���� let t� 	 � and tn 	 � for n 
 �� Then arg���a��� and arg����a���
are within ��L�����KL��� of � and arg���d�� is within ��L�K�����KL���
of � for any d in D 	 �A��A��� �A��A��� so the condition on K�L implies
that we have mapped fa���a�g and D to disjoint arcs�

Proof of Theorem ���� Assume that each an���an 
 M � where M 
 �
For each s � N� we may partition A into sets A� for � � s� where

A� 	 fans�� 
 n � Ng �

Then each A� satis
es the Hadamard condition with ratio M s� If s is chosen
so large that M s 
 �� then by Lemma ������ each A� is an I��set� So� to prove
that A is an I��set� we must show that Aj and A� have disjoint closures in bZ
whenever � � j � � � s� Let c 	 � � j� Then Aj � A� satis
es a compound
Hadamard condition� with K 	 M c and L 	 M s�c� where c � ��� s � ���
Choose s so large that f�s� c� 	 �M c � M s�c � ����M s � �� � � for all
c � ��� s � ��� this is possible because f�s� c� � f�s� �� 	 f�s� s � �� for all
c � ��� s� ��� and f�s� �� � ��M � � as s��� Now apply Lemma ����� to
Aj and A��

Now� we 
x a positive r � Z� assume r is a limit point of A�A� and derive
a contradiction� Assuming s was chosen so thatM s 
 �� we know that r is not
a limit point of any A��A� by Lemma ������ so either r or �r is a limit point
of some A� �Aj� where � � j � � � s� Now� assume also that s was chosen
so large that ��M c �M s�c � ����M s � �� � � for all c � ��� s���� If k 
 r�
and we set B 	 frg � �Aj � �k���� � �A� � �k���� and list B in increasing
order as fbn 
 n � Zg� then b� 	 r� Furthermore� if B� 	 fb�n 
 � � n � Ng
and B� 	 fa�n�� 
 n � Ng� then one of B�� B� will be contained in Aj and the
other in A�� so by Lemma ���� either r or �r is a limit point of either B��B�

or B��B�� Let c be the smaller of �� j and s� ��� j�� so c � s��� Now 
x k
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so that B satis
es the compound Hadamard condition with ratios M s�c�M c

�that is� B� � A� if c 	 �� j� and B� � Aj if c 	 s� �� � j��� Then� Lemma
����� implies that r is not limit point of either B� �B� or B� �B��

Finally� if r is any element of Z� a similar argument shows that r is not
a limit point of A � A� If M is large� we can choose � such that ��r� � �
and ��an� � i for each n� so that ��am � an� � ��� Then� for smallerM � we
partition A as in the A�A proof�

� Abelian Groups

We shall use some structure theory for abelian groups to study their character
groups and their Bohr topologies� The material through Lemma ��� is known
or follows easily from known results �see Kaplansky ����� or Appendix A of
Hewitt and Ross ������ but we include proofs to show that what we need can
be derived quickly from what is available in college algebra texts� without
going deeply into abelian group theory� We 
rst note that one can often
construct characters with speci
c properties by prescribing their values on an
independent set


De�nition ��� If S � G� then hSi is the subgroup of G generated by S�
A � G is independent i� � �� A and hXi � hAnXi 	 f�g for all X � A�

Lemma ��� Suppose that A is an independent subset of the abelian group G
and �� 
 A� T is any map such that ����x��n 	 � whenever x � A has some
�nite order� n� Then there is a character � of G which extends ���

This makes the proof of Theorem ��� easy in the case that there is a large
independent set


Corollary ��� Suppose that A is an in�nite independent subset of the abelian
group G� Then A is an I��set� and � is the unique limit point of A�A in G��
Furthermore� if A contains no elements of order �� then A� A has no limit
points in G��

Proof� To see that A is an I��set� 
x E � A� then by independence and
Lemma ���� there is a character � which maps E to � and AnE to the arc
feix 
 ��� � x � ����g� so that E and AnE have disjoint closures in bG�

Next� suppose r � G is a limit point of A�A in G�� Let H 	 hAi� Since
every subgroup is closed in G�� we have r � H� so r � hCi for some 
nite
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C � A� Let A� 	 AnC� By Lemma ���� r is also a limit point of A� � A��
Then� if r �	 �� we can apply independence of frg � A� to get a character �
with ��r� �	 � and ��x� 	 � for all x � A�� and hence all x � A� �A�� which
yields a contradiction�

Finally� the same argument shows that A�A can have no limit point in G�

except possibly �� But� now� since A contains no element of order �� we may
get a character � to map all elements of A to the arc feix 
 ���� � x � ����g�
and hence all elements of A � A to the arc feix 
 ���� � x � ����g� which
does not contain � 	 �����

In some cases� large independent sets are easily produced by Corollary ����

Lemma ��
 If A � G is a maximal independent set and x �	 �� then mx � A
for some m�

Corollary ��� If G is an uncountable torsion�free abelian group and A � G
is a maximal independent set� then jAj 	 jGj�

Proof� For m �	 �� let Dm 	 fx � G 
 mx � Ag� Since G is torsion�free� the
map x �� mx is ���� so jDmj � jAj� Applying the lemma� Gnf�g 	 S

mDm�
so jAj must be jGj�

To handle the general case� we need to look more carefully at the torsion
elements� If G is an abelian group� we denote the order of an element x � G
by ord�x� � f�� �� � � ��g� For prime p� a p�group is a group such that ord�x�
is a power of p for all elements of G� For any abelian G� F 	 FG 	 fx � G 

ord�x� � �g denotes the torsion subgroup of G� This F may be expressed
uniquely as F 	

L
p�P Fp� where P is the set of primes and each Fp is a

p�group� the Fp are the primary components of G �or� of F ��
Among the p�groups are the cyclic groups Zpk for k 	 �� �� �� � � �� Each Zpk

is isomorphic to the set of x � Tof order pj for some j � k� We use Zp� to
denote the set of x � T of order pj for some j � N� The detailed structure
theory of p�groups involves Ulm invariants �see ������ For now we need only

