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Abstract

If G is an abelian group, then G# denotes G equipped with the
weakest topology that makes every character of G continuous. This is
the Bohr topology of GG. If G = Z, the additive group of the integers,
and A is a Hadamard set in Z, it is shown that: (i) A — A has 0 as its
only limit point in Z#, (i) No Sidon subset of A — A has a limit point
in Z#, (iii) A— Ais a A(p) set for all p < co. This leads to an explicit
example of a set which is A(p) for all p < co and is dense in Z#. If
f(2) is a quadratic or cubic polynomial with integer coefficients, then
the closure of f(Z) in the Bohr compactification of Z is shown to have
Haar measure 0. Every infinite abelian group GG contains an Iy set A of
the same cardinality as GG such that 0 is the only limit point of A — A
in G#.

1 Introduction

Let G be an abstract abelian group, with the discrete topology. We use I's,
or just I', to denote the group of characters, or homomorphisms from G into
the circle group T. I' is a compact abelian group, and, by the Pontryagin
Duality Theorem, we may identify ¢ with the character group of I' (that is,
the continuous homomorphisms into T), by identifying each # € G with the
map v — v(x). We may also ignore the topology on I', view I' as a discrete
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group, and form its character group, denoted by b(G = I'r, consisting of all
homomorphisms from ['g into T. Then bG is the Bohr compactification of
(i. The same identification now makes G into a dense subgroup of bG. The
subspace topology on ¢ C b(i is called the Bohr topology, and G# denotes the
group G given this topology.

More concretely, basic neighborhoods of 0 in G# are of the form

W(é;’yl,...,’yn):{l'EGi |’)/1($)—1|<6& e & |7n(x)_1|<6} )

where n is finite and 7,...,7, € I'. Basic neighborhoods of other elements
are obtained by translation. Thus, the topology of G# is the weakest one
which makes all the characters of G continuous. When ¢ = Z, the group of
integers, then I' = T, and the characters are all of the form z — €% for some
real 6.

Basic properties of G# can be deduced directly from this description. For
example, every group homomorphism ® from G to another abelian group K is
continuous, viewed as a map from G# to K#. To prove this, it is sufficient to
prove that ® is continuous at 0, which follows from the fact that the inverse
image of a basic neighborhood of 0 in K — that is, @~ (W (e v, ..., 7)) —
is just W(e;y1 0 ®,...,7, o ®)), which is open in G#. Tt follows that every
subgroup H of (¢ is closed in G#, since H = ®~1{0}, where ® : G — G/H.

Now, b(G may be characterized abstractly by its properties: bG is the
unique (up to continuous isomorphism) compact group Y such that G is dense
in Y and every character of (G extends to a continuous character of Y. From
this, it is easy to see that if H is a subgroup of &, then bH is a closed subgroup
of bG: Let X be the closure of H in (. Then H is dense in X, and every
character v of H extends to X by extending v first to a character of GG (which
is possible since T is divisible), and then extending to b(i. Hence, X is bH.

These basic constructions are contained in texts on harmonic analysis,
such as [4][10][20]. In addition, the literature contains some more detailed
structural information about G# and b, which we review briefly.

Definition 1.1 A C G is called an lg-set, or an interpolation set, iff for all
E C A, the closures of £ and of A\E are disjoint in bG.

This is the same as saying that every bounded real-valued function on
A may be extended to a continuous function on b(; or, equivalently, to an
almost periodic function on G (since the almost periodic functions are exactly
the restrictions of such continuous functions to (). So, the I, sets are the
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subsets of (¢ which are relatively discrete in the topology G# and are C*-
embedded in bG. For more details, see Kahane [11] Chapitre X§2. In general,
a subset A of a compact Hausdorff space X is said to be C*-embedded in
X iff every bounded f € C(A) can be extended to a function in C'(X); in
the special case at hand, when A is discrete in its relative topology, this is
equivalent to saying that £ N A\E = () for all £ C A. For more on these
notions, see Gillman and Jerison [5].

Theorem 1.2 (Hartman and Ryll-Nardzewski [9]) In every abelian
group G, there is an Iy-set A C G with |A| = |G|.

Here, we are using | X| for the cardinality of the set X.

Of course, when G is finite, we may take A = (G. When (G is infinite, the
proof splits into cases, with the hardest case being ' = Z.

If Ais an Iy set, then its closure in bG' is homeomorphic to 8A (the Cech
compactification of A with the discrete topology). So, if A is an infinite Iy
set, it will have 22 Jimit points in bG. All of these limit points lie outside of
G, however, by:

Theorem 1.3 If A C (G is an ly-set, then no element of G is a limit point of
A in G¥.

This theorem was first discovered by Ryll-Nardzewski [21]. A different
proof is due to L. T. Ramsey [17]. Ramsey’s method of proof was discovered
independently by Arkhangel’skii (see [1]) in the context of C, theory; this
applies because G¥ is a subspace of C,(I'). See [7] for more on the relations
between (), theory and Bohr topologies.

In somewhat the opposite direction, K. P. Hart and J. van Mill [8] showed
that if G is an infinite boolean group (Va(x +a = 0)), then there is an infinite
E C G such that 0 is a limit point of K and every point of F other then 0
is isolated in . Their £ was of the form A — A = A+ A, where A was an
independent subset of (. In fact, there is such an £ for every (. We shall
show (after proving Lemma 3.7):

Theorem 1.4 Fuvery infinite abelian group G contains a subset A such that
|A| = |G| and:
1. A is an Iy-set.
2. 0 is the unique limit point of A — A in G#.
3. If the index of {x € G : 2+ 2 =0} in G equals |G|, then A+ A has no
limit points in G#.
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Regarding item 2, note:

Lemma 1.5 If A is any infinite subset of the abelian group G, then 0 is a
limit point of A — A in G#.

Proof. By compactness, A has some limit point p in bG. Then 0 = p — p
must be a limit point of A — A. O

Note that the additional assumption in Theorem 1.4.3 is exactly what is
required. If the index of B ={x € G : 2 + « = 0} in G is less than |G|, and
|A| = |G|, then infinitely many elements of A lie in some coset, B + ¢, which
implies, as in the proof of Lemma 1.5, that ¢ 4 ¢ is a limit point of A + A.

As with Theorem 1.2, the proof of Theorem 1.4 splits into cases. If G’ = Z,
then A can be any Hadamard set (see Definition 2.2), as we show in Section 2.
Then, in Section 3, we handle the other cases by examining more closely how
the algebraic structure of an abelian group G affects the character group I's.
This structure theory is also applied with G = T to describe the topology of
bZ. In Section 4, we study uniformly distributed sequences in I'¢. In Section
5, this knowledge is applied to describe the topology on sequences defined by
polynomial functions. For example (Theorem 5.4), if f(x) is a non-constant
polynomial with integer coefficients, then its range is dense in itself in Z¥.
When f(z) = zF, its range is also closed in Z# (Theorem 5.5), but this is
not true for all polynomials. For example, it is true for some, but not all,
quadratic polynomials (Theorem 5.6). Questions about the Haar measure of
the closure (in bZ) of the range of a polynomial are taken up in Section 6.

In Section 7, we study A(p) sets and Sidon sets in Z. In Lemma 1.5 above,
if A is an [y set, one can get a fairly simple description of the topology of
A — A; see Lemma 7.2. Now, if A is a Hadamard set, then A — Ais a A(p) set
for all p < oo; we use a similar argument, plus our description of the topology,
to construct another A(p) set which is dense in Z#. Tt is well-known that A— A
is not a Sidon set. In fact, we shall show that every Sidon subset of A — A is
discrete in Z#. It is still unknown whether there is a non-discrete Sidon set.

