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Abstract

The Continuum Hypothesis implies that there is a homogeneous compact
L-space X. In fact, X is a group in which product is right-continuous. Under
¢, one can get such an X whose regular open algebra contains a Suslin tree.

1 Introduction

All spaces discussed here are Hausdorff. A space X is hereditarily Lindeldf (HL)
iff every subspace is Lindelof. For X compact, X is HL iff every closed subset is a
Gs. An L-space is a space which is HL but not hereditarily separable. By Juhdsz
(see [8]), there are no compact L-spaces under M A + -C'H. However, there are
two known consistent classes of compact L-spaces. One are (compact) Suslin lines,
whose existence follows from ¢ (Jensen), but not from CH (Jensen). The other,
which requires just C'H, uses a measure to ensure its hereditary Lindelofness.
This construction was discovered independently by Haydon [5], Kunen [10], and
Talagrand [15]; see §5 of Negrepontis [13]. Notions such as CH, M A, and { are
covered in set theory texts [2, 7, 9].

A space X is homogeneous iff whenever p,q € X, there is a homeomorphism ¢
of X with ¢(p) = ¢q. As Jensen pointed out, it is easy to construct homogeneous
compact Suslin lines using ). However, making the C'H L-space homogeneous has
not been done before; we do this in Section 5. Brandsma and van Mill [1] have
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shown that there is enough freedom in the inductive construction (under CH) to
make N; non-homeomorphic versions of this L-space. It is easy to modify their con-
struction to make a compact L-space which is rigid (i.e., the only homeomorphism
is the identity).

In fact, we shall make our homogeneous X into a right topological group. That
is, there will be a group operation - on X which is right-continuous (i.e., the map
x +— x - a is continuous for each a € X). This implies homogeneity, since for each
p,q, the map = — xp '¢ moves p to q. Of course, one could instead make - left-
continuous. Note that - cannot be made both left-continuous and right-continuous:
If it were, it would then be jointly continuous by a theorem of Ellis [3] (or, see
[14]); but then, since X is compact and 1% countable (since it is HL), it would
have to be 2" countable. It follows that the group cannot be abelian, and that
the map z — 2! cannot be continuous.

The measure on our C'H example will in fact be a Haar measure; that is, right
invariant. There are a number of conditions known which imply that a compact
right topological group must have a Haar measure; see Milnes and Pym [12].
However, such Haar measures need not always exist. In Section 6, we modify our
construction to show that, assuming <>, there is a compact L-space which is both a
right topological group and a Suslin space (that is, there will be a Suslin tree dense
in the regular open algebra of X; see Definition 6.1 and Remark 6.3). Such a space
cannot support a measure. Also, since X is Suslin, X? will be an example of a
compact right topological group which fails to have the countable chain condition.
We do not know whether such an X can be a Suslin line.

The CH example has three other unusual properties. First, the group will be
locally finite:

Definition 1.1 A group is locally finite iff every finitely generated subgroup is
finite.

This definition is standard in group theory. Note that it says nothing about
any topology on the group.
Second, the group action will be scrambled:

Definition 1.2 Let (X,-) be a 0-dimensional compact right topological group.
A finite clopen partition, {P,..., P, 1}, is scrambled iff for every permutation
o € Sy, there is an a € X such that P; = P, -a for alli < n. (X,-) is scrambled
iff every open cover of X can be refined to a scrambled clopen partition. (X, -) is
super-scrambled iff every clopen partition is scrambled.
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Third, the measure will be rational:

Definition 1.3 Let X be compact Hausdorff and 0-dimensional. A rational mea-
sure on X s a finite reqular Borel measure y on X such that

e u(K) is a positive rational for each non-empty clopen subset of K.

e For each clopen K and each rational ¢ with 0 < q < p(K), there is a clopen
H C K with u(H) = q.

Remark 1.4 Every locally finite group acting on a compact space has an invariant
measure (see [6], Corollary 17.9). Hence the Suslin example cannot be locally
finite. It will be super-scrambled. The C'H example cannot be super-scrambled,
since that would contradict the invariant measure.

Sections 2, 3, and 4 contain some technical results needed for the proofs. The
need for this material can best appreciated by considering the following lemma,
which lists the basic properties of the C'H L-space. Variants of this lemma occur
in [1, 10, 13].

Lemma 1.5 Suppose that X is compact Hausdorff, and p is a regular Borel prob-
ability measure on X satisfying:

1. X has no isolated points.

2. p(U) > 0 for all non-empty open U C X.

3. int(D) # () whenever D is a closed G5 subset of X with u(D) > 0.

4. D is 2°% countable whenever D is a closed Gs subset of X with pu(D) = 0.

Then X is an L-space, and for any Y C X, the following are equivalent:

Y is null.

Y is meagre.

Y is nowhere dense.
Y is separable.

Y is 2 countable.

& 0 =R

Proof. (¢) — (a): By (2), X is ccc, so there is a closed nowhere dense G set K
such that Y C K. Then p(K) =0 by (3).
Now (b) — (a) follows immediately, and (¢) — (b) is trivial.
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(a) — (c¢): For each n, let U, be open with Y C U,, and pu(U,) < 1/n. By ccc,
let K, be a closed Gs set such that U, C K, and K,\U, is nowhere dense. By
(¢) = (a), we have pu(K,\U,) =0, so that pu(kK,) <1/n. Let K =(), K,. Then
Y C K and K is a closed G and null, so K is nowhere dense by (2).

The proof of (a) — (¢) also showed that every null set is contained in a closed
G5 null set, so that we now have, by (4): (a) <> (b) <+ (¢) — (e) — (d). Finally,
for (d) — (c), it is enough to prove that every countable set D is nowhere dense.
But D is null by (1) and (b) — (a), so apply (a) — (¢).

X is HL by ccc and (¢) — (e), and X is non-separable by (d) — (¢).

Properties (3) and (4) involve the closed Gy sets, which, under CH, are easily

handled in the natural construction of X as an inverse limit; see Section 5, where
we prove:

Theorem 1.6 Assume CH. Then there is a compact 0-dimensional L-space X
with a measure p and a product -: X x X — X such that:

(X, 1) satisfies the hypotheses of Lemma 1.5.

(X,-) is a locally finite group.

