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Abstract

The right alternative law implies the left alternative law in loop
rings of characteristic other than 2. We also exhibit a loop which fails
to be a right Bol loop, even though its characteristic 2 loop rings are
right alternative.

1 Introduction

Throughout this paper, (L, -) always denotes a loop, with identity element e,
and (R,+,-) always denotes an associative commutative ring, with identity
element 1 # 0. Then, RL denotes the loop ring constructed from R and L.
Elements of RL are represented by finite formal sums of the form >~ a;2;,
where the z; are elements of L and the «; are elements of E. The sum and
product operations on RL are defined in the obvious way. Then, le is the
identity element of RL. See the survey by Goodaire and Milies [2] for more
details, background information, and references to the earlier literature.

Note that L is embedded into RL via the map = — lz; we usually write
the element 1z simply as x. It is now trivial to verify:

Remark 1.1 RL is associative iff L is associative.
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However, the situation for weakened versions of the associative law is
more complicated. In this paper, we focus on the right alternative law
( (xy)y = x(yy) ) and the left alternative law ( (yy)xr = y(yx) ). The right
alternative law in RL implies much more than just the right alternative law
in L, since, as we shall prove in Section 2,

Theorem 1.2 Suppose that RL satisfies the right alternative law and R sat-
isfies 1 +1 # 0. Then RL (and hence also L) satisfies the left alternative

law.

Once both laws are known to hold in RL, one may refer to the extensive
literature in non-associative algebra, both on general alternative rings (that
is, rings in which both alternative laws hold), as well as alternative loop
rings in particular. Every alternative ring (regardless of its characteristic)
satisfies the Moufang identities. In particular, if RL is alternative, then L is
a Moufang loop. See §1.2 of [2] for further discussion. However, Theorem 1.2
is not true for rings in general, since Muxees [7] describes an example of a
non-associative ring satisfying 1 + 1 # 0 plus the right alternative law, but
not the left alternative law.

In the case that L is finite, Theorem 1.2 was proved by Chein and
Goodaire [1]. Their proof relied on structure theorems of Bruck and Al-
bert which are false for infinite L. Goodaire and Robinson [3][4] showed that
the assumption in the theorem that R satisfies 1 +1 # 0 cannot be dropped.
By [3][4], there are examples of finite L such that for rings of characteristic
2, RL is right alternative, but even L itself fails to be left alternative. The
loops they construct also satisfy the right Bol identity, and they ask whether
this identity must hold in I whenever RL is right alternative. The answer is
“no”, as we show by an example in Section 3.

Actually, in the study of alternative laws in loop rings RL, only L is
relevant, by the following result from [1]:

Proposition 1.3 For any L:

RL satisfies the right alternative law for some R of characteristic = 2 iff
RL satisfies the right alternative law for all R of characteristic = 2.

RL satisfies the right alternative law for some R of characteristic # 2 iff
RL satisfies the right alternative law for all R of characteristic # 2.

This follows immediately from the fact that one can express the right
alternativity of RL by a boolean combination of equations in L; there is



2 PROOF OF THEOREM 1.2 3

one boolean combination for the characteristic = 2 case and another for the
characteristic # 2 case; see [1] and Lemma 2.2 below. However, one cannot
replace this boolean combination by any set of single equations; see Section
4 for further discussion of this point.

The proof of Theorem 1.2 was discovered with the aid of the automated
reasoning tool OTTER [6], programmed by W. W. McCune. Then, following
the standard method [5], the proof was simplified and rephrased in ordinary
mathematical format. The example in Section 3 was constructed by experi-
menting with the program SEM [8], programmed by J. Zhang and H. Zhang.

2 Proof of Theorem 1.2

We begin by eliminating the rings from the theory of loop rings. Lemma 2.1
almost does that, since it expresses right alternativity in RL just in terms of
elements of the form la (which, recall, we are writing as ). The material
through Lemma 2.2 is from Chein and Goodaire [1].

Lemma 2.1 RL is right alternative tff L is right alternative and RL satisfies
2(yz) + x(zy) = (z2y)z + (x2)y for all x,y,z € L.

Proof. If RL is right alternative, then L is trivially also right alternative,
but also RL must satisfy u(vv) = (uv)v for any u,v € RL. If we let u = «
and v = y + z, and apply the right alternative law in L, we immediately
get the equation x(yz) + x(zy) = (2y)z + (vz)y. Conversely, assuming this
equation and the right alternativity of L, it is easy to verify u(vv) = (uv)v
simply by replacing v by >, a;z;, and v by >~;., b;y;, and expanding the
product. [7J

Now, if p,q,r, s are arbitrary elements of L, the equation p+ ¢ =1+ s
cannot hold in RL unless either p = r and ¢ = s, or p = s and ¢ = r,
except in the case that R has characteristic 2, in which case there is also the
possibility that p = ¢ and r = s. Applying this observation to the result of
Lemma 2.1, the alternative law in RL reduces to a boolean combination of
equations in L as follows:
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Definition 2.1 In any loop, define the properties A(x,y,z), B(x,y,z), and

Clx,y,z) by:
Az, y,z) iff e(y2) = (zy)z and z(zy) = (22)y
B(z,y,z) iff 2(yz) = (x2)y and z(zy) = (zy)z
Clx,y, 2) iff x(yz) = z(2y) and (zy)z = (z2)y

Lemma 2.2 For any R and L:

If141#0in R, then RL is right alternative iff for all x,y,z in L, either
Alz,y,z) or B(x,y, z) holds.