2 Hadamard Sets

The following general result will be useful in proving theorems about A — A:

Lemma 2.1 If A, B C (G are both Iy sels, and x € G is a limit point of A— B
in G* then z is also a limit point of (A\P) — (B\Q) for all finite P C A and
Q C B.
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Proof. If not, then  would be a limit point of either P — B or A — (), and
hence of either {p} — B for some p € P, or A — {q} for some ¢ € (). But these
sets are also [y sets, so we contradict Theorem 1.3. [

We now turn to subsets of Z.

Definition 2.2 For M € B, a subset A C Z satisfies the Hadamard condition
with ratio M iff A = {a, : n € N}, where 0 < ag < a; < -+ and each
apy1/a, > M. A is a Hadamard set iff it satisfies the Hadamard condition
with some ratio M > 1.

Theorem 2.3 If A C Z s a Hadamard set, then:

1. A is an Iy-set.
2. 0 is the unique limit point of A — A in Z#.
3. A+ A has no limit points in 7#.

The fact that A is an [g-set is well-known (see, e.g., Kahane [11] Chapitre
X§§2,3), but we include the proof, since all three parts follow by the following
general technique for constructing characters, which might be useful for other
“thin” sets of integers.

General Construction. For now, assume only that A = {a, : n € N} C
Z and that 0 < ag < a; < ---. Say we are given “target angles” ¢, for n € I,
and we would like to construct a character ¢ such that ¢(a,) ~ €' for each
n. So, p(x) = €’ for some 0 to be determined, and we would like each @, 0 ~
to(mod 27). To do this, we find 8, for n € N, with each a,0, = t, + 27k,,
where the k, € Z will be chosen inductively. Let 4§, = 0,11 — 0,; we try
to keep these small so that the 6, converge rapidly. We can let &y = 0 and
0o = to/ao. Given k, (and hence 6,), we choose an integer k,; and then
set 0,11 = tur1/ans1 + 27k,g1/ans1. As k,yq varies over Z, these possible
values for 0,,, are spaced 27/a,41 apart, so we can always choose k, 11 so
that |8,| = |0,41 — 0,| < 7/a,11. Assuming only that 3, aL < 00, we know
that the 8, converge to some limit 6. If we set !

1
_I_

an—l—l an—l—?

L, =ma,

_|_ ,

we have
So, we have constructed ¢ such that each ¢(a,) lies on the arc of length 2L,

centered at e'". Of course, this is useless unless L, < 7.
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Lemma 2.4 Suppose A satisfies the Hadamard condition with ratio M.

1. If M > 3, then A is an Iy-set.
2. If M > 17, then 0 is the only limit point of A — A in Z¥.

Proof. We now have

1 1 s

For (1), fix any F C N, and apply the general construction, letting ¢, be 0
for n € E and 7 for n ¢ E. Then 3/~ = 7 — ¢ for some ¢ > 0, and we have
constructed ¢ so that ¢(a,) lies in the arc {e : —7/2 +¢ <z < 7/2 — ¢}
when n € E, and in the disjoint arc, {¢ : 7/2 + ¢ < 2 < 37/2 — ¢} when
n ¢ E. So, for every £ C N, the sets {a, : n € E} and {a, : n ¢ FE} have
disjoint closures in bZ (since we have found a continuous function ¢ which
maps them into disjoint closed sets); hence, A is an [y-set.

For (2), suppose r # 0 were a limit point of A—A. Since A—A = —(A—A),
we may assume that r > 0. Let @ C A be finite so that if by = min(A\Q),
then by/r > M. So, B = {r} U (A\Q) satisfies the Hadamard condition with
ratio M, and r = by. Let tx = m and ¢, = 0 for n > 0, and apply the general
construction to B to get ¢. We have /(M —1) < 7/6, so r = ¢(by) lies in the
arc {1 51 /6 < = < 7m/6}, while for m,n > 0, each ((b,, — b,) lies in the
arc {¢"” . —m/3 < 2 < 7/3}. But this contradicts the fact that, by Lemma
2.1, r is a limit point of {(b,, — b,) : m,n > 0}. O

To handle smaller values of M, we need:

Definition 2.5 If K, L > 1, then A satisfies the compound Hadamard con-
dition with ratios K, L iff ay41/a, > K when n is even, and a,41/a, > L
when n is odd.

Lemma 2.6 Suppose that A satisfies the compound Hadamard condition with
ratios K, L > 1. Let Ag = {az, : n € N} and Ay = {azuq1 : n € N}. Then

1LIf(L+ K+2)/(KL—1) <1, then Ay and Ay have disjoint closures in
bZ.
2. If 2L+ K +3)/(KL—1) <1, then the closures of Ag— Ay and Ay — Ag

in Z# contain neither ag nor —ag.
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Proof. We now have

(L

jand =t = 27ka| <7l + grt ozt = fé}@% e even
1 1 1 1 (K

jant =t = 2mka| < 7l + 57+ gt el = K (nodd)

For (1), let ¢, be 0 if n is even and 7 if n is odd, and construct ¢ as in the proof
of lemma 2.4. Then ¢(Ag) and p( A1) lie on subarcs of T, centered at 1 and —1
respectively, with lengths 277%1'11) and 27}‘(,2(:1) respectively. OQur assumption
on K and L implies that these lengths add up to less than 27, so that the arcs
are disjoint.

For (2), let to = mand t,, = 0 for n > 0. Then arg(¢(ao)) and arg(p(—aop))
are within 7(L+1)/(K L—1) of m and arg(¢(d)) is within m(L+K+2)/(K L—1)
of 0 for any d in D = (Ag — A1) U(A; — Ap), so the condition on K, L implies
that we have mapped {ag, —ag} and D to disjoint arcs. [

Proof of Theorem 2.3. Assume that each a,41/a, > M, where M > 1
For each s € N, we may partition A into sets A, for £ < s, where

Ag = {an5+g n N} .

Then each A; satisfies the Hadamard condition with ratio M?. If s is chosen
so large that M*® > 3, then by Lemma 2.4.1, each Ay is an [y-set. So, to prove
that A is an Ip-set, we must show that A; and A, have disjoint closures in bZ
whenever 0 < 7 < ¢ < s. Let ¢ =/ —j. Then A; U A, satisfies a compound
Hadamard condition, with K = M¢ and L = M*¢, where ¢ € [1,s — 1].
Choose s so large that f(s,¢) = (M°+ M*~°+2)/(M* — 1) < 1 for all
¢ € [1,s — 1]; this is possible because f(s,¢) < f(s,1) = f(s,s — 1) for all
c€[l,s—1],and f(s,1) - 1/M <1 as s - oo. Now apply Lemma 2.6.1 to
AJ‘ and Ag.

Now, we fix a positive r € Z, assume r is a limit point of A— A, and derive
a contradiction. Assuming s was chosen so that M?* > 7, we know that r is not
a limit point of any A, — A, by Lemma 2.4.2, so either r or —r is a limit point
of some A, — A;, where 0 < 7 </ < s. Now, assume also that s was chosen
so large that (2M° 4+ M*=¢ +3)/(M* —1) < 1 for all ¢ € [1,s/2]. If k > r,
and we set B = {r}U(A; N (k,00))U (AN (k,00)) and list B in increasing
order as {b, : n € Z}, then by = r. Furthermore, if By = {by, : 0 < n € N}
and By = {az,41 : n € I}, then one of By, By will be contained in A; and the
other in A,, so by Lemma 2.1, either r or —r is a limit point of either By — B;
or By — By. Let ¢ be the smaller of £ — j and s — (¢ — j); so ¢ < s/2. Now fix k
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so that B satisfies the compound Hadamard condition with ratios M?*~¢, M*
(that is, By C Ay ifc=(—j,and By C Aj ife=5s—({ —j)). Then, Lemma
2.6.2 implies that r is not limit point of either By — By or By — By.