For each a, the map x — x - a is continuous.

p(E - a) = u(E) for each a and each measurable E.
1 @S rational.

(X, ") is scrambled.

S v oo~

In view of (5,6), the scrambled partitions will be precisely the partitions of X
into clopen sets of the same measure. Actually, both the existence of the measure
and the fact that it is rational follow from other features of X; see Remark 3.15.

As is typical of such constructions, we build X as an inverse limit. Thus, we
shall have spaces X, (for o < w;), and projections 77 : X5 — X, (fora < 3 < wy).
X will be X,,,. The X, for a < wy, will be 24 countable.

To achieve homogeneity, we also construct a group G, of measure preserving
homeomorphisms acting on the X, and we shall have G, < G3 whenever a < 3.
In particular, G, will be acting on X, ;. Thus, the action of G, on X, will have
to be lifted to an action of G, on X,,;. In Section 2, we discuss some general
facts about such liftings.

The construction will give us a group G = G, acting transitively on X = X,
ensuring homogeneity of X. The right-continuous group operation will only appear
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at the very end; the action will be regular (in the sense of permutation groups),
which will enable us to identify G with X (see Definition 3.1 and Lemma 3.2).

To make G act transitively, we must be able to extend a G, to move a given
point to some other given point. This is discussed in Section 3. Keeping the groups
locally finite will make it easier to handle the extensions, since we may represent the
group action by the action of finite groups acting on finite sets (clopen partitions
of X). Keeping the measures rational allows us to get many such partitions in
which all sets have the same measure; however, rationality places some additional
requirements on the closed sets which are split in the construction of X,,; from
X,; this is handled in Section 4. Most of the material in Sections 3 and 4 is not
needed for the Suslin example in Section 6.

See [11, 12, 16] for a discussion of compact right topological groups in relation
to topological dynamics. We may regard the set of right translations, {x — za :
a € X}, as a flow (the discrete group X acting on the space X). If X is a compact
L-space, this flow cannot be distal (since X is 15 countable but not 2°¢ countable).
In fact, if the flow is scrambled, as in our examples, then it must be proximal, but
this need not be true in general (take the product of our examples with the group

{0,1}+).

2 Actions and Liftings
We use the following notation for a group acting on a set:

Definition 2.1 If G is a group and X is any set, a (left) action of G on X is
a map * : G x X — X such that the map x — @ xx is a permutation of X for
each p € G, and (pY) xx = px (Y % x) whenever p,» € G and v € X. If p is
a measure on X, then the measure is (G, ) invariant iff @B is measurable and
pu(eB) = u(B) whenever B C X is measurable and ¢ € G. If X is a topological
space, the action is continuous iff each map x — px is a homeomorphism of X.

As usual, we drop the ‘x* when the action is clear from context. X is homoge-
neous iff there is a group which acts transitively and continuously on X.

We now describe a general method which, given GG, X, x as in Definition 2.1,
constructs a Y and a projection 7 : Y — X, and then lifts x to an action of G
on Y. This will eventually be applied with G,, X, to construct ¥ = X,,; and
7ot X1 — X, As in the standard L-space construction, we need to be able
to control {z : |7z} = 1}.
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We describe this lifting first in terms of abstract sets, and then add in the
group action, the topology, and the measure.

Definition 2.2 If Y C A x B, then Y, = {b : (a,b) € Y} for a € A, and
Y ={a: (a,b) €Y} forbe B.

Definition 2.3 (Abstract Sets) Suppose that X, I are any sets, and for i € I,
F{ FP C X with FEUF]) = X. Let M: = {{: x € F}} (which is either {0}, {1},
or {0,1}). Define Y =Y (X, (F}:i€ 1, <2)) by

Y ={(z,f) e X x2":Vie Iz € Fjul}
and m=7m(X,(F}:1€ 1,0 <2) by: 7:Y = X and 7(z, f) = .

Note that each Y, = [[.., M C 27, and that 7 maps Y onto X.

iel
Definition 2.4 (Group Action) Assume that the group G acts on X and also
on I. Then G acts on 2! by (of)(i) = f(p i), and G acts on X x 21 by p(x, f) =
(oz, of).

Lemma 2.5 In the notation of Definitions 2.3 and 2.4, assume that oF} = Ffi
for all ¢,i,0. Then the action of G takesY to Y.

Proof. Suppose (z, f) € Y, so that z € F;(i) for all i. Then oz € goF;(i) = F%) =
F(‘f;ff)(wi) for all 7, so px € F(J;Of)(j) for all j, whence (pz,pf) € Y.

Adding in the topology, we give 2! the usual product topology. The lifting is a
way of giving a collection of sets non-empty interiors:

Lemma 2.6 (Topology) In Definition 2.3, suppose that X is a 0-dimensional
compact Hausdorff space and each F} is closed. Then Y is closed in X x 2!
and is hence also compact Hausdorff and 0-dimensional. If F} # 0, then in Y,
int(7 Y(F})) # 0. If the group G acts on I, and continuously on X, then the group
action on X x 21 is continuous.

Proof. (F} x {f:f(i)=¢})NnY = (X x{f: f(i) =¢})NY is clopen in Y, and
is contained in 7~'(F}). Hence, inty (7' (F})) # 0.
One can also lift a measure on X to a measure on Y. This is really independent

of the topology, but for simplicity, we confine ourselves to the topological situation
at hand, where it is clear that one gets a regular measure.
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Definition 2.7 (Measure) In Definition 2.3, suppose that X is a compact 0-
dimensional Hausdorff space, each F} is closed, and i is a reqular probability mea-
sure on X . Assume that for eachi € I, we have 0 < p;,q; < 1, with p;+q; = 1. For
each x, define a probability measure \., on M:: If M ={0,1}, then A\.({0}) = p,
and Xo({1}) = q;. If M. = {{}, then \o({¢}) = 1. Let )\, be the usual prod-
uct measure on Y, = [[, M.. Then the lifted measure v on Y is defined by:
V(E) = [ As(Ey)dp(z).

One must verify that this integral really defines a measure. In the case that £
is a basic clopen set, the integral surely exists, since we are integrating a Borel step
function. Then, a measure defined on the clopen sets extends to a Baire measure,
and then a regular Borel measure; see, e.g., [4], §54.

