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Abstract

There is a locally compact Hausdorff space which is linearly Lin-
delof and not Lindelof. This answers a question of Arhangel’skii and
Buzyakova.

This note is devoted to the proof of:

Theorem 1 There is a compact Hausdorff space X and a point p in X such
that:

1. x(p, X) > w.
2. For all reqular k > w, no k-sequence of points distinct from p converges
to p.

As usual, x(p, X), the character of p in X is the least size of a local base at
p. Regarding (2), if ¥ = (¢a : @ < k) is a k-sequence, we say ¢ — p iff whenever
U is a neighborhood of p, 3a¥f3 > a[gs € U]. Then, (2) asserts that § /4 p
whenever £ > w is regular and all the g, # p. Observe that if x(p, X) = w,
then (2) holds trivially.

Theorem 1 answers Question 1 of Arhangel’skii and Buzyakova [1]. They
point out that given such an X, p, the space X \{p} is linearly Lindeldf (by (2)),
not Lindel6f (by (1)), and locally compact.
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Note that in any compact Hausdorff space X, if the point = is not isolated,
then there is a sequence of type cf(x(z, X)) converging to 2. Thus, the X, p in
Theorem 1 must satisfy cf(x(p, X)) = w. In our example, x(p, X) will be 3,

Our X will be constructed as an inverse limit. We begin by reviewing some
basic terminology:

Definition 2 An inverse system is a sequence (X, "' : n € w), where each
X, is a compact Hausdorff space, and each 7" is a continuous map from X, 1
onto X,,.

Such an inverse systems yields a compact Hausdorff space,

H
X, = lim, X, ={z € HX” Vn [z, = 7" (2,00)]}

It also yields the obvious maps 7% : X, - X,,, for m < w and 7 : X,, - X,
form <n < w.

n+1 .
n :

Lemma 3 Suppose that (X,
n € w) € X = X, satisfies:

n € w), is an inverse system and p = (p, :

A. FEach p, is a weak P+, -point in X,,.
B. Each X(pna Xn) S :n-l-l-
C. Each (72)""po} is nowhere dense in X,,.

Then X, p satisfies Theorem 1 with x(p, X) = 1,.

As usual, y € Y is a weak P.-point iff y is not in the closure of any subset
of Y\{y} of size less than , and y is a P.-point iff the intersection of fewer
than x neighborhoods of y is always a neighborhood of y. In a Hausdorff space,
every P.-point is a weak P,-point, but note that in (A), the p, cannot all be
P+ -points, as that would contradict (C). Note that (C) cannot be omitted;
it is easy to construct an example satisfying (A) and (B) where each X, is a
LOTS and each 7™*! collapses an interval around p,,; to the point p,; then
X(p, X) = w.

Proof of Lemma 3 First, note that one local base at any x € X consists
of all the (7%)~1(U) such that n € w and U is an open neighborhood of z, in

n

X,,. It follows that:

a. x(p, Xu) < sup, X(Pn, Xn) = Ju.
B. (7¥)~""po} is nowhere dense in X,,.



Now, to verify (2) of Theorem 1, assume that ¢ = (¢, : @ < k) — p, where
k > w is regular and all the ¢, # p. The definition of ¢ — p implies that x <
x(p, X), so fix m with x < 3,,,. Now, g, # p implies that 7%(q,) # pn = 7%(p)
for some n, so we can fix n > m and an S C k with |S| = k and 7¥(q.) # Pn
for all @ € S. But then p, € cl{n¥(q.) : @ € S}, contradicting (A).

In view of («), to prove that x(p, X) = 3., it is sufficient to fix m < w
and prove that x(p, X) > J,,. Suppose that B were a local base at p in X
with |[B] < 3,,. Let F = (7)) {p,}. By (8), F is nowhere dense in X, so
for each U € B, we can choose yy € U\F. Then p € cl{yy : U € B}, so
Pm =72 (p) € c{n¥ (yy) : U € B}, contradicting (A). []

We now need to find an inverse system satisfying the hypotheses of Lemma
3. X, will be 3,. In general, Sk denotes the Cech compactification of a
discrete k; equivalently, Sk is the space of ultrafilters on x; thus, the remainder,
K* = BK\K, is the space of non-principal ultrafilters on k.

The p,, will be good ultrafilters. Following Keisler [5], an ultrafilter z on k
is good (i.e., kT-good) iff given A, € x for s € [k]<¥, there are B, € z for o < k
such that (),c, Ba C A, for all non-empty s € [£]<“. For every infinite «, there
is a non-principal = € [k such that z is a good ultrafilter (Keisler [5] under
GCH and Kunen [7] in ZFC; see also Chang and Keisler [3], Theorem 6.1.4).
The following folklore result about such ultrafilters is proved in [2] and [4]:

Lemma 4 If x is a good ultrafilter on k, then x is a weak P.-point in Pk.

Thus, fixing p, € $3, to be good will handle (A) of Lemma 3, but to get
p = (pp : n € w) to really define a point in X = X, we need to choose the
ot 83,41 — B3, such that each p, = 7" (p,y1). In fact, 77 will be
BT+ where 1%+ : 3, — 3,. Here, as usual, if f : P — @, where P,Q
are Tychonov spaces, then 3f : BP — SQ denotes its Cech extension. In the
special case of discrete P, @), where x € SP is an ultrafilter on P, (8f)(z) € fQ
is the induced measure, {B C @ : f~1(B) € x}. Now, showing that appropriate

[+ 3,11 — 3, can be chosen requires a digression:

Definition 5 An ultrafilter x on k is regular iff there are E, € x for a < k
such that (), Ea, = 0 whenever the o, (for n € w) are distinct.

Clearly, such x are countably incomplete. Moreover,

Lemma 6 Ifx is a countably incomplete good ultrafilter on k, then x s reqular.
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This is Exercise 6.1.3 of [3]; a proof is contained in the proof of Lemma 2.1
of Keisler [6]. The proof of universality of regular ultrapowers ([3], Theorem
4.3.12) is easily modified to produce:

Lemma 7 Suppose that k > 2* and y is any ultrafilter on \. Let x be a reqular
ultrafilter on k. Then there is an f : k — X such that (Bf)(x) =y.

Proof. Since x > 2*, we may list the elements of y (possibly with repetitions)
as {B, : @ < k}. Let the E, C k be as in Definition 5. Choose g : K — A
such that g(&) is some element of (\{B, : £ € E,} (observe that this is a finite
intersection). Then (3g¢)(x) = y because each ¢~'(B,) O E, € z. This g may
fail to be onto, but we may now fix a set A € x with |k\A| = &, and choose

f:r— Asuch that f [ A=g [ A, so that (Bf)(z) = (Bg)(x) =y. [

Proof of Theorem 1 We obtain the situation of Lemma 3. Fix X, =
3., and fix p, € 3, to be good and non-principal (and hence countably
incomplete). Applying Lemmas 6 and 7, fix II"™! : 3, — 3, so that setting
ot = g1+t yields p, = 7" (p,11). Then (A) follows by Lemma 4, and
(B) is clear, since there is a base for the space X,, of size 27 = J,,,,. Finally,
(C) holds because (%)~ {po} C (3,)*, which is nowhere dense in 83,. []
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