Finally, if r is any element of Z, a similar argument shows that r is not
a limit point of A + A. If M is large, we can choose ¢ such that p(r) ~ 1
and (a,) ~ i for each n, so that ¢(a., + a,) ~ —1. Then, for smaller M, we
partition A as in the A — A proof. [

3 Abelian Groups

We shall use some structure theory for abelian groups to study their character
groups and their Bohr topologies. The material through Lemma 3.7 is known
or follows easily from known results (see Kaplansky [12], or Appendix A of
Hewitt and Ross [10]), but we include proofs to show that what we need can
be derived quickly from what is available in college algebra texts, without
going deeply into abelian group theory. We first note that one can often
construct characters with specific properties by prescribing their values on an
independent set:

Definition 3.1 [f S C G, then (S) is the subgroup of G' generated by S.
A C G isindependent iff 0 ¢ A and (X) N (A\X) ={0} for all X C A.

Lemma 3.2 Suppose that A is an independent subset of the abelian group G
and o : A — T is any map such that (po(x))* = 1 whenever x € A has some
finite order, n. Then there is a character p of G which extends .

This makes the proof of Theorem 1.4 easy in the case that there is a large
independent set:

Corollary 3.3 Suppose that A is an infinite independent subset of the abelian
group G. Then A is an Ly-set, and 0 is the unique limit point of A— A in G¥.
Furthermore, if A contains no elements of order 2, then A+ A has no limit
points in G¥.

Proof. To see that A is an [p-set, fix £ C A; then by independence and
Lemma 3.2, there is a character ¢ which maps £ to 1 and A\FE to the arc
{e® :m/2 <z <3m/2}, so that E and A\ E have disjoint closures in b(.
Next, suppose r € (& is a limit point of A — A in G¥. Let H = (A). Since
every subgroup is closed in G#, we have r € H, so r € (C') for some finite
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C C A. Let A = A\C. By Lemma 2.1, r is also a limit point of A" — A’
Then, if r # 0, we can apply independence of {r} U A’ to get a character ¢
with ¢(r) # 1 and p(x) =1 for all € A’, and hence all x € A" — A’ which
yields a contradiction.

Finally, the same argument shows that A+ A can have no limit point in G#
except possibly 0. But, now, since A contains no element of order 2, we may
get a character  to map all elements of A to the arc {e : 27 /5 < x < 27/3},
and hence all elements of A + A to the arc {¢ : 47/5 < x < 4m/3}, which
does not contain 1 = ¢(0). O

In some cases, large independent sets are easily produced by Corollary 3.5.

Lemma 3.4 If A C (i is a mazimal independent set and x # 0, then mx € A
for some m.

Corollary 3.5 If GG is an uncountable torsion-free abelian group and A C GG
is a maximal independent set, then |A| = |G].

Proof. For m # 0, let D,,, = {x € G : ma € A}. Since ( is torsion-free, the
map = — maz is 1-1, so |D,,| < |A|. Applying the lemma, G\{0} = U,, Dy,
so |A| must be |G]. O

To handle the general case, we need to look more carefully at the torsion
elements. If (¢ is an abelian group, we denote the order of an element z € G
by ord(z) € {1,2,...00}. For prime p, a p-group is a group such that ord(x)
is a power of p for all elements of G. For any abelian G, F = Fgz={z € G :
ord(x) < oo} denotes the torsion subgroup of G. This F' may be expressed
uniquely as I' = @,ep I',, where P is the set of primes and each Fj is a
p-group; the F, are the primary components of GG (or, of F).

Among the p-groups are the cyclic groups Zx for k = 0,1,2,.... Each Z
is isomorphic to the set of x € T of order p’ for some j < k. We use Zy~ to
denote the set of @ € T of order p/ for some j € N. The detailed structure
theory of p-groups involves Ulm invariants (see [12]). For now we need only

Lemma 3.6 Let G be an infinite abelian p-group and let v = [{x € G :
ord(x) = p}|. Then:

1. |G| = max(k, Rg).
2. If k is finite, then G' contains an isomorphic copy of Z,.
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Proof. View (G as a tree, whose root is the element 0. The set of children of
the node 0 is {y : ord(y) = p}, and the set of children of the node x # 0 is
{y : py = z}. Since any two children of a given node must differ by an element
of order p, each node has no more than x+1 children; hence |G| = max(x, Ro).
For finite &, all the levels of the tree are finite, so, by Konig’s Lemma, there is
a path C' = {x; : 7 € N} through the tree. Then ord(x;) = p’ and pz;y; = ;,
so (C') is isomorphic to Zye. O

To prove Theorem 1.4, we need to show that every infinite ¢ contains an
independent set of size |G|, except in two special cases which we can handle
separately.

Lemma 3.7 Let G be an abelian group with k = |G| > g, and let B =
{reG:x+2=0}:

1. If k > Ry, then there is an independent A C G with |A| = k.
2. If k = Vg, then at least one of the following holds:

a. There is an infinite independent A C (.
b. GG contains a subgroup isomorphic to Z.
c. G conlains a subgroup isomorphic to some Zy.

Furthermore, if |G/ B| = k, then the set A in cases 1 or 2a can be taken to
contain no elements of order 2.

Proof. Let F' be the torsion subgroup. Either |F| = & or |G/F| = & (or
both).

If |GG/ F| =  then (& does contain a copy of Z (since F' # (), so we are done
unless k > Ny, in which case we apply Corollary 3.5 to get an independent
subset of G//F of the form {F + a, : a € k}; here, we view elements of G/ F
as cosets of F'. Then {a, : @ € k} is an independent subset of G.

If || = &, decompose F into its primary components as I' = @ ep F)p,
and let H, = {x € F, : ord(x) = p}. Then H, U {0} is a vector space over
Zy, so choose A, C H, such that A, is a basis for H, U {0}. Then each
A, is independent in G, and hence A = U,ep A, is also independent (since
each A, C F,). We are done if |A| = &, so assume that |[A| < &. If & is
uncountable, let A = max(|A],Rg). Each |A,| < A, so |H,| < A, and then
|F,| < X by Lemma 3.6.1, but then |F| < A; this is a contradiction because
A < k. S0, k = Vg and A is finite, so each A, is finite and only finitely many
of the A, are non-empty. Since F, = {0} whenever A, = (}, we may fix p such
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that F, is infinite. But since H,, is finite, this F}, will contain a Z,~ by Lemma
3.6.2.

Finally, if |G/B| = &, we can apply the same argument to G/ B to get an
independent subset of GG/ B of the form {B + a, : a € k}. Then {a, : a € K}
is an independent subset of G containing no element of order 2. Observe that
if G/B contains a copy of Z or Z,«, then the same is true of G. O

Proof of Theorem 1.4. By Lemma 3.7, there are three cases. In Cases
1 and 3, we use the fact that whenever H is a subgroup of (G, we may regard
bH as a closed subgroup of b, so that any Iy subset of H is also an [y subset
of G.

Case 1: (G is countable and contains a subgroup isomorphic to Z: Apply
Theorem 2.3 to get A contained in that subgroup.

Case 2: (G contains an independent subset of cardinality |G|: Apply Corol-
lary 3.3.

Case 3: (G is countable and contains a subgroup isomorphic to Z,~: We
may assume that G is Z,~, written additively. Let d be p if p > 3 and let
d=4ifp=2 Let A= {a, : n € N}, where ord(ap) = d and da,+; =
a,. Although A is not independent, we have enough freedom in defining
characters inductively on the a, to repeat the arguments of the other two
cases. Specifically, since d > 3, whenever we are given arcs K, C T of length
27 /3, we may find a character ¢ of Z,~ such that ¢(a,) € K, for all n.

Using this, we may show that A is an [y set: Fix any £/ C N, and choose
¢ such that p(a,) € {*: —7/3 <z < 7/3} for n € E and p(a,) € {e* :
27 /3 < a < 4r/3} for n ¢ F. This shows that {a, :n € F} and {a, : n ¢ £}
have disjoint closures in b(i. Likewise, we may show that 0 is not in the closure
of A+ A, by defining ¢ so that p(a,) € {¢ : 7/6 <z < 57/6} for all n, so
that p(b) € {e® :7/3 <z <b5m/3} forall be A+ A.