Lemma 2.8 In Definition 2.7, u = vr . Let G be a group which acts on X and
on I. Assume that p is G-invariant, oF} = Ff" for each i, 0, ¢, and p; = p,; for
each i, p. Then v on'Y s G-invariant.

The following example illustrates the computation of the measure, and will be
useful in proving Lemma 2.12.

Example 2.9 Basic clopen sets in 27 are of the form N, = {f € 2! : s C f},
where s is a finite function, dom(s) C I, and ran(s) C {0,1}. Let us compute
the measure of a basic clopen set (P x N,) N'Y in the special case where each
F¢ = X. Say dom(s) = {i1,..,%a,J1,---, o} and s(i;) = --- = s(i,) = 0 and
s(j1) = -+ = s(jp) = 1. Let w! be p; if x € F} and 1 if x ¢ F}, and let
w(r) = wilw? - -whg; -+ q,. Let K = PNF'N---NFY. Then v((PxNy)NY) =
[ w(z)dz. Now consider a smaller clopen set of the special form (P x N,) NY,
where dom(t) = {7:1, ce ;ia;jla ce ,jb, kl, ce ey k‘b}, t(kl) = = t(k‘b) = 0, and ¢
extends 5. Suppose also that we have each Ff* = F/*. Then v((P x N,)NY) =
Pry - P, V((P X Ng)NY).

We remark that these notions may be generalized quite a bit. We do not need
these generalizations here, but they may make the numerology with the p;, ¢; seem
less ad hoc. Clearly, the O-dimensionality of X is of no fundamental importance.
We may replace 2 = {0,1} by T, an arbitrary compact Hausdorff space, and
replace the p;, ¢; by a regular probability measure A\’ on T. Now, instead of Fy, F},
we have closed sets F' C T'x X, and hence closed F} C X. Now, M! = (F)* C T,
and we assume that every \'(M?!) > 0. Then, in Definition 2.7, the measure A\’ on
M is just the conditional probability: AL (W) = X{(W)/X(ML).
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Next, we show that in some cases, this lifting procedure preserves the rationality
of the measure (see Definition 1.3). As a simple example, observe that the usual
product (Haar) measure on X = 2“ is not rational; however, if \* is a probability
measure on 2 for 7 € w and A is the product of these, then A is rational whenever
the sequence (\'({0}) : i € w) is redundant, as per the following definition:

Definition 2.10 The sequence (p; : i € I) is redundant iff p, € QN (0,1) for
every i € I and {i: p; =r} is infinite for every r € QN (0,1).

Definition 2.11 A sequence of measurable sets, (F* : i € I) is rational iff for
each finite a > 0, each iy, ..., 1., and each clopen P:

p(PNF*N---NF) € Q.

If y(PNFin-.-NFia) =0, then PNF1N---N Fle = ().

If 1 is also rational, then every finite boolean combination of the F? and clopen
sets has rational measure. Now, using the computation in Example 2.9:

Lemma 2.12 Suppose Y and v are defined from p as in Definition 2.7. Suppose

also:
i 1S a rational measure on X .
Each F} = X.

The sequence (F{ :i € I) is rational.
For each j, if I; = {i : Fj = F{}, then (p; : i € I;) is redundant.
Then v is a rational measure on Y .

3 Extending Actions

To get a right-continuous group operation on X, we shall apply the following
standard definition and lemma:

Definition 3.1 An action of the group G on the set X is called:
Free iff Vo € G\{1}Vz € X [px # z].
Faithful iff Vo € G\{1} 3z € X [px # z].

Regular iff it is free and transitive.

The left action of a group on itself is regular. Conversely,
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Lemma 3.2 Suppose that x is a regqular action of the group G on the space X.
Then there are group operations o and - on X such that

(X,0) and (X, -) are both isomorphic to G.

{r—=pxz:peG} = {x—aocr:aeX} ={z—x-a:a€X}

o s left-continuous and - is right-continuous.

Proof. Fix an object 1 € X, and let I'(¢) = ¢ x 1. Then T is a bijection from
G onto X. Define o by: I'(¢ ) oI'(1p) = I'(¢e). Note that I'(¢) oz = p xx. Let

Ty =1youx.

In our inductive construction, the action of G, on X, will be free for a < w;
and regular for o = w.

Definition 3.3 Let x be an action of the group G on the set X. A block system
for (G, %) is a family ¥ C P(X)\{0} such that ¥ is a partition of X and such
that P € X for all P € X. The induced action, ®, of G on X is defined by
©® P = pP. If ¥1,%, are partitions, then ¥y <X (X refines 3 ) iff every set
in Y1 18 a union of sets in Y.

An alternative view of actions is sometimes useful: SY M (X') denotes the group
of all permutations of X, and an action * of G on X may be identified with
a homomorphism * : G — SYM(X) (that is, ¢ x x = (*(p))(x)). Then * is
faithful iff it is 1-1. Let SY Mx(X) < SYM(X) be the subgroup consisting of
those permutations ¢ which fix the partition ¥ (that is pP € ¥ for all P € X).
There is an obvious homomorphism 7y from SY Mg(X) onto SYM(X). ¥ is a
block system for (G, *) iff ran(x) C SY Mx(X), in which case the induced action
is® =myox: G — SYMyg(X). If ¥ <%, we may view the elements of 3, as
points, and define SY My, (£5) < SY M(E,) and 732 : SY My, (32) — SY M(5).
This view will be useful in the following, where we represent the action of a locally
finite group on a space X by its action on a sequence of finite partitions of X.

Lemma 3.4 Assume that x is a free continuous action of the finite group G on the
compact 0-dimensional Hausdorff space X. Let U be an open cover of X. Then:

1. U may be refined to a finite clopen partition ¥ of X such that ¥ is a block
system for (G, ) and the induced action on X is free.

2. If in addition p is a rational x-invariant measure on X, then we may obtain
Y so that all its blocks have the same measure.
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Proof. First, refining U, we may assume (since X is compact and G is finite),
that oV NV =  for each ¢ € G\{1} and each V' € U. Refining further, we
may assume that the elements of & are clopen and partition X. For each z, let
Po={pV:izepV &V eld & ¢ € G}. Then ¥ = {P, : v € X} satisfies (1).
For (2), choose a positive rational ¢ such that each p(P,)/q is an integer, and then
obtain ¥’ < X satisfying (1,2), with u(Q) = ¢ for all Q € X'

Definition 3.5 % = (3, : n € w) is a basic sequence of partitions of the topolog-

wcal space X iff
FEach X, is a finite partition of X into clopen sets.