Lemma ��� Let G be an in�nite abelian p�group and let � 	 jfx � G 

ord�x� 	 pgj� Then�

�� jGj 	 max�������
	� If � is �nite� then G contains an isomorphic copy of Zp��
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Proof� View G as a tree� whose root is the element �� The set of children of
the node � is fy 
 ord�y� 	 pg� and the set of children of the node x �	 � is
fy 
 py 	 xg� Since any two children of a given node must di�er by an element
of order p� each node has no more than ��� children� hence jGj 	 max�������
For 
nite �� all the levels of the tree are 
nite� so� by K$onig�s Lemma� there is
a path C 	 fxj 
 j � Ng through the tree� Then ord�xj � 	 pj and pxj�� 	 xj�
so hCi is isomorphic to Zp��

To prove Theorem ���� we need to show that every in
nite G contains an
independent set of size jGj� except in two special cases which we can handle
separately�

Lemma ��� Let G be an abelian group with � 	 jGj 
 ��� and let B 	
fx � G 
 x� x 	 �g�

�� If � 
 ��� then there is an independent A � G with jAj 	 ��

	� If � 	 ��� then at least one of the following holds�

a� There is an in�nite independent A � G�
b� G contains a subgroup isomorphic to Z�
c� G contains a subgroup isomorphic to some Zp��

Furthermore� if jG�Bj 	 �� then the set A in cases � or 	a can be taken to
contain no elements of order ��

Proof� Let F be the torsion subgroup� Either jF j 	 � or jG�F j 	 � �or
both��

If jG�F j 	 � thenG does contain a copy ofZ�since F �	 G�� so we are done
unless � 
 ��� in which case we apply Corollary ��� to get an independent
subset of G�F of the form fF � a� 
 � � �g� here� we view elements of G�F
as cosets of F � Then fa� 
 � � �g is an independent subset of G�

If jF j 	 �� decompose F into its primary components as F 	
L

p�P Fp�
and let Hp 	 fx � Fp 
 ord�x� 	 pg� Then Hp � f�g is a vector space over
Zp� so choose Ap � Hp such that Ap is a basis for Hp � f�g� Then each
Ap is independent in G� and hence A 	

S
p�P Ap is also independent �since

each Ap � Fp�� We are done if jAj 	 �� so assume that jAj � �� If � is
uncountable� let � 	 max�jAj����� Each jApj � �� so jHpj � �� and then
jFpj � � by Lemma ������ but then jF j � �� this is a contradiction because
� � �� So� � 	 �� and A is 
nite� so each Ap is 
nite and only 
nitely many
of the Ap are non�empty� Since Fp 	 f�g whenever Ap 	 	� we may 
x p such
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that Fp is in
nite� But since Hp is 
nite� this Fp will contain a Zp� by Lemma
������

Finally� if jG�Bj 	 �� we can apply the same argument to G�B to get an
independent subset of G�B of the form fB � a� 
 � � �g� Then fa� 
 � � �g
is an independent subset of G containing no element of order �� Observe that
if G�B contains a copy of Zor Zp�� then the same is true of G�

Proof of Theorem ��
� By Lemma ���� there are three cases� In Cases
� and �� we use the fact that whenever H is a subgroup of G� we may regard
bH as a closed subgroup of bG� so that any I� subset of H is also an I� subset
of G�

Case � 
 G is countable and contains a subgroup isomorphic to Z
 Apply
Theorem ��� to get A contained in that subgroup�

Case 	 
 G contains an independent subset of cardinality jGj
 Apply Corol�
lary ����

Case 
 
 G is countable and contains a subgroup isomorphic to Zp�
 We
may assume that G is Zp�� written additively� Let d be p if p 
 � and let
d 	 � if p 	 �� Let A 	 fan 
 n � Ng� where ord�a�� 	 d and dan�� 	
an� Although A is not independent� we have enough freedom in de
ning
characters inductively on the an to repeat the arguments of the other two
cases� Speci
cally� since d 
 �� whenever we are given arcs Kn � Tof length
����� we may 
nd a character � of Zp� such that ��an� � Kn for all n�

Using this� we may show that A is an I� set
 Fix any E � N� and choose
� such that ��an� � feix 
 ���� � x � ���g for n � E and ��an� � feix 

���� � x � ����g for n �� E� This shows that fan 
 n � Eg and fan 
 n �� Eg
have disjoint closures in bG� Likewise� we may show that � is not in the closure
of A� A� by de
ning � so that ��an� � feix 
 ��� � x � ����g for all n� so
that ��b� � feix 
 ��� � x � ����g for all b � A�A�

Finally� 
x c �	 � in Zp�� and we show that c cannot be a limit point of
A �A or A� A� Let � be the !usual" isomorphic embedding of Zp� into T�
so� ��an� 	 e��i�d

n��

� Since ��c� �	 � and ��an�� �� there must be an N � N
such that ��c� is not in the closure of f��an � am� 
 m�n 
 Ng� so that c is
not in the closure of fan� am 
 m�n 
 Ng� But then� by Lemma ���� c is not
a limit point of A�A or A�A�

We now describe the topology of the character group in more detail�

De�nition ��� In �G�

U���x�� � � � � xn� 	 f� 
 j��x��� �j � � � � � � � j��xn�� �j � �g �
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These sets form a base at � in �G� but so do sets of a somewhat simpler
form�

Lemma ��	 In �G� a base at � is given by sets of the form�

% � U���x�� � � � � xn� �

where % is a closed subgroup of � of �nite index and x�� � � � � xn are independent
elements of G of in�nite order�

Proof� Note that every closed subgroup of 
nite index is also open� so that all
sets of the stated form are indeed neighborhoods of �� Now� let U��� y�� � � � � ym�
be any basic neighborhood of �� Since hy�� � � � � ymi is isomorphic to a prod�
uct of cyclic groups� we can 
nd independent x�� � � � � xn� z�� � � � � zr such that
hy�� � � � � ymi 	 hx�� � � � � xn� z�� � � � � zri� where each ord�xj� is in
nite and each
ord�zj� is 
nite� Choose N large enough so that each yj is �uniquely� of the
form c�x� � � � � cnxn � w� where w � hz�� � � � � zri and N 
 jc�j � � � � � jcnj�
Let % 	 f� 
 ��z�� 	 � � � 	 ��zr� 	 �g� We are done if we can show that
%�U���N �x�� � � � � xn� � U��� y�� � � � � ym�� So� 
x � � %�U���N �x�� � � � � xn��
and 
x any yj 	 c�x� � � � � cnxn � w� Since ��w� 	 �� we have

j��yj�� �j 	 j
nY
�

���x���
c� � �j �

nX
�

jc�jj��x��� �j �
nX
�

jc�j �
N
� � �

Hence � � U��� y�� � � � � ym�� We have used here the inequality j�Qn
� ���� �j �Pn