Finally, fix ¢ # 0 in Zy~, and we show that ¢ cannot be a limit point of
A—Aor A+ A. Let ¢ be the “usual” isomorphic embedding of Z,~ into T;
s0, ¥(a,) = 2™/ Since Y(e) # 1 and ¢(a,) — 1, there must be an N € N
such that ¥(¢) is not in the closure of {¢(a,, £+ a,) : m,n > N}, so that ¢ is
not in the closure of {a, + a,, : m,n > N}. But then, by Lemma 2.1, ¢ is not
a limit point of A+ Aor A—A. O

We now describe the topology of the character group in more detail.
Definition 3.8 In I'g,
Ulean,. ) = {1 o) =1 < e & -+ & yla) — 1] < e} .
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These sets form a base at 0 in ', but so do sets of a somewhat simpler
form.

Lemma 3.9 In g, a base at 0 is given by sets of the form:
ANU(gay,...,x,)

where A is a closed subgroup of I' of finite index and x+, ..., x, are independent
elements of G of infinite order.

Proof. Note that every closed subgroup of finite index is also open, so that all
sets of the stated form are indeed neighborhoods of 0. Now, let U(¢; y1, ..., Ym)
be any basic neighborhood of 0. Since (y1,...,ys) is isomorphic to a prod-
uct of cyclic groups, we can find independent z,...,x,,2,..., 2, such that
Y1y oy Ym) = (@1, ., Tp, 21, .., 2r), Where each ord(x;) is infinite and each
ord(z;) is finite. Choose N large enough so that each y; is (uniquely) of the
form eyaxy + -+ cpr, + w, where w € (z1,...,z.) and N > |eq1] + -+ + |en].
Let A = {~:9(z1) =+ = 7(z) = 1}. We are done if we can show that
ANU(e/N;ay,...,xn) CU(E Y1,y Ym). So, fixy € ANU(¢/Nsxq,...,2,),

and fix any y; = ¢ + -+ ¢, + w. Since y(w) = 1, we have

n n n ¢
() = 1 = T ()) = < 3 feelly(me) = 1] < X fedd = < e
1 1 1

Hence v € U(€; 41, .., Ym). We have used here the inequality |(IT} av) — 1] <
-1 |ae — 1], which holds whenever all the oy € T. O

In particular, we may apply this with G = Tand I' = bZ to get a description
of the topology of bZ and hence of Z#. In this case, it is somewhat simpler
to apply the exponential map and index the neighborhoods by angles, rather
than elements of T.

Lemma 3.10 For 0y,...,0, € R: €% ... % are independent elements of
T of infinite order iff the reals 1,6, /7,...,0,/7 are linearly independent over
the rationals.

Definition 3.11 [n 7#,

Vieby,....0,)={a: " =1 <ec& --- & | — 1| <€} .
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Lemma 3.12 In Z¥#, a basis at 0 is given by sets of the form:
mZNV(eby,...,0,)

where m is a positive integer and the reals 1,01 /7, ..., 0, /7 are linearly inde-
pendent over the rationals.

We now use structure theory to describe the characters which are 1-1 on

G.

Definition 3.13 If GG is any discrete abelian group with character group T,
then Q = Qr is the set of v € I such that v maps G 1-1 into T.

Equivalently, such ~ have kernel equal to {0}.
Lemma 3.14 v € Q iff ord(z) = ord(y(x)) for all x € G.
In particular, arg(y(z))/m is irrational whenever ord(x) = oo and v € €.

Theorem 3.15 Qr #£ 0 iff |G| < 2% and, for each prime p, the primary
component F, of G is isomorphic to Z,. for some k =k, € {0,1,2,...,00}.

Proof. If v € Q, then |G| = [y(G)| < |T| = 2%. Also, the fact that F, is
isomorphic to some subgroup of T forces F, to be of the form Z .

Conversely, if each F), is isomorphic to some Z,x, we may easily define a 1-1
character ¢y on F (since it is sufficient to make it 1-1 on each F},). Now, the
quotient G/ F' is torsion-free, and we may also assume it is divisible, since every
torsion-free abelian group is contained in a divisible abelian group of the same
cardinality (see Exercise 5 on p. 12 of Kaplansky [12]). Let A be a basis for
G/ F (viewed as a vector space over the rationals). Say A = {F +a, : a € k}.
Since k < 2% we may choose {d,, : @ € k} C [0,1] so that {1}U{d, : a € x} is
linearly independent over the rationals. We then extend 1ty to a 1-1 character

¢ by defining ¥(z + a,) = o(x)e™? whenever z € F. O

In the case that I is a torus, T, then (7 is a direct sum of |.J| copies of Z,
so the theorem implies that Qp # @ iff |J| < 2%. This is easier to see directly
from the following explicit description of €, which follows from Lemma 3.14:

Lemma 3.16 [f ' = T/, for some index set J, then (¢'% : 5 € J) € Q iff the
reals {1} U{8;/m : 7 € J} are linearly independent over the rationals.
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When J = {1,...,n} is finite, we see that the elements of Qn correspond
nicely with the generators of the topology of Z# described in Lemma 3.12.
This fortuitous coincidence will be useful later in proving Lemma 5.2. Also,
we see that Qgn» has Haar measure 1, but that easily generalizes to:

Theorem 3.17 [f GG is countable and torsion-free, then A\(2) = 1, where X is
the Haar measure on I'.

Proof. Let [ = {z € T: ord(z) = co}; these are the z such that arg(z)/m is
irrational. For each x € (7, define @, : I' — T so that ®,(y) = v(x). Then
®, is a continuous homomorphism, and it maps I onto T (since ord(z) = o).
Thus, the induced measure A®;* is the Haar measure on T, so that A® (1) =
1. Now, Q =, @, (1), which has measure 1 when ( is countable. []

)

If G is torsion-free, then € depends on |G|: € is empty when |G| > 2%
(Theorem 3.15), and A(2) = 1, when |G| < Ry (Theorem 3.17). The third
case for |G| is covered by Theorem 3.18:

Theorem 3.18 If & is torsion-free and N, < |G| < 2%, then Q) has inner
Haar measure 0 and outer Haar measure 1.

Proof. We shall write Q¢ for Qr,, denote the Haar measure on I'g by Ag,
and use B(I'¢) for the collection of all Baire subsets of I'. If H is a subgroup
of GG, define mpy : I'¢ — 'y so that my(y) is the restriction of v to H. Observe
that my maps onto I'y. Furthermore:

(1) If H is a countable subgroup of G and GG/ H is torsion-free then:
(a) For every § € I'yy, some v € 75 () is not 1-1; i.e., is in I's\Qq-.
(b) For every 6 € Qy, some v € 75 () is 1-1; i.e., is in Qg.

The proof of (b) is like the proof of Theorem 3.15, and the proof of (a) is
easier.
Since Haar measure is completion regular (see Halmos [6], Theorem H,

Section 64), Theorem 3.18 follows if we can prove that Ag(F) = 0 whenever
FE € B(I'¢) and either E C Qg or £ C I'¢\Q¢. We do this using:

(2) If £ € B(I'g) then there is a countable subgroup H C G and an
E € B(I'y) such that G/H is torsion-free and £ = 7' (E).

_ Now, assuming (2), we are done: Assume I € B(I'g). If £ C Qg, then
E = {0 and hence = (0 by (1)(a). If £ C T'¢\Qq, then £ C T'y\Qy by (1)(b),

so Agr(E) = 0 by Theorem 3.17, so that A\g(E) = 0 because Ay = g7y
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To prove (2): F is a countable boolean combination of closed G sets
Fo, Fi, ..., and each F,, = g;'{0}, where g, € C(T'z). There is then a count-
able set S of characters of ' (i.e., S C () such that each g, is in the closed
subalgebra of C'(() generated by S. Then, let H be the set of all © € ¢ such
that nx € (S) for some n # 0. H is countable because (5) is countable and
(i is torsion-free, so that for each x, there is at most one n with nx € (5).
Then, let E = 7 (E); the construction of H ensures that m5'my(E) = E. O

4 Uniform Distribution

We begin with some general results on uniformly distributed sequences, and
then use these to study sequences in Z#.