So> T >T >

For some k, > 1, each P € %, is a union of k,, sets in ¥p.1.
For each k > 0, some k, is divisible by k.

U, X is a base for X.

Note if X is compact, it must be homeomorphic to the Cantor set.

Definition 3.6 If S s a basic sequence of partitions and p is a measure on X,
then ¥ is u-basic iff for each n, all sets in X, have the same measure.

Definition 3.7 If the group G acts on the space X, and G = (G, :n € w), then
(i,é) is an action sequence for (X, G) iff S s a basic sequence of partitions of
X and:

Each G,, is a finite subgroup of G, and Gy < G; < Gy < -+ -,

U, Gn =G.

FEach X, is a block system for G,,.

The action sequence (f), é) gives rise to the commutative diagram in Figure 1.
Note that in the diagram, all the actions shown are finite groups acting on finite
sets (partitions). Conversely, given such a diagram, we may retrieve the action of
G on X; this action will be measure-preserving if S s p-basic. This is important
in the proof of Lemma 3.12, where we construct an action on X by defining such
a diagram. We may view the action sequence as resolving the action on X into
an inverse limit of an w-sequence of actions on finite sets, in analogy to the wi-
sequence in the proof of Theorem 1.6.
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Figure 1: An Action Sequence

Go el G, —b——
i: injections
i |9 i §
SY My (Sy)  SY Mg (S5)  SYMg,(Sy) o
T ? Uy 7 T 7
SY M (%) SY M(%1) SY M(S,) SYM(S;) — wveeee

Definition 3.8 An action sequence (3, G) is

e Eventually free iff for all n, there is an m > n such that the action of G,, on
Yim 1S free.

e Large iff for each n, the action of G, on ¥, defines an isomorphism of G,
onto SY M(X,).

The notion of “large” is relevant to getting (X, -) scrambled in Theorem 1.6.
By Lemma 3.4,

Lemma 3.9 Assume that G is a countable locally finite group and % is a free
continuous action of G on the compact 2"% countable 0-dimensional Hausdorff
space X . Also assume that p is a rational *x-invariant measure on X. Then there
is an eventually free p-basic action sequence (i, é) for (X,G).

Proof. Fix finite subgroups {1} = Gy < G; < G < --- with |J, G, = G.
Inductively get {X} = ¥g > X; > Xy > - - -, such that each X, is a block system
for GG,,, the action of GG,, on ¥, is free, all sets in ¥, have the same measure, and
each set in ¥, is a union of k, sets in ¥,,;, where n | k,. To get 3,1, apply
Lemma 3.4 to the cover ¥,,, and then sub-divide each block into n sets of the same

measure.

Note that the measure is needed to ensure that each set in ¥,, contains the same
number of subsets from ¥, ;1. Conversely, a basic action sequence (X, G) defines a
rational x-invariant measure on X. If we dropped the assumption of the measure,
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we could not in general get a basic action sequence. For example, there cannot
be a a basic action sequence if there is a non-empty clopen set K and ¢; € G for
1 € w such the p; K are all disjoint. This will happen if X is constructed as in
Example 2.9 with each F? a singleton; such a construction occurs naturally when
building the Suslin space in Section 6.

Observe that we may always pass to a subsequence of i, keeping the same G:

Lemma 3.10 Let mg < mqy < mo < ---, and let ¥ = (X, :n €w). Then:
If S is basic then S is basic.
If S is [-basic then S s p-basic.
If (%, G) is an action sequence then so is (%', G).
If (i, é) is eventually free, then so is (i’,é)

In particular, when discussing eventually free action sequences, we may always
pass to a subsequence and assume that G, acts freely on 3/ ; except that (i’, é)
will not be large, even if (3, G) is.

Now, given G acting freely on X and points a,b € X, we wish to extend the
action to a larger group H, still acting freely, which contains an element 0 moving
a to b. We do this (Lemma 3.12) by obtaining (3, ) as above, and iterating
Lemma 3.11 w times. The extension process does not explicitly use the measure,
although the measure was used in Lemma 3.9 to get the (i, é)

Lemma 3.11 is depicted abstractly in Figure 2. The (Z,%) in Lemma 3.11 will
become a (¥X,11,%,) in Lemma 3.12. Since there are a number of actions being
discussed, we spell them out explicitly.

Lemma 3.11 Assume:

1. G, H are groups, with G < H.

2. G acts on the set Z via *, ¥ is a block system for (G,x), and the induced
action ® of G on X is free.

For some k>0, |S| =k - |H| for all S € X.

H acts on ¥ via © (which need not be free, or even faithful).

© ertends ®.

acAeX, andbe Be X, and p® A# B forall p € G.

e H and 6 © A= B.

NS G o

Then, there is an action o of H on Z such that:
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Figure 2: Refining an Action

1. o is free.
2. ¥ 1is a block system for o, and © is the induced action of H on X.
3. o extends .

4. doa=D.

Proof. First, assume that £ = 1. For each S € ¥, choose a bijection I'g from H
onto S so that whenever ¢ € G and p ® S = R, we have ¢ x I'g(a) = T'r(pa)
for all & € H; this is possible because ® is free, so there is at most one p € G
with ¢ ® S = R. Also assume that I'4(1) = a and T'g(d) = b; this is possible
because A, B are in different ®-orbits. Then, define o so that whenever § € H
and S, R € ¥ with 3 ® S = R, we have fo's(a) =T'gr(fa).

For £ > 1, replace H by H x K, where K is any group of order k, with the
action only depending on H: (¢, )S = ¢S. Then, restrict ® back to H = H x {1}.

Lemma 3.12 Assume that G is a countable locally finite group and * is a free
continuous action of G on the compact 2°¢ countable 0-dimensional Hausdorff
space X. Let (X, G) be an eventually free action sequence for this action. Fix any

a,b € X. Then there are H,o, f)’, H such that:
H > G is a locally finite group acting freely on X wia o.

o extends *.

doa=>b for somed € H.

S is a subsequence of 3.