� j�� � �j� which holds whenever all the �� � T�
In particular� we may apply this withG 	 Tand � 	 bZto get a description

of the topology of bZand hence of Z�� In this case� it is somewhat simpler
to apply the exponential map and index the neighborhoods by angles� rather
than elements of T�

Lemma ���� For ��� � � � � �n � R� ei�� � � � � � ei�n are independent elements of
T of in�nite order i� the reals �� ����� � � � � �n�� are linearly independent over
the rationals�

De�nition ���� In Z��

V ��� ��� � � � � �n� 	 fa 
 jeia�� � �j � � � � � � � jeia�n � �j � �g �
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Lemma ���� In Z�� a basis at � is given by sets of the form�

mZ� V ��� ��� � � � � �n� �

where m is a positive integer and the reals �� ����� � � � � �n�� are linearly inde�
pendent over the rationals�

We now use structure theory to describe the characters which are ��� on
G�

De�nition ���� If G is any discrete abelian group with character group ��
then & 	 &� is the set of � � � such that � maps G ��� into T�

Equivalently� such � have kernel equal to f�g�

Lemma ���
 � � & i� ord�x� 	 ord���x�� for all x � G�

In particular� arg���x���� is irrational whenever ord�x� 	� and � � &�

Theorem ���� &� �	 	 i� jGj � ��� and� for each prime p� the primary
component Fp of G is isomorphic to Zpk for some k 	 kp � f�� �� �� � � � ��g�

Proof� If � � &� then jGj 	 j��G�j � jTj 	 ��� � Also� the fact that Fp is
isomorphic to some subgroup of T forces Fp to be of the form Zpk�

Conversely� if each Fp is isomorphic to someZpk� we may easily de
ne a ���
character �� on F �since it is su�cient to make it ��� on each Fp�� Now� the
quotientG�F is torsion�free� and we may also assume it is divisible� since every
torsion�free abelian group is contained in a divisible abelian group of the same
cardinality �see Exercise � on p� �� of Kaplansky ������ Let A be a basis for
G�F �viewed as a vector space over the rationals�� Say A 	 fF �a� 
 � � �g�
Since � � ���� we may choose fd� 
 � � �g � ��� �� so that f�g�fd� 
 � � �g is
linearly independent over the rationals� We then extend �� to a ��� character
� by de
ning ��x� a�� 	 ���x�e�id� whenever x � F �

In the case that � is a torus� TJ� then G is a direct sum of jJ j copies of Z�
so the theorem implies that &� �	 	 i� jJ j � ��� � This is easier to see directly
from the following explicit description of &� which follows from Lemma ����


Lemma ���� If � 	 T
J� for some index set J � then �ei�j 
 j � J� � & i� the

reals f�g � f�j�� 
 j � Jg are linearly independent over the rationals�



� ABELIAN GROUPS ��

When J 	 f�� � � � � ng is 
nite� we see that the elements of &Tn correspond
nicely with the generators of the topology of Z� described in Lemma �����
This fortuitous coincidence will be useful later in proving Lemma ���� Also�
we see that &Tn has Haar measure �� but that easily generalizes to


Theorem ���� If G is countable and torsion�free� then ��&� 	 �� where � is
the Haar measure on ��

Proof� Let I 	 fz � T
 ord�z� 	�g� these are the z such that arg�z��� is
irrational� For each x � G� de
ne �x 
 � � T so that �x��� 	 ��x�� Then
�x is a continuous homomorphism� and it maps � onto T�since ord�x� 	���
Thus� the induced measure ����x is the Haar measure on T� so that ����x �I� 	
�� Now� & 	

T
x�

��
x �I�� which has measure � when G is countable�

If G is torsion�free� then & depends on jGj
 & is empty when jGj 
 ���

�Theorem ������ and ��&� 	 �� when jGj � �� �Theorem ������ The third
case for jGj is covered by Theorem ����


Theorem ���� If G is torsion�free and �� � jGj � ���� then & has inner
Haar measure � and outer Haar measure ��

Proof� We shall write &G for &�G� denote the Haar measure on �G by �G�
and use B��G� for the collection of all Baire subsets of �G� If H is a subgroup
of G� de
ne �H 
 �G � �H so that �H��� is the restriction of � to H� Observe
that �H maps onto �H � Furthermore


��� If H is a countable subgroup of G and G�H is torsion�free then


�a� For every 
 � �H � some � � ���H �
� is not ���� i�e�� is in �Gn&G�
�b� For every 
 � &H � some � � ���H �
� is ���� i�e�� is in &G�

The proof of �b� is like the proof of Theorem ����� and the proof of �a� is
easier�

Since Haar measure is completion regular �see Halmos ���� Theorem H�
Section ���� Theorem ���� follows if we can prove that �G�E� 	 � whenever
E � B��G� and either E � &G or E � �Gn&G� We do this using


��� If E � B��G� then there is a countable subgroup H � G and aneE � B��H� such that G�H is torsion�free and E 	 ���H � eE��
Now� assuming ���� we are done
 Assume E � B��G�� If E � &G� theneE 	 	 and hence E 	 	 by ����a�� If E � �Gn&G� then eE � �Hn&H by ����b��

so �H� eE� 	 � by Theorem ����� so that �G�E� 	 � because �H 	 �G�
��
H �
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To prove ���
 E is a countable boolean combination of closed G� sets
F�� F�� � � �� and each Fn 	 g��n f�g� where gn � C��G�� There is then a count�
able set S of characters of �G �i�e�� S � G� such that each gn is in the closed
subalgebra of C�G� generated by S� Then� let H be the set of all x � G such
that nx � hSi for some n �	 �� H is countable because hSi is countable and
G is torsion�free� so that for each x� there is at most one n with nx � hSi�
Then� let eE 	 �H�E�� the construction of H ensures that ���H �H�E� 	 E�

� Uniform Distribution

We begin with some general results on uniformly distributed sequences� and
then use these to study sequences in Z��

De�nition 
�� A sequence �xn 
 n � N� from a compact group X is uniformly
distributed i�

lim
N��

�

N

X
j�N

f�xj� 	
Z
X
f d� �UD�

for all f � C�X�� where � is the Haar probability measure on X�

We must be careful to distinguish the sequence �xn 
 n � N� from the set
fxn 
 n � Ng in our notation here� since the property depends on the order of
enumeration�

Clearly� for any X� the existence of a uniformly distributed sequence in X
implies that X is separable� It does not imply that X is second countable�
even in the special case when the elements of this sequence are all powers of
a given element� see Lemma ��� below� First� some elementary facts


Lemma 
�� If X�Y are compact groups� � is a continuous homomorphism
from X into Y � and �xn 
 n � N� is uniformly distributed in X� then ���xn� 

n � N� is uniformly distributed in ��X��

Proof� If � is the Haar measure on X� then the induced measure ���� is the
Haar measure on the compact group ��X��

Lemma 
�� If X is a group of order m ��� then �xn 
 n � N� is uniformly
distributed in X i� fn 
 xn 	 yg has asymptotic density ��m for each y � X�
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Lemma 
�
 If ��n 
 n � N� is a sequence in � 	 �G� then the following are
equivalent�

a� ��n 
 n � N� is uniformly distributed in ��

b� For all x � Gnf�g� limN��
�
N

P
j�N �j�x� 	 ��

Proof� �b� is equivalent to postulating �UD� whenever f 
 � � T� C is a
character of �� Then� use the fact that the set of 
nite linear combinations of
characters is dense in C����

Corollary 
�� �zn 
 n � N� is uniformly distributed in T i� for all non�zero
k � Z� limN��

�
N

P
n�N �zn�

k 	 �

De�nition 
�� Suppose S 
 N� Zand � � X� where X is a compact group�
Then � is S�uniform i� the sequence ��S�n� 
 n � N� is uniformly distributed
in X�

The existence of any such � forces X to be abelian� since it contains the
dense abelian subgroup h�i� We thus may as well assume that X 	 � 	 �G�
the character group of the discrete abelian group G� The following criterion
for � to be S�uniform is simplest when G is torsion�free� since then item b��
can be deleted


Theorem 
�� The following are equivalent for any � � � 	 �G and any
S 
 N� Z�

a� � is S�uniform in ��

b� All three of the following hold�
�� ��x� is S�uniform in Twhenever ord�x� 	��
	� The sequence n �� S�n� �mod m� is uniformly distributed in Zm for

all �nite m such that G contains an element of order m�

� � � &��

Proof� De
ne �x��� 	 ��x�� so that �x��S�n�� 	 �S�n��x� 	 ��x�S�n��
To prove a � b� assume that � is S�uniform in �� By Lemma ���

lim
N��

�

N

X
j�N

��x�S�n� 	 � ���
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for all x �	 �� in particular� ��x� �	 �� so � 
 G � T is ���� proving b���
If ord�x� 	 �� then �x��� 	 T� so that b�� follows from Lemma ���� If
ord�x� 	 m � �� then �x��� is the set of mth roots of �� so that b�� follows
from Lemma ����

To prove b � a
 b�� implies that ord�x� 	 ord���x�� for every x� When
ord�x� 	 �� ��� holds by b�� and Corollary ��� �applied with k 	 � and
zn 	 ��x�S�n��� When � � ord�x� 	 m ��� ��� holds by b��� Thus� ��� holds
for all x �	 �� so that � is S�uniform by Lemma ����

This theorem will be used in the proof of Lemma ���� The rest of the mate�
rial in this section provides some further information on uniform distribution�
but� with the exception of De
nition ����� will not be used later�

Lemma 
�� The following are equivalent for any � � ��
a� ��S�n� 
 n � N� is uniformly distributed in � for some S 
 N� Z�

b� � � &��

c� ��n 
 n � N� is uniformly distributed in ��

Proof� �a� � �b� is immediate from �a� � �b� of Theorm ���� �b� � �c�
follows from �b� � �a� of Theorm ���� applied for S�n� 	 n� since then �b���
of ��� is trivial� and �b��� is just the observation that for this S� every element
of Tof in
nite order is S�uniform in T�

Note that unless j�j 	 jGj 	 �� given any � � �� we can always 
nd a ���
S 
 N� Zsuch that � is not S�uniform� However� in many cases �Corollary
���� below�� given any ��� S 
 N� Z� it is true that � is S�uniform for almost
every �� We 
rst prove the following lemma� due to Weyl ���� in the case
G 	Z


Lemma 
�	 Suppose that xj� for j � N� are distinct elements of G� Then
limN��

�
N

P
j�N ��xj� 	 � holds for almost every � � ��

Proof� Let fj��� 	 ��xj�� Then fj � L����� each jfj���j 	 � for all ��
and the fj form an orthonormal sequence in L� �since distinct characters are
orthogonal��

Let SN��� 	
�
N

P
j�N fj���� We need to show that SN ��� � � for almost

every �� Now� kSNk� 	 �
N
� so

P�
r	� kSr�k� ��� so the subsequence Sr�����

� for almost every �� Now� consider any N 
 � with r� � N � �r����� Then
jNSN ��� � r�Sr����j � �r � ��� � r� � �r� so jSN��� � r�

N
Sr����j � 


r
� Since
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r�

N
� � as r��� we have that SN���� � for every � such that Sr����� ��

Corollary 
��� If G is countable and torsion�free� and S 
 N � Z is ����
then � is S�uniform for almost every � � �G�

Proof� By Lemma ���� � will be S�uniform i�

lim
N��

�

N

X
j�N

��S�j� � x� 	 � ���

holds for all x � Gnf�g� since �S�j��x� 	 ��S�j� � x�� For each 
xed x� the
elements S�j� � x are all distinct� since G is torsion�free� hence� Lemma ��#
gives us a set Ex such that ��� holds for all � � Ex and ��Ex� 	 �� Let
E 	

T
x �	�Ex� Then ��E� 	 � because G is countable� and ��� holds for every

� � E and every x � Gnf�g�
When discussing uniform distribution in T� it is often simpler to apply the

exponential map and use the following terminology


De�nition 
��� A sequence �yn 
 n � N� of real numbers is uniformly dis�
tributed �mod �� i� �e��iyn 
 n � N� is uniformly distributed in T�

This is the same as saying that fn � N 
 yn�mod �� � �a� b�g has asymptotic
density b� a whenever � � a � b � ��

Proposition 
��� The following are equivalent for any S 
 N� Z�

a� S is uniformly distributed in bZ�

b� Both of the following hold�
�� �S is uniformly distributed �mod �� for every irrational ��
	� The sequence n �� S�n� �mod m� is uniformly distributed in Zm for

all m 
 ��

Proof� Note that �a� says that the element � � Zis S�uniform in bZ� Also� ��
regarded as a character of T� is the identity map on T� and hence lies in &bZ�
So� we can apply Theorem ���� with bZand � in place of � and ��
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� Polynomial Sequences

Uniform distribution �mod �� was studied in some detail by Weyl� In partic�
ular� the following is a special case of Theorem # of �����

Theorem ��� �Weyl� If S�x� is a non�constant polynomial with integer co�
e�cients� then f�S�n� 
 n � Ng is uniformly distributed �mod �� for every
irrational ��

We shall use Theorem ��� to compute the closure of the range of a poly�
nomial in Z�� First� a preliminary lemma


Lemma ��� Suppose that E � Zand for each m 
 �� there is a sequence S
of elements of E�mZsuch that �S is uniformly distributed �mod �� for every
irrational �� Then � is a limit point of E in Z��

Proof� We may assume that � �� E �since uniform distribution does not
change if we delete one element�� so that we need only show that � is in the
closure of E� Applying Lemma ����� 
x a basic neighborhood of � of the form
mZ�V ��� ��� � � � � �n�� where m 
 � and �� ����� � � � � �n�� are independent over
the rationals� For this m� 
x an S as hypothesized in the lemma� By Lemma
����� �ei��� � � � � ei�n� is in &Tn� and is hence S�uniform in Tn by Theorem ���
applied with G 	 Z

n� In particular� f�eiS�k���� � � � � eiS�k��n� 
 k � Ng is dense in
T
n� so we may 
x a k such that jeiS�k��� � �j � � for each � 	 �� � � � � n� Then

S�k� � mZ� V ��� ��� � � � � �n��

Theorem ��� Suppose that f�x� is a non�constant polynomial with integer
coe�cients and r is an integer� Then the following are equivalent�

a� r is a limit point of f�N� in Z��

b� r is a limit point of f�Z� in Z��

c� f�Z�� �mZ� r� �	 	 for each m 
 ��

Proof� a � b � c is trivial� so we assume c and prove a by showing that � is
a limit point of f�N�� r� For each m� we may 
x a c such that f�c� � mZ� r�
Then� let S�j� 	 f�c�jm��r� and note that S�j� � mZfor all j� The desired
result is now immediate by Lemma ��� and Theorem ����

Note that condition �c� just says that the equation f�x� � r �mod m� has
a solution for each m 
 �� This is trivial if f�x� 	 r has a solution in Z� so
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Theorem ��
 If f�x� is a non�constant polynomial with integer coe�cients�
then every point of f�Z� is a limit point of f�N� in Z��

For integers outside of f�Z�� the situation is more complicated because the
solvability of f�x� � r �mod m� is more complicated� see� e�g�� LeVeque �����
We consider just two cases


Theorem ��� If f�x� 	 xk� where k is a positive integer� then f�Z� is closed
in Z��

Proof� It is su�cient to 
x an r �� f�Z� and produce an m such that there
are no solutions to f�x� � r �mod m�� So� choose m 	 �r�� and suppose we
could 
nd an n such that nk � r �mod �r��� We may assume that n 
 � �by
adding a multiple of �r��� and choose t so that nk 	 r � �r�t 	 r�� � �rt��
Since r and � � �rt are relatively prime� we may 
x y� z 
 � such that either

�� r� �� � �rt� 
 � and r 	 yk and � � �rt 	 zk� or

�� r� �� � �rt� � � and r 	 �yk and � � �rt 	 �zk�
But� since r �� f�Z�� we must have ��� and k must be even� But then ��� yields
zk � �� �mod ��� which is impossible when k is even�

Also� f�Z� is �trivially� closed inZ� whenever f is a linear polynomial� but
this need not be true for quadratic polynomials� by the following theorem� As
usual� �x� y� denotes the greatest common divisor of x� y� and !xjy" means
that y is divisible by x�

Theorem ��� Suppose that f�x� 	 ax� � bx� c� with a �	 � and a� b� c � Z�
Let e 	 �a� b�� Then�

�� � is a limit point of f�Z� i� ejc and D 	 b� � �ac is a square in Z�

	� f�Z� is closed in Z� i� a�e is not divisible by two distinct primes�

Proof� For � of ���
 We have� by Theorem ����


m 
 � �x �ax� � bx� c � � �mod m�� ���
Taking m 	 e� and observing that ax��bx�c � c �mod e� for all x� ��� yields
ejc� Taking m to be any prime� the solvability of ax�� bx� c 	 � in the 
eld
Zm implies that the discriminantD is a perfect square �mod m�� Since this is
true for all primes� D must be a square in Z�see ����� Theorem ��#��
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For� of ���
 Now� we must establish ���� Since ejc� the polynomial f�x��e
has integer coe�cients� SinceD is a square� this polynomial has rational roots�
so it factors over Z� Thus� we can write

ax� � bx� c 	 e���x� 	�����x� 	�� �

where ��� 	� � Zfor � 	 �� �� Since e � ���� ��� divides both a and b� and hence
e� we must have ���� ��� 	 �� Hence� any m may be factored as m 	 m�m��
with ����m�� 	 ����m�� 	 �m��m�� 	 �� Now� to prove ���� choose n�
so that ���n� � 	�� � � �mod m�� for � 	 �� �� this is possible because ��
is a unit in the ring Zm�

� Then apply the Chinese Remainder Theorem �as
in ����� Chapter �� to 
x n such that n � n� �mod m�� for � 	 �� �� then
���n� 	�����n� 	�� � � �mod m��

For ���� we may 
rst� by translation� assume that c 	 �� so f�x� 	 ax��bx�
Then� we may assume that e 	 �� since f�Z� will be closed i� �

e
f�Z� is closed�

Now� for any k� let gk�x� 	 ax�� bx� k� Then f�Z� will be closed i� for each
k� if � is a limit point of gk�Z� then � � gk�Z�� By part ���� � is a limit point
of gk�Z� i� the discriminant b

� � �ak is a square� say s�� so �ak 	 b�� s�� By
the quadratic formula� � � gk�Z� i� at least one of ��b� s���a is an integer�
So� f�Z� is closed i�


s� k��ak 	 b� � s� 	� �aj��b� s� or �aj��b� s��

Equivalently� letting t 	 s� b� so t� �b 	 s� b�


t��ajt�t� �b� 	� �ajt or �aj�t� �b��
If a 	 p� for p a prime� this is true� since �a� b� 	 � �consider the cases p 	 ��
p 
 � separately�� If a is not a prime power� this is false
 Set a 	 ���
where ��� �� 	 � and j�j� j�j 
 �� choose M�N so that b 	 M� � N�� and
let t 	 �N�� so that t � �b 	 �M�� Then �a divides t�t � �b� 	 �aMN �
If �a 	 ��� divides t 	 �N�� then � divides N � and hence b� contradicting
�a� b� 	 �� Likewise� �a cannot divide t� �b�

� Haar Measure in bG

Computing the Haar probability measure of speci
c sets in bG seems a bit
intractable� although some results on such questions were obtained by Blum�
Eisenberg� and Hahn ���� We add a few more results of this type here� We know
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of only two basic methods for computing measure� summarized in Lemmas ���
and ����

Lemma ��� If X is any compact abelian group and E � X is a Haar mea�
surable set of positive measure� then E � E contains a neighborhood of ��

Proof� Let f�x� 	
R
�E�y��E�x � y�d��y�� where �E is the characteristic

function of E� Then f is continuous and f��� 	 ��E� 
 �� so f is positive in
some neighborhood of �� and f�x� 
 � implies x � E � E�

Corollary ��� If G is an in�nite abelian group and A � G is such that � is
the only limit point of A�A in G�� then A �the closure of A in bG
 has Haar
measure ��

Proof� Since G is in
nite� every nonempty open subset of G� is dense in
itself� If A�A contained a neighborhood of � in G�� every point of that
neighborhood would be a limit point of A �A� contradicting our hypothesis
on A� Since A�A � A�A� the result follows from Lemma ����

In particular� if A � Zis a Hadamard set� then this corollary applies �by
Theorem ����� so ��A� 	 �� This generalizes a result in ���� which proved this
for A 	 fan 
 n � Ng and A 	 fn' 
 n � Ng�

The second method for computing ��A� is speci
c to Z


Lemma ��� Suppose that Q � N is some set of primes and A � Z� Suppose
that for each q � Q� there is a jq such that fa � A 
 a � jq �mod q�g is �nite�
Then ��A� � Qq�Q��� ��q�� In particular� if

P
q�Q ��q 	�� then ��A� 	 ��

Proof� Fix a 
nite F � Q� let m 	
Q
q�F q� and de
ne


Bq 	 fa � A 
 a �� jq �mod q�g � B 	
T
q�F Bq

Kq 	 fk � f�� � � � �m� �g 
 k �� jq �mod q�g � K 	
T
q�F Kq

Then AnB is 
nite� jKj 	 Q
q�F �q � �� by the Chinese Remainder Theorem�

and b �mod m� � K for each b � B� Therefore�

��A� 	 ��B� � jKj�m 	
Y
q�F

��� ��q�

Since F was an arbitrary 
nite subset of Q� the lemma follows�
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Something like this lemma was used in ��� to prove that ��A� 	 � in two
cases
 If A is the set of all primes� let Q 	 A and let jq 	 �� If A 	 fxk 

x � Zg� where k 
 �� let Q be the set of primes q such that q � � �mod k��
an appropriate jq can be found because for q � Q� the map x �� xk cannot
be a bijection of the cyclic group of order q� �� The fact that Pq�Q ��q 	�
follows from Dirichlet�s Theorem �see ����� p� ����


Theorem ��
 If m�n are two relatively prime positive integers� and Q is the
set of all primes q such that q � m �mod n�� then

P
q�Q ��q 	��

In view of the result for A 	 fxk 
 x � Zg� it is tempting to conjecture
that ��A� 	 � whenever A 	 f�Z� for some polynomial f of degree at least ��
However� we are only able to prove the following cases of this
�

Theorem ��� Let f be a polynomial with integer coe�cients of degree at
least �� and let A 	 f�Z�� Then ��A� � �� If f has degree either � or �� then
��A� 	 ��

Proof� Let g�x� 	 f�x����f�x�� and let Q be the set of primes q such that
g�x� has a root �mod q�� For q � Q� the polynomial f � viewed as a function
from Zq to Zq� fails to be ���� so it fails to be onto� so Lemma ��� applies here�

To prove that ��A� � �� it is su�cient to prove that Q �	 	� But if we

x any integer j with jg�j�j 
 �� and let q be any prime divisor of g�j�� then
q � Q�

To prove that ��A� 	 �� it is su�cient to prove that
P

q�Q ��q 	 �� If
f is quadratic� then g is linear� say g�x� 	 rx � s� and Q contains all primes
larger than jrj� If f is cubic� then g is quadratic� say g�x� 	 rx�� sx� t� Let
D 	 s� � �rt be the discriminant� Let p�� � � � � p� be the odd prime divisors of
D� and letM 	 �p� � � � p�� We shall show that D is a square inZq whenever q is
a prime and q � � �modM�� If we do so� then Q will contain all primes q 
 jrj
such that q � � �modM�� so that

P
q�Q ��q 	� by Dirichlet�s Theorem�

To simplify notation� we use the Legendre symbol �a j q�� de
ned whenever
a � Zand q is an odd prime
 if �a� q� 	 �� then �a j q� is � if a is a quadratic
residue �mod q� and �� otherwise� �a j q� 	 � whenever qja� Now� we assume
that q � � �modM� and we must show that �D j q� 	 �� Since �ab j q� 	
�a j q��b j q� �see ����� Theorem ����� it is su�cient to prove that �p j q� 	 � for