Definition 4.1 A sequence (x,, : n € N) from a compact group X is uniformly

distributed iff

lim — 3 fa;) = /de)\ (UD)

N—oo N]<N
for all f € C(X), where X is the Haar probability measure on X.

We must be careful to distinguish the sequence (x,, : n € N) from the set
{x, : n € N} in our notation here, since the property depends on the order of
enumeration.

Clearly, for any X, the existence of a uniformly distributed sequence in X
implies that X is separable. It does not imply that X is second countable,
even in the special case when the elements of this sequence are all powers of
a given element; see Lemma 4.8 below. First, some elementary facts:

Lemma 4.2 If X,Y are compact groups, ® is a continuous homomorphism
from X into Y, and (x, : n € N) is uniformly distributed in X, then (®(x,) :
n € N) is uniformly distributed in ®(X).

Proof. If ) is the Haar measure on X, then the induced measure A®~! is the
Haar measure on the compact group ®(X). O

Lemma 4.3 If X is a group of order m < oo, then (x, : n € N) is uniformly
distributed in X iff {n : x, =y} has asymptotic density 1/m for each y € X.
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Lemma 4.4 [f (v, : n € N) is a sequence in ' = I'q, then the following are
equivalent:

a. (yn :n € N) is uniformly distributed in T
b. For all x € G\{0}, limn_eo v X jen Vs(x) = 0.

Proof. (b) is equivalent to postulating (UD) whenever f: ' — T C Cis a
character of I'. Then, use the fact that the set of finite linear combinations of
characters is dense in C'(I'). O

Corollary 4.5 (z, : n € W) is uniformly distributed in T iff for all non-zero
kez, lmy_e ﬁ Spen(z)F =10

Definition 4.6 Suppose S :N — Z and v € X, where X is a compact group.
Then ~ is S-uniform iff the sequence (v : n € W) is uniformly distributed
in X.

The existence of any such v forces X to be abelian, since it contains the
dense abelian subgroup (y). We thus may as well assume that X =T =T,
the character group of the discrete abelian group . The following criterion
for v to be S-uniform is simplest when (' is torsion-free, since then item b.2
can be deleted:

Theorem 4.7 The following are equivalent for any v € I' = I'¢ and any
SN — Z:

a. v is S-uniform in .
b. All three of the following hold:
1. ~y(x) is S-uniform in T whenever ord(x) = oo.
2. The sequence n +— S(n) (mod m) is uniformly distributed in Z,, for
all finite m such that G contains an element of order m.
3. Y € QF.

Proof. Define ®,(y) = v(z), so that ®,(75") = 45 (z) = ~(2)5"),

To prove a = b, assume that v is S-uniform in I'. By Lemma 4.4

Aim > (@)™ =0 (+)
<N
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for all  # 0; in particular, v(x) # 1, so v : G — T is 1-1, proving b.3.
If ord(x) = oo, then ®,(I') = T, so that b.1 follows from Lemma 4.2. If
ord(x) = m < oo, then ®,(T) is the set of m'™® roots of 1, so that .2 follows
from Lemma 4.3.

To prove b = a: b.3 implies that ord(x) = ord(v(x)) for every . When
ord(x) = oo, (%) holds by b.1 and Corollary 4.5 (applied with & = 1 and
2, = v(2)°™). When 0 < ord(x) = m < oo, (%) holds by 5.2. Thus, () holds
for all @ # 0, so that v is S-uniform by Lemma 4.4. O

This theorem will be used in the proof of Lemma 5.2. The rest of the mate-
rial in this section provides some further information on uniform distribution,
but, with the exception of Definition 4.11, will not be used later.

Lemma 4.8 The following are equivalent for any v € I':

a. (Y50 i n € N) is uniformly distributed in T for some S : N — Z.
b. Y € QF.
c. (¥" :n €N) is uniformly distributed in T

Proof. (a) — (b) is immediate from (a«) — (b) of Theorm 4.7. (b) — (¢)
follows from (b) — (a) of Theorm 4.7, applied for S(n) = n, since then (b.2)
of 4.7 is trivial, and (b.1) is just the observation that for this 5, every element
of T of infinite order is S-uniform in T. O

Note that unless |I'| = |G| = 1, given any v € ', we can always find a 1-1
S i I — Z such that v is not S-uniform. However, in many cases (Corollary
4.10 below), given any 1-1 S : N — Z, it is true that 4 is S-uniform for almost
every v. We first prove the following lemma, due to Weyl [22] in the case
G =17

Lemma 4.9 Suppose that z;, for 7 € N, are distinct elements of G. Then
My oo % 2 jen Y(2j) = 0 holds for almost every v € T

Proof. Let f;(y) = v(z;). Then f; € L*(T), each |f;(y)| = 1 for all ~,
and the f; form an orthonormal sequence in L? (since distinct characters are
orthogonal).

Let Sx(v) = v+ Xj<n fi(7). We need to show that Sy(y) — 0 for almost
every 7. Now, [|Sn||? = &, 50 372, [|52]]* < o0, so the subsequence S,2(y) —
0 for almost every 7. Now, consider any N > 0 with r? < N < (r+1)% Then

INSn(7) — S (V)] < (r +1)* = r? < 3r, so |Sy(7) — %S,z(’yﬂ < % Since
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% — 1 as r — oo, we have that Sy(v) — 0 for every v such that S,2(y) — 0.
]

Corollary 4.10 If GG is countable and torsion-free, and S : N — Z is 1-1,
then v is S-uniform for almost every v € I's.

Proof. By Lemma 4.4, v will be S-uniform iff

lim > (5() #) =0 (+)

holds for all € G\{0}, since v°U)(x) = 4(S(j) - ). For each fixed z, the
elements S(j) - @ are all distinct, since (G is torsion-free; hence, Lemma 4.9
gives us a set FE, such that (%) holds for all v € E, and A(E,) = 1. Let
E =20 Ez. Then M(E) = 1 because (' is countable, and (*) holds for every
v € E and every x € G\{0}. O

When discussing uniform distribution in T, it is often simpler to apply the
exponential map and use the following terminology:

Definition 4.11 A sequence (y, : n € N) of real numbers is uniformly dis-
tributed (mod 1) ¢ff (¢**¥» : n € W) is uniformly distributed in T.

This is the same as saying that {n € N : y,(mod 1) € [a, b]} has asymptotic
density b — a whenever 0 < a < b < 1.

Proposition 4.12 The following are equivalent for any S : N — 7Z:

a. S is uniformly distributed in bZ.
b. Both of the following hold:
1. aS is uniformly distributed (mod 1) for every irrational c.
2. The sequence n +— S(n) (mod m) is uniformly distributed in Z,, for
all m>1.

Proof. Note that (a) says that the element 1 € Z is S-uniform in bZ. Also, 1,
regarded as a character of T, is the identity map on T, and hence lies in ().
So, we can apply Theorem 4.7, with 0Z and 1 in place of I' and ~. O
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5 Polynomial Sequences

Uniform distribution (mod 1) was studied in some detail by Weyl. In partic-
ular, the following is a special case of Theorem 9 of [22].

Theorem 5.1 (Weyl) If S(x) is a non-constant polynomial with integer co-
efficients, then {aS(n) : n € N} is uniformly distributed (mod 1) for every
irrational o.

We shall use Theorem 5.1 to compute the closure of the range of a poly-
nomial in Z#. First, a preliminary lemma:

Lemma 5.2 Suppose that E C Z and for each m > 1, there is a sequence S
of elements of ENmZ such that oS is uniformly distributed (mod 1) for every
irrational . Then 0 is a limit point of E in Z#.