(i’, ﬁ) is a large eventually free action sequence for (X, H, o).
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Proof. We may assume that ¢ x a # b for all ¢ € G, since otherwise we replace
b by some b not in the G-orbit of a. Then, passing to a subsequence, we may
also assume that for each n, we have A, # B, in X,, with a € A,, b € B,, and
Y ® A, # B, for all ¢ € G,,. Passing to a further subsequences, we may assume
that the action of G, on X, is free, and that every set in ¥, is the union of k,, sets
in 3,1, where (|S,)! | kn. At this point, we can take &' = %; the action of each
H, on ¥, will be free.

Figure 3: Extending an Action Sequence

3
0 1

Vo U, U
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Since there are so many actions here, we denote them by S, T, U, V; see Figure
3. We are given S, : G, = SYM(X,) and T,, = S,y | G, = SY My, (3,41) C
SYM(3,41). U, and V,, are the corresponding actions of the H,, which we must
construct. At the same time, we shall have 6 € Hy < H; < ---, with U, A,, = B,
for all n.

To start with, Sg: Gy — SY M (X)) is free, so it is an injection, so we simply
let Hy > Gy and Uy extend Sg so that Uy : Hy — SY M (%) is an isomorphism.
Then, fix § € Hy with 06Uy Ay = By.

Now, assume we have H, and isomorphism U, : H, — SYM(X,), with
0U, A, = B,. Then |H,| = (|X,])! | kn, so by Lemma 3.11, there is a free ac-
tion V,, : H, — SYM(X,,1) such that X, is a block system for V,, U, is the
induced action on X, and §V,, (A1) = Buy1- At this point, we have injections
Vo : Hy = SYM(X,41) and Spqq : Guyr — SYM(X,41), and these agree on G,
so we can let H,.; contain both H, and G, with U,y : H,p 1 — SYM(Z,41)
an isomorphism extending both V,, and S,,;.
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Finally, we have constructed for the H, a diagram like that in Figure 1, so we
have defined H and o.

Now, given an action of G on X and a,b € X, we can construct 5 and then
use ¥ to extend G to an H moving a to b. If (X', H) is large, then the action of
H will be scrambled:

Definition 3.13 Let o be a continuous action of H on X. A finite clopen parti-
tion, { Py, ..., P,_1} is scrambled iff for every o € Sy, there is a ¢ € H such that
po Py = Py for all i <n. The action is scrambled iff every open cover of X can
be refined to a scrambled clopen partition.

Lemma 3.14 Assume that G is a countable locally finite group and x is a free
continuous action of G on the compact 2"% countable 0-dimensional Hausdorff
space X. Also assume that p is a rational (G, *)-invariant measure on X. Fix
any a,b € X. Then there is a locally finite group H > G, with an action o on X
which extends x, so that o is free, scrambled, continuous, and measure-preserving,
and so that 6 oa = b for some § € H.

Besides being useful in the construction, the rationality of the measure is ac-
tually required by the other properties we obtain in Theorem 1.6:

Remark 3.15 Let X be an infinite compact 0-dimensional Hausdorff space. Let
G be a locally finite group which acts on X. Assume that the action is continuous,
free, and scrambled. Then there is a unique G-invariant reqular Borel probability
measure (1 on X, and this p is rational.

Proof. Since G is locally finite, there must be some G-invariant measure, p (see
Remark 1.4). Whenever ¥ = {P,, ..., P,_1} is a scrambled clopen partition of X,
all the P, must have the same measure, so for A C n, and K = [J{P, : i € A},
we must have pu(K) = |A|/n. Since for every clopen K, there is a scrambled X
refining the cover { K, X\ K}, the values of ;1 are determined on all clopen sets, so
that the G-invariant measure is unique. Clearly, u(K) is rational for K clopen.

Now, to verify that y is rational (Definition 1.3), fix a clopen K with ) G
K G X, and fix a rational ¢ € (0,1). We shall find a clopen H C K with
p(H) = q - p(K).

Say ¢ = a/b, where a,b are positive integers. Let ¥ = {Fy,..., P, 1} be a
scrambled clopen partition such that ¥ <1 { K, X\ K} and n > b. For each o € S,
choose ¢, € G such that pP; = P, for all © < n. Let G be the subgroup of G
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generated by all the ¢,. Then Gy is finite (since G is locally finite), and ¥ is a
block system for Gy. We shall now construct H, using the fact that n! | |G| (since
m: Gy — SYM(Y) is onto).

The action of Gq on X is free, so by Lemma 3.4, let ¥ << ¥ be a clopen
partition such that G, acts freely on ¥'. Then ¥’ is a union of s Gy-orbits, ¥/ =
Qo U---UQ 4, for some s > 1. Each |Q] = |Go|. f W € Q and W C P,
then YW C P; iff ¢ is in the stabilizer (Gy)p, = {X € Gy : Y P; = P,}, which has
order |Go|/n. Thus, exactly |Gy|/n sets in €, are subsets of P;. It follows that
¥ =Wy, L <s,i<n,j<|Go|/n}, where Wy, ,; € Qp and Wy, ; C P,.

Let 7o = p(U). Then >, .70 = 1 and u(Wy;;) = re/|Go|. Let Vi; =
Uics Wiy, for i < n and j < |Go|/n. Then the Vj; are disjoint, V;; C B,
and p(V;;) = 1/|Go| = (n/|Gol) - ;1(P;). Say ¢ = a/b = ¢/(|Go|/n); c is an integer
because b | (n—1)! and (n—1)! | |Go|/n. Let H; =J,_, Vi ;. Then p(H;) = q-p(F;),

solet H=\J{H,: P,C K}.

71<c

4 Shrinking Measurable Sets

Our result (Lemma 3.14) on extending measure-preserving actions assumes that
the measure is rational, and our results on liftings of actions obtain a rational
measure on Y, given a rational measure on X (Lemma 2.12), assuming that we
split a rational sequence of sets (see Definition 2.11). We thus need the following
result, which gives us such a rational sequence:

Lemma 4.1 Let X be a compact 2" countable 0-dimensional Hausdorff space.
Let 1 be a rational measure on X. Let G be a countable locally finite group with
a free continuous measure-preserving action on X. Let E be any measurable set
and € > 0. Then there is a closed F C E such that u(F) > (1 — e)u(E) and the
sequence (pF : ¢ € G) is rational.