�David W� Boyd has pointed out that the 
Cebotarev Density Theorem �Math� Ann� ��
����������� �������� can be used to establish this result for all f of degree at least ��
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each prime divisor p of D� If p 	 �� use the fact that �� j q� 	 � whenever
q � � �mod �� �see ����� p� ���� If p is odd� use the quadratic reciprocity law

�p j q��q j p� 	 �����p����q����� �see ����� Theorem ����� Since q � � �mod ��
here� this reduces to �p j q� 	 �q j p�� Since also q � � �mod p�� we have
�p j q� 	 �q j p� 	 �� j p� 	 ��

� Sidon Sets and ��p� Sets

Since the sets we study in this section are built from sets of the form A�A�
we begin by using some graph theory to describe the topology on A�A�

IfX is an abelian group and A � X� an �undirected�A�graph is a collection
( of unordered pairs fa� bg �called !edges"�� where a� b � A and a �	 b� The
points a and b are called the end�nodes of fa� bg� The chromatic number�
��(�� is the least � such that A can be partitioned into � sets �colors�� Ci �for
i � ��� such that no edge of ( has both end�nodes in the same Ci�

De�nition ��� If ( is an A�graph� then 
�(� 	 fa � b 
 fa� bg � (g� If
� �� E � A � A� then ( spans E i� E � ��E� 	 
�(�� ( is a minimal
spanning A�graph for E i� ( spans E and� for every e � E there is exactly
one fa� bg � ( such that a� b 	 �e�

Note that 
�(� 	 �
�(�� since fa� bg 	 fb� ag� An element x � E may
have more than one representation of the form a � b� so that there may be
more than one ( which spans E� and more than one minimal spanning graph�

Lemma ��� If X is a compact abelian group� A � X� and � �� E � A �A�
then ��� � ��� � ���� and ��� � ��� in the case that A is discrete in its
relative topology and C��embedded in X�

�� ��(� 
 �� for every ( which spans E�

	� ��(� 
 �� for some ( which spans E�


� � � E

Proof� ��� � ��� is obvious� For ��� � ���� if � �� E� let U be a neighborhood
of � which is disjoint from E � ��E�� and then let V be a neighborhood of �
with V � V � U � By compactness� let

S
i�	�V � xi� 	 X� where � is 
nite�

and let Ci 	 A � �V � xi�� If a� b � Ci� then a � b and b � a are in U � and
hence not in E � ��E�� so fa� bg �� (� Hence� ��(� � � � ��� Note that the
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sets Ci de
ned here need not be disjoint� but they can always be reduced to
disjoint sets�

For ��� � ���� assume ( spans E and ��(� � ��� Let A 	
S
i�	 Ci� where

� is 
nite� the Ci are disjoint� and no edge in ( has both end�nodes in the
same Ci� Since A is C��embedded� the Ci are also disjoint� so � �� Ci � Cj

whenever i �	 j� Now� E � SfCi � Cj 
 i� j � � and i �	 jg� since this union
is closed and contains E� So� � �� E�

In the case that A � Z� X 	 bZ� and A is a Hadamard set� this lemma
will be useful for studying  �p� subsets of A � A� As usual� if f � L��T��
then )f �n� denotes its nth Fourier coe�cient� If E � Z� then f is E�spectral
i� )f�n� 	 � whenever n �� E�

De�nition ��� If p � ����� and C � �� then C is a  �p� constant for
E � Zi� kfkp � Ckfk� for all E�spectral trigonometric polynomials� E is a
 �p� set i� E has some �nite  �p� constant�

It is immediate from the de
nition that each 
nite set is  �p�� and every
subset of a  �p� set is  �p�� Every 
nite union of  �p� sets is also  �p� by


Lemma ��
 If C is a  �p� constant for E� and for E�� then C
p
� is a  �p�

constant for E� � E��

Proof� We may assume that E�� E� are disjoint� Any �E� � E���spectral
trigonometric polynomial is of the form f� � f�� where each f� is E� spectral�
Then

kf� � f�kp � kf�kp � kf�kp � C�kf�k� � kf�k�� � C
p
� kf� � f�k� �

The last !�" is by orthogonality of f�� f��
For more on these notions� see Rudin ��#� and Edwards and Gaudry ����

To construct non�trivial examples of  �p� sets� one can piece together 
nite
sets by applying the following


De�nition ��� A Hadamard decomposition of Zis a sequence of �nite sets
�%j 
 j � Z� such that for some Hadamard set �see De�nition 	�	
 A 	
fan 
 n � Ng 
 %j is �aj��� aj� when j 
 �� �ajjj� ajjj��� when j � �� and
��a�� a�� when j 	 ��

Theorem ��� If E � Z� �%j 
 j � Z� is a Hadamard decomposition� and C
is a  �p� constant for each E �%j� then E is a  �p� set�
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This follows immediately from the Littlewood�Paley Theorem ����� Theo�
rem ������� which asserts that Hadamard decompositions have the LP prop�
erty� plus the fact ����� Theorem #����� that every decomposition with the LP
property satis
es Theorem ���� Applying this theorem once� and noting that
� is a  �p� constant for every singleton� we generate the classical result that
all Hadamard sets are  �p� for all p � ������ Applying the theorem again�
we see


Theorem ��� If A 	 fan 
 n � Ng is a Hadamard set� then A�A is a  �p�
set for all p � ������
Proof� Assume that A satis
es the Hadamard condition with ratio M 
 ��
Applying Lemma ���� it is su�cient to prove that E 	 fan � am 
 m � ng is
 �p�� Fix r such that �M � ��M r 
 �� Then the only elements of E in the
interval �an��� an� are of the form an�j � am for j � r and m � n� j� since if
j 
 r� then an�j�am 
 an�j�an�j�� 
 �M���an�j�� 
 �M���M ran 
 an�
Thus� if �%j 
 j � Z� is the associated Hadamard decomposition� then each
E�%j is covered by r�� translates of �A� Since A� �A� and all its translates
have the same  �p� constant� we may apply Lemma ��� and 
x a C which is
a  �p� constant for each E �%j� and then apply Theorem ����

In the case that M 	 �� this result is Theorem #���� of ���� Modifying this
construction� we may construct a dense  �p� set