Proof. We may assume that 0 ¢ F (since uniform distribution does not
change if we delete one element), so that we need only show that 0 is in the
closure of E. Applying Lemma 3.12, fix a basic neighborhood of 0 of the form
mZNV(eby,...,0,), wherem > 0and 1,60,/m,...,0,/m are independent over
the rationals. For this m, fix an S as hypothesized in the lemma. By Lemma
3.16, (¢“r, ..., ¢ is in Qpu, and is hence S-uniform in T" by Theorem 4.7
applied with G = z". In particular, {(e™®% ¢Sk . L c v} is dense in
T", so we may fix a k such that [e**)% — 1| < ¢ for each ¢ = 1,...,n. Then
Sk) e mznNV(eby,...,0,). O

Theorem 5.3 Suppose that f(x) is a non-constant polynomial with integer
coefficients and r is an integer. Then the following are equivalent:

a. v is a limit point of f(N) in Z¥,
b. v is a limit point of f(Z) in Z¥.
c. f(z)n(mz+r)#0 for each m > 1.

Proof. a = b = cis trivial, so we assume ¢ and prove a by showing that 0 is
a limit point of f(IN) —r. For each m, we may fix a ¢ such that f(c¢) € mZ+r.
Then, let S(j) = f(c+j3m)—r, and note that S(j) € mZ for all j. The desired

result is now immediate by Lemma 5.2 and Theorem 5.1. O

Note that condition (c) just says that the equation f(x) = r (mod m) has
a solution for each m > 1. This is trivial if f(z) = r has a solution in Z, so:
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Theorem 5.4 [f f(x) is a non-constant polynomial with integer coefficients,
then every point of f(Z) is a limit point of f(N) in Z¥.

For integers outside of f(Z), the situation is more complicated because the
solvability of f(x) = r (mod m) is more complicated; see, e.g., LeVeque [13].
We consider just two cases:

Theorem 5.5 If f(z) = x*, where k is a positive integer, then f(Z) is closed
in 7%,

Proof. It is sufficient to fix an » ¢ f(Z) and produce an m such that there
are no solutions to f(z) = r (mod m). So, choose m = 3r* and suppose we
could find an n such that n* = r (mod 3r?). We may assume that n > 0 (by
adding a multiple of 37“2), and choose t so that n® = r + 3r%t = r(1 4+ 3rt).

Since r and 1 4 3rt are relatively prime, we may fix y,z > 0 such that either

Lor, (14 3rt
2. r (1 +3rt

)>0andr:ykand1—|—3rtzzk, or
)< 0and r= —yk and 1+ 3rt = —zF.
But, since r ¢ f(Z), we must have (2) and & must be even. But then (2) yields
2% = —1 (mod 3), which is impossible when k is even. [

Also, f(z)is (trivially) closed in Z# whenever f is a linear polynomial, but
this need not be true for quadratic polynomials, by the following theorem. As
usual, (x,y) denotes the greatest common divisor of z,y, and “x|y” means
that y is divisible by .

Theorem 5.6 Suppose that f(z) = az? + bx + ¢, with a # 0 and a,b,c € Z.
Let e = (a,b). Then:

1. 0 is a limit point of f(z) iff €|lc and D = b* — 4ac is a square in Z.
2. f(z) is closed in 2% iff a/e is not divisible by two distinct primes.

Proof. For = of (1): We have, by Theorem 5.3,
Vm > 1 do [a:z;2 + ba + ¢ = 0 (mod m)] (%)

Taking m = e, and observing that ax? +bx +c¢ = ¢(mod ¢) for all z, (*) yields
e|e. Taking m to be any prime, the solvability of az® + bx + ¢ = 0 in the field
Zm implies that the discriminant D is a perfect square (mod m). Since this is
true for all primes, D must be a square in Z (see [13], Theorem 5-9).
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For < of (1): Now, we must establish (*). Since e|¢, the polynomial f(x)/e
has integer coefficients. Since D is a square, this polynomial has rational roots,
so 1t factors over Z. Thus, we can write

az® +bxr+c= e(anz + Br)(azx + B2)

where ay, 3¢ € Z for £ = 1,2. Since e (ay, ay) divides both ¢ and b, and hence
e, we must have (aq,a2) = 1. Hence, any m may be factored as m = myma,
with (a1, m1) = (az,mq) = (m1,mz) = 1. Now, to prove (%), choose ny
so that (ayny + ;) = 0(mod my) for £ = 1,2; this is possible because ay
is a unit in the ring Z,,,. Then apply the Chinese Remainder Theorem (as
n [13], Chapter 3) to fix n such that n = ny(mod my) for ¢ = 1,2; then
(aan + B1)(az2n + B3) = 0 (mod m).

For (2), we may first, by translation, assume that ¢ = 0, so f(z) = az®+bz.
Then, we may assume that e = 1, since f(Z) will be closed iff L f(Z) is closed.
Now, for any k, let gr(x) = ax? + bz + k. Then f(Z) will be closed iff for each
Ek, if 0 is a limit point of gx(Z) then 0 € g,(Z). By part (1), 0 is a limit point
of gr(Z) iff the discriminant b* — 4ak is a square, say s*, so 4ak = b* — s*. By
the quadratic formula, 0 € gi(Z) iff at least one of (—b+ s)/2a is an integer.
So, f(Z) is closed iff

Vs, kldak = b* —s* = 2al(=b+ s) or 2a|(—b — s)]
Equivalently, letting t = s — b, so t + 2b = s + b,
Vt[dalt(t +2b) = 2alt or 2al(t + 2b)]

If @ = p* for p a prime, this is true, since (a,b) = 1 (consider the cases p = 2,
p > 2 separately). If a is not a prime power, this is false: Set a = pv,
where (u,v) = 1 and |g|, |v| > 1, choose M, N so that b = My — Nv, and
let t = 2Nv, so that ¢t +2b = 2Mpu. Then 4a divides ¢(t + 2b) = 4aM N.
If 2a = 2ur divides t = 2Nwv, then p divides N, and hence b, contradicting
(a,b) = 1. Likewise, 2a cannot divide ¢ +2b. O

6 Haar Measure in b

Computing the Haar probability measure of specific sets in b seems a bit
intractable, although some results on such questions were obtained by Blum,
Eisenberg, and Hahn [2]. We add a few more results of this type here. We know
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of only two basic methods for computing measure, summarized in Lemmas 6.1

and 6.3.

Lemma 6.1 If X is any compact abelian group and F C X is a Haar mea-
surable set of positive measure, then E — F contains a neighborhood of 0.

Proof. Let f(z) = [Xg(y)Xg(x + y)dA(y), where Xg is the characteristic
function of K. Then f is continuous and f(0) = A(E) > 0, so f is positive in
some neighborhood of 0, and f(z) > 0 impliesz € K — E. O

Corollary 6.2 [f GG is an infinite abelian group and A C G is such that 0 is
the only limit point of A— A in G¥ then A (the closure of A in bG) has Haar

measure 0.

Proof. Since (¢ is infinite, every nonempty open subset of G# is dense in
itself. If A — A contained a neighborhood of 0 in G#, every point of that
neighborhood would be a limit point of A — A, contradicting our hypothesis
on A. Since A — A C A — A, the result follows from Lemma 6.1. []

In particular, if A C Z is a Hadamard set, then this corollary applies (by
Theorem 2.3), so A(A) = 0. This generalizes a result in [2], which proved this
for A={a":n €N}and A= {n!:n e}

The second method for computing A(A) is specific to Z:

Lemma 6.3 Suppose that () C N is some set of primes and A C Z. Suppose
that for each q € Q, there is a j, such that {a € A:a = j,(mod q)} is finite.