The rest of this section gives a proof of this result. As in Section 3, we shall
approximate the action of G' by the actions of finite subgroups on finite partitions.
The following definition will then be useful:

Definition 4.2 Let G be a finite group acting on X, ) # S C G, and F C X.
Then

I(F,S,G) = {¢F:p € S}\ | J{eF: o € G\S} .
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If ¥ is a finite clopen partition of X and p a measure on X, then F is (¥, G)-
rational iff for each P € ¥ and each S € P(G)\{0}:

uw(PNI(F,S G))eQ.

If u((PNZ(F,S,G)) =0, then PNZ(F,S,G)=0.

Observe that ({eF : ¢ € S} = H{Z(F,T,G) : T O S} whenever S €
P(G)\{0}, and this is a disjoint union. From this it is easy to see:

—

Lemma 4.3 Suppose that (i, ) is an action sequence for (X, G) (see Definition
3.7), and suppose that F is (3,,G,)-rational for each n. Then the sequence (QF :
¢ € G) is rational.

It is thus natural to prove Lemma 4.1 by successive approximation, in w steps,
getting F,, \( F, where F, is (3, G,,)-rational. Unfortunately, Z(F, S, G) is not a
monotonic function of F. We avoid this problem by:

Definition 4.4 F C; FE iff Z(F, S,G) C Z(E, S, Q) for all S € P(G)\{0}.

Cg is clearly transitive, and F' Cg F implies that FF C E. The next two
lemmas show that a proof of Lemma 4.1 by successive approximation really can
work:

Lemma 4.5 If FCy E and G < H then FF Cg E.

Proof. Z(F,S,G) = \{Z(F,T,H) : T € P(H)\{0} & T NG = S} whenever
S € P(G)\{0}.

Lemma 4.6 If G is finite, Fy Jg Fy g F> Jg -+ and F = (), ., Iy, then
F Cgq F, for each n, and Z(F, S,G) = (e, Z(Fn, S, G) for each S € P(G)\{0}.

Observe that ¢Z(F,S,G) = Z(F, ¢S, G). Conversely,

Lemma 4.7 Suppose that E C X and G is a finite group acting on X. For
each S € P(G)\{0}, choose a set Fs C IZ(E,S,G) so that oFs = F,g for each
©,S. Define F =|J{Fs:1¢€ S}. Then F Cq E, and Z(F,S,G) = Fs for all
S € P(G)\{0}.

Observe that we may choose Fg so that u(Fs) is any real between 0 and
w(Z(E,S,G)). This leads to:
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Lemma 4.8 Let X be a compact Hausdorff space. Let i be a finite non-atomic
reqular Borel measure on X. Let G be a finite group with a continuous measure-
preserving action on X. Let X be a finite clopen block system for G, and assume
that the induced action of G on X is free. Suppose that E C X is measurable. For
each P € ¥ and each S € P(G)\{0}, choose a real rps such that:

Tp,s = Tr'ppps for each ¢, P,S.

0<rps<u(PNI(E,S,G)) whenever u(PNIZ(E,S,G)) #0.

rps =0 whenever n(PNI(E,S,G)) =0.
Then there is a closed F Cg E such that for each P € ¥ and each S € P(G)\{0}:

1. PNZ(F,S,G) is closed and p(P NZI(F,S,G)) =rpgs.
2. If rps =0 then PNZ(F,S,G)=0.

Proof. We may assume that G' acts transitively on ¥; if not, work on each orbit
separately. Then, fix some R € X; it is sufficient to obtain (1) and (2) just for
P=R.

For each S € P(G)\{0}, choose a closed K¢ C RNZI(E,S,G) such that
W(Ks) =rgyg, and take Kg = 0 if rp g = 0. Now let Fg = |J{vyKy-15 : ¢ € G}.
Note that Fg C Z(E, S,G) and ¢(Fs) = F,g. Define F = [J{Fs:1 € S}. By
Lemma 4.7, Z(F, S, G) = Fs, so that RNZ(F, S, G) = K.

Proof of Lemma 4.1. Assume p(E) > 0 (otherwise, let F' = ()). By Lemmas
3.9 and 3.10, let (i, é) be an action sequence for (X, G), with G,, acting freely on
Y. Assume that ¥y = {X} and Gy = {1}. Let g,, for n € w, be rationals with
1%5 > qo > q1 > qp > -+ and g, N\ 1. We shall find closed sets Fj,, for n € w, with
FE J¢, Fy D3¢, FA Ja, Fy---, and F will be (), F,,. Also, for each n, each P € %,,,
and each S € P(G,,)\{0}, choose a rational r} s such that:

(1 —e)u(E) <%y < @iy < u(E).

rps = Tip,s for each n, o, P, S.

w(PNI(F,,S,G,)) = qurps whenever P € ¥, and S € P(G,)\{0}.
PNI(F,,S) =0 whenever 7} =0, P € ¥, and S € P(G,)\{0}.

rhs =2 {red Q€T & QC P &T € P(Gu)\{0} & TNG, =S}
whenever P € ¥, and S € P(G,)\{0}.

6. (PNI(Fp,S,Gp)) = gmrp s whenever m > n, P € ¥, and S € P(G,)\{0}.

AN .

Of course, (3) is a special case of (6) (when m = n), but we view items (2-5) as
being enforced during the inductive construction. Then, observe that (6) follows
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(since (6) for (n,m) follows from (6) for (n 4+ 1,m) by using (5)). Applying (6),
and letting m — oo, we have (by Lemmas 4.5 and 4.6), u(PNZI(F, S, Gy)) = 1} 5.
In particular, (1) yields u(F) > (1 — e)u(E). Applying (4), we see that F' is
(X, Gy)-rational for each n. Thus, we are done by Lemma 4.3.

For n = 0, choose a rational 7§, with (1 —e)u(E) <r% (1 < -p(E), and let
F C E be closed with y(F) = gor 13- Then (1-4) hold for n = 0.