Theorem ��� There is an E � N such that E is a  �p� set for all p � �����
and E is dense in Z��

Proof� For m 
 �� let am� bm� cm be positive integers such that

�� am�� 
 �am�

	� b� 	 �� bm � bm��� and bm�� � bm �� as m���
�� cm � bm� and fm 
 cm 	 qg is in
nite for every positive integer q�

De
ne

Em 	 fas � cm � ar 
 bm � r � s � bm��g � E 	
��
m	�

Em �

To prove that E is  �p�� we apply Theorem ��� with the Hadamard decompo�
sition associated with A 	 fam 
 m 
 �g� Fix k 
 �� and let n be the integer
for which bn � k � bn��� We claim that

E � �ak��� ak� � �ak � cn��A ���
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Assuming ���� each E � �ak��� ak� is a subset of a translate of �A� and hence
has uniformly the same  �p� constant as does A� so Theorem ��� applies� To
prove ���� 
x x � E � �ak��� ak�� let m be any integer for which x � Em� and

x r� s so that

x 	 as � cm � ar and bm � r � s � bm�� �

Since cm � bm � r � ar we have x � as� whereas r � s and ��� imply
as�� � as � ar � x� Thus� x � �as��� as� � �ak��� ak�� which forces s 	 k� and
hence s � �bm� bm��� � �bn� bn���� so that m 	 n� and ��� is proved�

To prove that E is dense in Z�� it is su�cient to show that E contains
all positive integers� So� we 
x a positive q �� E and prove that q � E� or�
equivalently� that � � E � q�

For those m for which cm 	 q� let

Fm 	 Em � q � F 	
�fFm 
 cm 	 qg �

and note that F � �E � q� � �A�A�� Let

(m 	 ffar� asg 
 bm � r � s � bm��g � ( 	
�f(m 
 cm 	 qg �

Then (m is a complete N �graph �with N 	 bm�� � bm�� so that ��(m� 	
bm�� � bm� Hence� by �	�� ��(� 	 ��� Since ( spans F � Lemma ���� applied
in bZ� shows that � � F � E � q�

We next consider Sidon sets� One de
nition is


De�nition ��	 A Sidon set is an E � Zsuch that the Fourier series of every
E�spectral function in C�T� converges absolutely�

Every I� set is Sidon and every Sidon set is  �p� for each p � ������ For
proofs of this� and for many equivalents to the notion of !Sidon"� see ��� ����
���� ��#� ����� It is unknown whether there is a Sidon set with a limit point
in Z�� although Ramsey ���� showed that if there is such a set� then there is
another Sidon set which is dense in Z��

Theorem ���� below indicates that one cannot construct a Sidon set with
a limit point by using the method of Theorems ��� and ���� To prove this�
we use� as did Ramsey� the following combinatorial characterization of Sidon
sets�

De�nition ���� A set P � Zis quasi�independent i�
Pn

j	i kjxj �	 � when�
ever n 
 �� the xj are distinct elements of P � and all the kj � f��� �g�
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Theorem ���� �Pisier ���
� A set E � Z is Sidon i� there is a positive
C � N such that every �nite P � E contains a quasi�independent subset Q
with jQj 
 jP j�C�

Now� if we consider Sidon subsets of A � A� we can relate Pisier�s char�
acterization to properties of the associated graph� A cycle in a graph ( is a
sequence of distinct nodes� �a�� � � � � an���� such that n 
 � and all the edges
fa�� a�g� � � �fan��� an��g� fan��� a�g are in (� The next two lemmas show that
cycles in the associated graph destroy quasi�independence� whereas graphs
with large chromatic number contain cycles�

Lemma ���� If A � Z� Q is a quasi�independent subset of A�A� and ( is
a minimal spanning A�graph for Q� then ( contains no cycles�

Proof� Suppose that �a�� � � � � an��� were a cycle in (� Let ej 	 aj � aj��
for � � j � n � �� where we set an 	 a�� Note that ej �	 �ek when j �	 k�
since aj � aj�� 	 ��ak � ak��� would contradict minimality of (� But then
e��� � ��en�� 	 � and each ej or �ej is inQ� contradicting quasi�independence
of Q�

De�nition ���� If ( is an A�graph� and B � A� then (B is the set of edges
of ( which have both their end�nodes in B�

Lemma ���
 Suppose that ( is an A�graph� C is a positive integer� and
��(� 
 �C � �� Then there is a �nite set B � A such that every subgraph
* � (B with j*j 
 j(Bj�C contains a cycle�

Proof� Among the 
nite B � A with ��(B� 
 �C��� 
x one that is minimal
� that is� ��(Bnfbg� � �C for each b � B� It follows that each b � B lies on
at least �C edges in (B �otherwise� one could color B with �C colors by 
rst
coloring Bnfbg�� Counting edges and nodes then yields �j(Bj 
 �C � jBj�
Thus� if * is as in the statement of the lemma� j*j 
 jBj� Thus� * has at
least as many edges as nodes� whereas 
nite acyclic graphs have more nodes
than edges�

Combining these two lemmas


Theorem ���� If A � N is a Hadamard set and E � A� A is a Sidon set�
then E has no limit points in Z��



REFERENCES �#

Proof� The only possible limit point of E is � by Theorem ������ Assume
that � is a limit point and that E is Sidon� We may assume that � �	 E�

Choose a minimal spanning A�graph ( for E� and 
x C as in Pisier�s
Theorem ����� Since A is Hadamard� it is C��embedded in bZby Theorem
���� so we may apply Lemma ��� to conclude that ��(� 	 �� 
 �C ��� Now�

x a 
nite B � A satisfying the conclusion to Lemma �����

For each fa� bg � (B� choose efa
bg � E so that efa
bg is either a � b or
b � a� Let P 	 fefa
bg 
 fa� bg � (Bg� Then jP j 	 j(Bj� Applying Pisier�s
criterion� 
x Q � P such that jQj 
 jP j�C and Q is quasi�independent� Let
* be the subgraph of (B such that Q 	 fefa
bg 
 fa� bg � *g� Then * is a
minimal spanning graph for Q� so that * contains no cycles by Lemma �����
On the other hand� j*j 	 jQj 
 jP j�C 	 j(Bj�C� so that * contains a cycle
by Lemma ����� This contradiction proves the theorem�
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