Then M(A) <Tl,eq(1 —1/q). In particular, if 3-,c01/q = oo, then A(A) = 0.
Proof. Fix a finite I' C (), let m = [],cr q, and define:

By = {acA:a#j(modg)}; B = yer B,
K, = {ke{0,....om—1}:k#j,(modq)}; K =er K,

Then A\B is finite, |K'| = [[,er(¢ — 1) by the Chinese Remainder Theorem,
and b(mod m) € K for each b € B. Therefore,

MA) =XB) < |K|/m = ]](1 - 1/q)

qeF

Since F' was an arbitrary finite subset of (), the lemma follows. [
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Something like this lemma was used in [2] to prove that A(A) = 0 in two
cases: If A is the set of all primes, let Q = A and let j, = 0. If A = {2 :
x € 7}, where k > 2, let ) be the set of primes ¢ such that ¢ = 1 (mod k);
an appropriate j, can be found because for ¢ € (), the map z + z* cannot
be a bijection of the cyclic group of order ¢ — 1. The fact that )7 0 1/¢ = oo
follows from Dirichlet’s Theorem (see [14], p. 217):

Theorem 6.4 [f m,n are two relatively prime positive integers, and () is the
set of all primes q such that ¢ = m (mod n), then Y-, c01/q = oco.

In view of the result for A = {z* : 2 € Z}, it is tempting to conjecture

that A(A) = 0 whenever A = f(Z) for some polynomial f of degree at least 2.
However, we are only able to prove the following cases of this:!

Theorem 6.5 Let [ be a polynomial with integer coefficients of degree at

least 2, and let A= f(z). Then A(A) < 1. If f has degree either 2 or 3, then

AA) = 0.

Proof. Let g(x) = f(x+1)— f(x), and let @ be the set of primes ¢ such that
g(x) has a root (mod ¢). For ¢ € @, the polynomial f, viewed as a function
from Z, to Z,, fails to be 1-1, so it fails to be onto, so Lemma 6.3 applies here.

To prove that A(A) < 1, it is sufficient to prove that Q # (. But if we
fix any integer j with |g(j)| > 2, and let ¢ be any prime divisor of ¢(j), then
q€ Q. B

To prove that A(A) = 0, it is sufficient to prove that 3,0 1/q = oco. If
f is quadratic, then g is linear; say g(x) = ra 4 s, and @ contains all primes
larger than |r|. If f is cubic, then ¢ is quadratic; say g(z) = ra? 4+ sz +¢. Let
D = s* —4rt be the discriminant. Let py,...,p; be the odd prime divisors of
D, and let M = 8p; ... pe,. We shall show that D is a square in Z, whenever ¢ is
a prime and ¢ = 1 (mod M). If we do so, then () will contain all primes g > |r|
such that ¢ = 1 (mod M), so that 3o 1/¢g = oo by Dirichlet’s Theorem.

To simplify notation, we use the Legendre symbol (a | q), defined whenever
a € Z and ¢ is an odd prime: if (a,q) = 1, then (a|q) is 1 if @ is a quadratic
residue (mod ¢) and —1 otherwise; (a|¢) = 0 whenever ¢la. Now, we assume
that ¢ = 1(mod M) and we must show that (D|g) = 1. Since (ab|q) =
(a]q)(b]q) (see [13], Theorem 5-3), it is sufficient to prove that (p|¢) =1 for

"David W. Boyd has pointed out that the Cebotarev Density Theorem (Math. Ann. 95
(1925-1926) 191-229) can be used to establish this result for all f of degree at least 2.
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each prime divisor p of D. If p = 2, use the fact that (2]¢) = 1 whenever
g = 1(mod 8) (see [13], p. 68). If p is odd, use the quadratic reciprocity law:
(plq)(q|p) = (=1)P~DE=D/* (see [13], Theorem 5-7). Since ¢ = 1 (mod 8)
here, this reduces to (p|gq) = (q|p). Since also ¢ = 1(mod p), we have
(plg) =(q¢lp)=(lp)=1. O

7 Sidon Sets and A(p) Sets

Since the sets we study in this section are built from sets of the form A — A,
we begin by using some graph theory to describe the topology on A — A.

If X is an abelian group and A C X, an (undirected) A-graph is a collection
II of unordered pairs {a,b} (called “edges”), where a,b € A and a # b. The
points @ and b are called the end-nodes of {a,b}. The chromatic number,
X(II), is the least & such that A can be partitioned into & sets (colors), C; (for
i < k), such that no edge of Il has both end-nodes in the same ;.

Definition 7.1 If Il is an A-graph, then 6(I1) = {a — b : {a,b} € II}. If
0¢ FEC A—A, then Il spans F iff EU(—F) = 6(II). II is a minimal
spanning A-graph for E iff Il spans E and, for every e € E there is exactly
one {a,b} € 1l such that a — b = +e.

Note that 6(II) = —4(II), since {a,b} = {b,a}. An element € F may
have more than one representation of the form a — b, so that there may be
more than one Il which spans £, and more than one minimal spanning graph.

Lemma 7.2 [f X is a compact abelian group, A C X, and 0 ¢ £ C A— A,
then (1) = (2) = (3), and (3) = (1) in the case that A is discrete in its
relative topology and C*-embedded in X .

1. X(IT) > Rg for every II which spans E.
2. X(IT) > Ny for some Il which spans E.
5. 0eFE

Proof. (1) = (2) is obvious. For (2) = (3),if0 ¢ E, let U be a neighborhood
of 0 which is disjoint from £ U (—F), and then let V' be a neighborhood of 0
with V' —V C U. By compactness, let J,..(V + x;) = X, where & is finite,
and let C; = AN (V +a;). If a,b € C;, then a — b and b — @ are in U, and
hence not in KU (—F), so {a,b} ¢ Il. Hence, X(II) < k < Rg. Note that the
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sets C; defined here need not be disjoint, but they can always be reduced to
disjoint sets.

For (3) = (1), assume Il spans £ and X(II) < Ry. Let A = ;. C;, where
k 1s finite, the C; are disjoint, and no edge in Il has both end-nodes in the
same ;. Since A is C*-embedded, the C; are also disjoint, so 0 ¢ C; — C;
whenever 7 # j. Now, F CU{C; — C; : 1,5 < x and 7 # j}, since this union
is closed and contains £. So, 0 ¢ E. [

In the case that A C Z, X = bZ, and A is a Hadamard set, this lemma
will be useful for studying A(p) subsets of A — A. As usual, if f € L'(T),
then f(n) denotes its n'h Fourier coefficient. If £ C 7z, then f is E-spectral
iff f(n) =0 whenever n ¢ E.

Definition 7.3 [f p € (2,00) and C < oo, then C is a A(p) constant for
ECZif Ifll, < Cllfllz for all E-spectral trigonometric polynomials. F is a
A(p) set iff E has some finite A(p) constant.

It is immediate from the definition that each finite set is A(p), and every
subset of a A(p) set is A(p). Every finite union of A(p) sets is also A(p) by:

Lemma 7.4 If C is a A(p) constant for Ey and for Fy, then C\/2 is a A(p)
constant for K; U E,.

Proof. We may assume that Fy, Fy are disjoint. Any (E; U Ey)-spectral
trigonometric polynomial is of the form f; + fo, where each f; is £/ spectral.

Then

1+ Fello S Al + 1l < CULAl + 1 f2ll2) < CV2IA+ Folle

The last “<” is by orthogonality of fi, fo. O

For more on these notions, see Rudin [19] and Edwards and Gaudry [3].
To construct non-trivial examples of A(p) sets, one can piece together finite
sets by applying the following:

Definition 7.5 A Hadamard decomposition of Z is a sequence of finite sets
(A; : j € Z) such that for some Hadamard set (see Definition 2.2) A =
{an :n € N} + A is [aj_1,a;) when 7 > 0, (ayj,ajj-1] when j < 0, and
(—ag, ap) when 3 =0.