If1+1 =0 in R, then RL s right alternative iff L is right alternative
and for all x,y,z in L, either A(x,y,z) or B(x,y,z) or C(x,y,2) holds.

Proposition 1.3 is immediate from Lemma 2.2. Note that both A(x,y,y)
and B(z,y,y) reduce to x(yy) = (zy)y, so that we do not have to postulate
the right alternativity of L in the characteristic # 2 case. In deriving results
in the characteristic # 2 case, it is often easier to distribute the OR over the
AND in Lemma 2.2 and rephrase it as:

Lemma 2.3 For any R of characteristic other than 2 and any L, RL is right
alternative iff for all x,y,z in L, we have both:

1 x(yz) = (zy)z or z(yz) = (22)y

2. w(yz) = (zy)z or x(zy) = (vy)z

Proof. Write A(x,y,z) as Pi(x,y,2) A Py(x,y,2), and B(x,y,z) as
Qi(x,y,2) A Qo(x,y,2z). Then, by the previous lemma, RL is right alter-
native iff for + = 1,2 and j = 1,2, we have P;(z,y,2) V Q;(x,y,z) for each
x,y,z € L. But, by renaming the variables, these four statements reduce to

just (1) and (2). O

We turn now to the proof of Theorem 1.2. Using hindsight, we know that
the theorem will imply that L is Moufang, and hence satisfies the inverse
property. That is, define i(x) by x - i(x) = e; equivalently, i(z) = x\e. Just
by the loop properties, ¢ is a bijection from L onto L. But, in Moufang
loops, we would also have i(x) -2 = e and i(x - y) = i(y) - ¢(x). This last
equation implies that ¢ is an isomorphism from (L,-) onto the “opposite”
loop, (L,0), defined by @ oy = y - . Since the right alternativity of RL is
equivalent to the left alternativity of its opposite, we are done if we can prove
i(x-y) =1(y)-i(x). So, we proceed with a few lemmas about i(x).
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Lemma 2.4 [If RL is right alternative and R has characteristic other than
2 then i(x)-x=e€ forall x € L.

Proof. Fix a, and let b = i(a), so that ab = e, and assume ba # e. Then
fix ¢ such that ca = €; so, b # ¢. We shall derive a contradiction by using (1)
and (2) of Lemma 2.3.

First, we have c(ab) = ¢ # b = (ca)b. Applying (1), we get ¢(ab) = (¢b)a,
SO

(cb)a = ¢ ()
Applying (2), we get ¢(ba) = (ca)b, so
c(ba) = b (8)

Applying («) and the right alternative law,

(cb)a® = e (7)
Applying (1), we have either ¢(ba?) = (¢b)a® or ¢(ba®) = (ca®)b. But by (v),
right alternativity, and the definitions of b and ¢, both equations simplify to

c(ba*) = e )

Applying (1) again, either ¢((ba)a) = (c(ba))a or ¢((ba)a) = (ca) (ba).
But by right alternativity, (), (), and the definition of ¢, both equations
simplify to ba = e, a contradiction. [

So, we have i(x) -2 = x-i(x) = e, which immediately implies i(i(z)) = x.

Lemma 2.5 [If RL is right alternative and R has characteristic other than
2 then (y-i(xz)) - =y forall x,y € L.

Proof. Apply (2) of Lemma 2.3 to get either y- (i(x) - 2) = (y - i(x)) -
ory-(x-u(x)) = (y-i(x)) -z, either of which implies (y-i(z)) -z =y. O

Lemma 2.6 [If RL is right alternative and R has characteristic other than
2 then x - (i(x)-y) =y for all x,y € L.

Proof. Fix any a,b € L, and let @ = i(a), so ad = aa = e. We assume
a(ab) # b, and derive a contradiction.
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Apply (2) of Lemma 2.3 to get either a(ab) = (aa)b or a(ba) = (aa)b,
which implies a(ba) = b (since a(ab) # b).