Suppose we have F, and the r} ¢ satisfying (1)-(4). Define x%@l so that (a)
holds, and observe that (b) and (c) follow:

a. W(QNI(Fy,T,Gri1)) = qnagyy whenever Q € Sy 1y and T € P(Gri1)\{0}.

b. rpg = Z{x%ﬂ}l QEeEX, 1 &QCP&T eP(Gri)\{0} & TNG, =5}
whenever P € 3, and S € P(G,)\{0}.
c. ng’Tl = xZELT for each ¢, Q,T.

Now, since the rationals are dense, choose rationals rgJ’j} so that:
b

d. 0 <rgy < J-aply whenever gy > 0.
b n k) b

n+l __ n+l __
e. ror = 0 whenever x5’y = 0.

f. (2) above (for n + 1) and (5) hold.

Since (d) yields 0 < g1} < ¢uafy7, Lemma 4.8 implies that we can choose

Foi1 Ca,,, F, so that (3) and (4) hold (for n + 1).

5 The CH Construction

Proof of Theorem 1.6. Let C be be the Cantor set, 2¥. Let 7° be the natural
projection from C? onto C* whenever o < (3. Let m, = 7. As is typical of
such L-space constructions [1, 5, 10, 13, 15], we construct X C C*' by building
inductively X, = m,(X) C C*.

For 0 < a < wy, we construct Xy, fio, Gu, *a, F,, with the following properties:

P1. X, is closed in C'*, and has no isolated points.

P2. X, = 7%(Xj3) whenever a < .

P3. Each GG, is a locally finite group, with GG, countable whenever o < w.
P4. G, < G whenever a < 3.

P5. x, is a free scrambled continuous action of G, on X,.
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P6. ©*xo 2 (x) = 7P (p %5 x) whenever a < 3, z € Xj, and ¢ € G,.

P7. F, is a closed subset of X,,.

P8. (m2t1)~1(F,) has non-empty interior in X,1.

P9. |(mg*)'({z ] = 1 for all v € Xo\ U, cq, ¢Fa-
P10. Each p, is a (Gg, *o)-invariant rational probability measure on X,.
P11. o = ps(7?) ! whenever o < §.
P12. p(F,) > 0 and the sequence (pF, : ¢ € G,) is rational.

Now, by CH, let B, C C% be closed, for 0 < a < w, so that whenever
B C C“!is a closed Gs set, B = 7, '(B,) for some o < w;. We shall make sure
that if B, N X, has positive measure, it gets a non-empty interior (P13 + P8),
while if B N X is a null set, it never gets split past stage £ (P14 + P9). Again
by CH, choose &, Gq, ba, for 0 < a < wy, such that &, < @, aq,ba € C%, and

VE<w Va,beCéTa<w =6 &a=a, &b=1b,] .
Property P15 will make the group action transitive.

P13. If yia(Ba N Xa) > 0, then F, C B,.

P14. If0 < £ < avand pe(BeN X¢) = 0, then oF, N (7)™ (Be) = 0 for all ¢ € G,,.

P15. If a4, by € Xg,, then pa = b for some ¢ € G, and some a,b € X, such that
mé(a) = a, and 78 (b) = b,.

The construction is done inductively. When 0 < o < wy, we decide, in order:

a. X, and fiq.
b. G, and *,.

c. F,.

d. Xoi1, Mar1, and the action x,.1 of G, on X4 q.

In some of these, there are three cases: a = 1, a a limit, and « a successor larger
than 1.

(a): X7 = C, and p; is any rational probability measure on C. If « is a limit,
then X, and pu, are already determined by P2 and P11. If o > 1 is successor, then
X, and p, were determined in step (d) for aw — 1.

(b): Let G, = {1}. Let G4 be Us<a G5 when « is a limit, and let Go = Ga_y
when a > 1 is a successor. In view of (d) and P6, the action of G, on Xy is already
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determined. Then, apply Lemma 3.14 to obtain G, > @a and its action on X, so
that P15 and P5 hold at «a.
(c): Let Dy = BoNX,. Let Hy = Dy if po(Dy) > 0; otherwise, H, = X,. Let

Eo = Ho \ | J{o((7) 1(De)) : 0 <€ < & pie(De) =0 & ¢ € G}

Then choose F, C E, by Lemma 4.1.
(d): Let I = G, xw, and let G act on I by ¢(¢, k) = (¢, k). Fori € I, choose
pi,¢; € (0,1) so that p; + ¢; = 1 and for each ¢ € G, the sequence (pp) : k € w)

is redundant (see Definition 2.10). Let Fi = X,, and let F\** = ©F,. Then
obtain Y C X, x 2/ and v on Y as in Definition 2.7. v is a rational measure by
Lemma 2.12. Since [ is countable, we can identify 27 with C, giving us X,4; and
the action of G, on Xgy1.

For av = wy, we just do steps (a) and (b) to determine X = X, and p = py,,
with G = G.,,. We proceed to verify the hypotheses of Lemma 1.5. (1) and (2)
are clear. For (3) and (4), consider a closed G5 set D = BN X C X, where B is a
closed G5 in X.

If (D) > 0, then int(D) # () is guaranteed by properties P13 and P8 at stage
«, where B =, '(B,), and hence D = 7 1(D,,).

If u(D) =0, then fix £ such that B = 7T§_1(B§). By P14 and P9, ¢ [ D : D —
Dg is 1-1 on D, so that D is homeomorphic to Dg, and hence 2" countable.

Finally, by P5 and P15, the action of G on X is regular; P15 implies transitivity
of the action because each point of X eventually ceases to be split in the inverse
limit. We then we get our group operation on X by Lemma 3.2. The rest of
Theorem 1.6 is clear from the construction.

6 Suslin L-spaces

The following specializes some standard definitions to the case at hand:

Definition 6.1 Let X be a compact 0-dimensional Hausdorff space. An antichain
in X is a disjoint family A of non-empty clopen subsets of X ; A is maximal iff | J A
15 dense in X. X s Suslin iff X s ccc, X has no isolated points, and whenever
A, are mazimal antichains for n € w, J{int(), Kn) : Vn[K, € A,]} is dense in
X.