Theorem 7.6 [f FE C7Z, (A;:7 € 7Z)is a Hadamard decomposition, and C
is a A(p) constant for each ENA;, then E is a A(p) set.
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This follows immediately from the Littlewood-Paley Theorem ([3], Theo-
rem 8.2.8), which asserts that Hadamard decompositions have the LP prop-
erty, plus the fact ([3], Theorem 9.1.4) that every decomposition with the LP
property satisfies Theorem 7.6. Applying this theorem once, and noting that
1 is a A(p) constant for every singleton, we generate the classical result that
all Hadamard sets are A(p) for all p € (2,00). Applying the theorem again,

we see:

Theorem 7.7 [f A ={a, : n € N} is a Hadamard set, then A — A is a A(p)
set for all p € (2,00).

Proof. Assume that A satisfies the Hadamard condition with ratio M > 1.
Applying Lemma 7.4, it is sufficient to prove that £ = {a, — a,, : m < n} is
A(p). Fix r such that (M — 1)M” > 1. Then the only elements of F in the
interval [a,-1,a,] are of the form a,4; — a,, for j < r and m < n + j, since if
J>r,then apgj—am > apyj—angjo1 > (M —1)anrjo1 > (M —1)M"a,, > a,.
Thus, if (A; : 7 € Z) is the associated Hadamard decomposition, then each
ENA;is covered by r+1 translates of —A. Since A, —A, and all its translates
have the same A(p) constant, we may apply Lemma 7.4 and fix a C which is
a A(p) constant for each F'N A;, and then apply Theorem 7.6. O

In the case that M = 2, this result is Theorem 9.2.1 of [3]. Modifying this

construction, we may construct a dense A(p) set:

Theorem 7.8 There is an E C N such that E is a A(p) set for all p € (2,00)
and E is dense in 7.

Proof. For m > 1, let a,,, b,,, ¢,, be positive integers such that
Q. Qg1 2 20,
B.by=1,b, <byi1,and b,,11 —b,, /00 asm  oo.
Y. Cm < by, and {m : ¢,, = ¢} is infinite for every positive integer q.

Define

Em:{as+cm_ar:bm<r<5§bm+l}; E:UEm
m=1

To prove that E is A(p), we apply Theorem 7.6 with the Hadamard decompo-
sition associated with A = {a,, : m > 1}. Fix k > 1, and let n be the integer
for which b, < k < b,41. We claim that

ENak_1,ar) C(ar+ec,)— A (%)
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Assuming (), each £ N [ag_1,ax) is a subset of a translate of —A, and hence
has uniformly the same A(p) constant as does A, so Theorem 7.6 applies. To
prove (%), fix @ € F N [ag_1,ax), let m be any integer for which @ € F,,, and
fix r, s so that

r=as+ ¢, —a, and b, <r<s<by,y .

Since ¢, < by, < r < a, we have < a,, whereas r < s and («) imply
as—1 < as —a, < x. Thus, x € (as_1,as) N [ak—1,ar), which forces s = k, and
hence s € (b, bpg1] N (by, bat1], so that m = n, and (%) is proved.

To prove that F is dense in Z#
all positive integers. So, we fix a positive ¢ ¢ E and prove that ¢ € E; or,
equivalently, that 0 € £ — ¢.

For those m for which ¢,, = ¢, let

and note that FF C (E —¢q)N (A — A). Let
I, ={{a, a5} : b, <r <s<buu} ; H:U{Hm:cm:q} )

Then IL,, is a complete N-graph (with N = b,,41 — by, ), so that X(IL,,) =
by+1 — by Hence, by (3), X(II) = Rg. Since Il spans F', Lemma 7.2, applied
in bz, shows that 0 ¢ F C F —¢q. [

, it is sufficient to show that F contains

We next consider Sidon sets. One definition is:

Definition 7.9 A Sidon set is an £ C Z such that the Fourier series of every
E-spectral function in C(T) converges absolutely.

Every I set is Sidon and every Sidon set is A(p) for each p € (2,00). For
proofs of this, and for many equivalents to the notion of “Sidon”, see [3] [11]
[15] [19] [20]. It is unknown whether there is a Sidon set with a limit point
in z#, although Ramsey [18] showed that if there is such a set, then there is
another Sidon set which is dense in Z#.

Theorem 7.15 below indicates that one cannot construct a Sidon set with
a limit point by using the method of Theorems 7.7 and 7.8. To prove this,
we use, as did Ramsey, the following combinatorial characterization of Sidon
sets.

Definition 7.10 A set P C Z is quasi-independent iff 327_, k;x; # 0 when-
ever n > 1, the x; are distinct elements of P, and all the k; € {—1,1}.
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Theorem 7.11 (Pisier [16]) A set E C Z is Sidon iff there is a positive
C' € N such that every finite P C E contains a quasi-independent subset ()
with |Q] > |P|/C

Now, if we consider Sidon subsets of A — A, we can relate Pisier’s char-
acterization to properties of the associated graph. A cycle in a graph Il is a
sequence of distinct nodes, (ag,...,a,—1), such that n > 3 and all the edges
{ag, a1}, .. {an_2,a,_1},{a,_1, a0} are in II. The next two lemmas show that
cycles in the associated graph destroy quasi-independence, whereas graphs
with large chromatic number contain cycles.

Lemma 7.12 If A C 7, () is a quasi-independent subset of A — A, and 1I is
a minimal spanning A-graph for @), then Il contains no cycles.

Proof. Suppose that (ag,...,a,-1) were a cycle in II. Let ¢; = a; — ajq1
for 0 < 5 < n —1, where we set a, = ag. Note that e; # +e; when 5 # £,
since a; — aj41 = +(ap — apy1) would contradict minimality of II. But then
e+ -+e,-1 = 0 and each ¢; or —¢; is in (), contradicting quasi-independence

of . O

Definition 7.13 If1I is an A-graph, and B C A, then llg is the set of edges
of Il which have both their end-nodes in B.

Lemma 7.14 Suppose that 11 s an A-graph, C is a positive integer, and
X(II) > 2C + 1. Then there is a finite set B C A such that every subgraph
U C Il with |V]| > |lIg|/C contains a cycle.

Proof. Among the finite B C A with X(Ilg) > 2C' +1, fix one that is minimal
— that is, X(Ilp\y) < 2C for each b € B. It follows that each b € B lies on
at least 2C edges in g (otherwise, one could color B with 2C' colors by first
coloring B\{b}). Counting edges and nodes then yields 2|llg| > 2C - |B|.
Thus, if ¥ is as in the statement of the lemma, || > |B|. Thus, ¥ has at
least as many edges as nodes, whereas finite acyclic graphs have more nodes
than edges. O

Combining these two lemmas:

Theorem 7.15 If A C N is a Hadamard set and F C A — A is a Sidon set,
then E has no limit points in Z¥#.
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Proof. The only possible limit point of £ is 0 by Theorem 2.3.2. Assume
that 0 is a limit point and that £ is Sidon. We may assume that 0 # E.

Choose a minimal spanning A-graph Il for F, and fix (' as in Pisier’s
Theorem 7.11. Since A is Hadamard, it is (*-embedded in bZ by Theorem
2.3, so we may apply Lemma 7.2 to conclude that X(II) = Ry > 2C + 1. Now,
fix a finite B C A satisfying the conclusion to Lemma 7.14.

For each {a,b} € Ilp, choose e,y € FE so that eg, ) is either ¢ — b or
b—a. Let P = {epp : {a,b} € lIg}. Then |P| = |Ilg|. Applying Pisier’s
criterion, fix @ C P such that |Q] > |P|/C and @ is quasi-independent. Let
U be the subgraph of Il such that @ = {egp} : {a,b} € ¥}. Then VU is a
minimal spanning graph for (), so that ¥ contains no cycles by Lemma 7.12.
On the other hand, |V| = |Q| > |P|/C = |llp|/C, so that ¥ contains a cycle
by Lemma 7.14. This contradiction proves the theorem. [
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