Applying (2) again, either a (@ (ba)) = (aa) (ba) or a ((ba)a) = (aa) (ba).
Using a(ba) = b and Lemma 2.5, both these equations reduce to ba = ab, so
that we have a(ab) = b, a contradiction. [

Proof of Theorem 1.2. For any =,y € L, we have, by applying Lemmas
2.6, 2.5, 2.5 in that order, i(xy) - [(2y)-i(y)] = i(y), and then i(xy) -« = i(y),
and then i(x-y) = i(y) - i(x), which, as remarked above, is sufficient to prove
the theorem. [

3 Bol Loops

As pointed out in the Introduction, Goodaire and Robinson [3][4] showed that
Theorem 1.2 can fail if R has characteristic 2. Their examples all satisfied
the right Bol identity, ((zy)z)y = x((yz)y), and they ask whether this
is necessary. That may seem plausible, since if RL is both left and right
alternative, then, regardless of the characteristic, L satisfies the Moufang
identities, which imply the right and left Bol identities. However, it turns
out that right alternativity alone of RL does not even imply the special case of
the right Bol identity when x = y = z — namely, 2 x = 2 2°. Note that right
alternativity does imply that 2% x = z 2%, so the notation z® is unambiguous.
Note also that left alternativity of L then fails in our example, since otherwise
e =(2tr)r =22 =2 (va?) =z’

Theorem 3.1 For each n > 3, there is a loop L of size 2n such that RL
is right alternative whenever R has characteristic 2, but L does not satisfy

2?31':1'1'3.

Proof. As a set, let L be {j : 0 < 7 < 2n}. On this set, + will
always denote addition modulo 2n. Let ¢ be a permutation of the set of
odd elements, {2t +1: 0 < i < n}. Given ¢, we define the operation o on
L by letting x o y be x 4+ y unless x,y are both odd, in which case we let
roy = x4+ @(y). We shall show that for some choices of ¢, (L,0) satisfies
the theorem.

First, using the fact that ¢ is a permutation, it is easy to see that (L,o)
is a loop, with identity element 0.
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Next, note that L is right alternative, since for odd y, we have zo(yoy) =
r+y+e(y) = (xoy)oy, while for even y, we have zo(yoy) = +y+y =
(voy)oy

Whenever z is odd, 2°x = 2z + 2¢(x), while 2 2* = x + (22 + ¢(x)).
We can make these differ for © = 1 by letting ¢(1) = 1 and (3) # 3.

Finally, to prove RL is right alternative, we apply Lemma 2.2 and show
that at least one of A(x,y,z2), B(x,y, z), C(x,y, z) holds for x,y,z € L. We
consider the possible cases for x,y, z.

If at least two of x, y, z are even, then all possible associations and commu-
tations of xoyoz evaluate to x +y+z, so that A(x,y, z), B(x,y,z2), C(x,y, 2)
all hold.

If x,y,z are all odd, then zo(yoz) =x+y+ ¢(z) = (zroz)oy and
ro(zoy)=ax+z+¢(y)=(zroy)oz, so that B(x,y,z) holds.

If 2 is even and y, z are odd, then z o (yoz)=a+y+p(z)=(zoy)oz
and xo(zoy)=a+4 2+ ¢(y) =(xoz)oy, so that A(x,y, z) holds.

If y is even and z, z are odd, then z o (yoz)=a+ p(y+2)=20(z0y)
and (zoy)oz=a+y+¢(z) = (roz)oy,so that C'(x,y,z) holds. Likewise,
C(x,y,z) holds in the remaining case, where z is even and x,y are odd. O

4 Products

Lemma 2.2 expresses alternativity of RL in terms of boolean combinations
of equations in L. Now, one might hope that these boolean combinations
might be replaced by some set of single equations. However, all such hopes
are refuted by the following observation:

Lemma 4.1 Let L be any non-associative loop. Let Ly = L x L. Then Rl
is neither left nor right alternative for any R.

Proof. Assume that some RIL; is right alternative. Since L is not as-
sociative, fix a,b,¢ € L such that (ab)c # a(be), so that A(a,b,c) is false.
Apply Lemma 2.2 to the elements u = (a, ), v = (b,y), w = (¢,z) in L x L.
Then A(u,v,w) is false, so we know that for all x,y,z € L, either B(x,y, z)
or C(x,y,z) holds. Applying this with & = e shows that L is commutative,
which implies that B(a, b, ¢) is also false. Now, applying Lemma 2.2 to u, v, w
yields that C'(x,y, z) holds for all x,y,z € L.
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So, besides being commutative, L satisfies (zy)z = (xz)y for all x,y, z.

But then (yx)z = (2y)z = (v2)y = y(xz) holds for all x,y, z, so L is associa-
tive, a contradiction. [J

Corollary 4.2 Let K be any class of loops closed under finite products. As-
sume that K contains some non-associative loop. Then K contains a loop L
such that RL is neither left nor right alternative for any R.

In particular, this corollary applies whenever K is any class defined by a

set of equations.
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