So, there is a Suslin space iff there is a Suslin tree. Observe that if y is a finite
regular Borel measure on such an X, then its support is nowhere dense. Also note
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that X cannot be separable. X need not be HL; for example, the absolute of a
Suslin space is a Suslin space. However, if there is a Suslin tree, then there is an
HL Suslin space (for example, a Suslin line). We do not know whether there can
be a compact Suslin line which is also a right topological group, but:

Theorem 6.2 Assume . Then there is a compact 0-dimensional Suslin L-space
X with a group operation - : X x X — X such that:

1. For each a, the map x — x - a is continuous.
2. (X, ) is super-scrambled.

Remark 6.3 If X is a compact 0-dimensional HL Suslin space, then there is a
Suslin tree dense in the clopen algebra of X.

Proof. This is clear if w(X) = ®;. Now, suppose that w(X) > Ry. Since the
regular open algebra is Suslin, we could find clopen sets K, for a < ws such that
whenever oy < a; < -+ < ay: (i, Ko, € K,,. But then () K, would be a

closed set which is not a Gj.

Since the group (X, -) cannot be locally finite (see Remark 1.4), the extension
procedure described in Section 3 does not apply in proving Theorem 6.2. On the
other hand, we do not have a measure to preserve, so the task is simplified a bit.
We just use:

i<n a<wi

Lemma 6.4 Assume that G is a countable group and x is a free continuous action
of G on the Cantor set X = 2¥. Fix any a,b € X. Then there is a group H > G,
with an action o on X which extends *, such that o is free and continuous, and
such that 0 oa = b for some o € H.

Proof. Regard G as a subgroup of H(X), the group of all homeomorphisms of
X. Then G being free simply means that no ¢ € G\{1} has any fixed points. We
shall choose o € H(X) with o(a) = b and let H be (G, o), the group generated
by G U {c}. Assume that ¢(a) # b for all ¢ € G (otherwise take H = G). In
particular, a # b.

Fix a metric d on X, and use the sup metric on C'(X, X). Let I C C(X, X) be
the set of all o such that o(a) = b and 02 = 1. Then I is closed in C(X, X), and
I C H(X). Since C(X, X), and hence I, are separable complete metric spaces, we
can proceed by a category argument:
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For n € w, A a finite subset of G\{1}, and o € I, let J(A,o,n) be the set of
all alternating products of ¢ with n or fewer elements of A — that is, o together
with all products of the forms:

P10P20 =+ =P,y P10P20 = - Pm0, OP10P20 =" Pmy OP1OP20 =~ Pm0

where 1 < m < n and ¢y,...,p, € A. Then every element of (G,0)\G is in
J(A,o,n) for some finite A, n. Let

UAn)={oel: Ve JAon) Ve X[(x)#x]} .

All U(A,n) are open in I, so we are done if we can show that they are all dense.
We proceed by induction on n:

Forn=0: U(A,0)={c el :Vz e X[o(r) #x]}. Fixo €I and ¢ > 0. Let
A be a block system for {1, 0} (see Definition 3.3) such that diam(P) < ¢ for each
P € A and such that a,b are in different blocks of A. Define ¢’ € U(A,0) with
d(o',0) < e as follows. If P,Q € A and oP =@ # P, theno' [ (PUQ) =0 |
(PUQ). If P € A and 0P = P, then partition P into two clopen sets, and let o’
exchange these sets.

For n = 1: Since U(A,0) is dense, it is sufficient to fix o € U(A,0) and £ > 0,
and produce a o' € U(A,1) with d(o',0) < e. Let A be as above, but now,
since 0 € U(A,0), we may assume that oP # P for all P € A, so for some r,
A={P:i<r}uU{Q;:i<r}, where oP; = Q;. Say a € Py, so that b € Q. o’
will also exchange each P;, ();, which guarantees d(o’,0) < e. Since ¢(a) # b and
©(b) # a, we may also assume that Qy N Py = Py N pQy = ) for each ¢ € A.
Now, J(A,o',1), contains, besides o', elements of the forms o'y, po’, o'po’, for
¢ € A. To make sure that these have no fixed points, it is sufficient to ensure that
o'(z) # S(z) == {o(x) : p € A}U{p ! (z) : ¢ € A}. for each z € X. This is
satisfied for © € Py U Qo by taking o' [ (Po U Qo) = o | (Py U Qyp); in particular,
o'(a) = b, so that ¢’ € Z. For i > 0, ¢’ [ P; can be an arbitrary homeomorphism
onto (); such that o'(x) avoids the finite set S(z).

To prove U(A,n + 1) is dense, where n > 1: Let B= AU {py' : o, € A &
ey’ # 1}. Applying induction, we may assume that U(B,n) is dense, so it is
sufficient to fix o € U(B,n) and ¢ > 0, and produce a ¢’ € U(A,n + 1) with
d(o',0) < e. By compactness of X, we may fix 6 > 0 such that whenever o' € I,
d(o',o) < §, ¢ € J(B,o',n), and z € X, we have d(¢(x),z) > J. Let A = {P; :
i <r}U{Q;:i<r} beas above, but now assume that each block has diameter
< min(d, €). Again, o' will exchange each P;, @); and will agree with o on Py U Q.
Note that ¢’ will then automatically be in U(B,n) and hence in U(A,n).
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Furthermore, note that to get o’ € U(A,n + 1), it is sufficient to ensure that
o'poo’ 10’ - pp(x) # x whenever x € X and g, p1,...,0, € A. To see this,
consider the other types of products in J(A,o',n + 1). If poo’p10' - ppo'(z) =
x, then we would have o'poo’'p10" - pn(y) = y, where y = o'(z). Likewise, if
oo’ 10’ -+ - o’ (x) = z, then we would have pyo'pi0”---p,(y) = y. Finally, if
oo’ 10"+ - @n(x) = x, then we would have o'¢10'p20" -+ - pr00(y) = y, where y =
©o ' (). This contradicts either o’ € U(B,n) (when ¢,y # 1) or o € U(A,n—1)
(when @00 = 1).

Now, given any z, let i(z) be the i < r such that x € P, U @Q;. So, we
always have i(o'(z)) = i(z) Note that for ¢,...,, € A, the n + 1 numbers
i(x), i(c'on(x)),..., i(c'py---0'pu(x)) are all distinct: If not, then for some
m < ¢ < n and some y € X, we would have i(c"p,,---0'0r 10'0e(y)) = i(y).
Then for ¢ equal either o', -+ - 0'vi_10"pp or V- - ' ©p_10" 0, we would have y
and ¢ (y) in the same block, so that d(¢(y),y) < d, contradicting our choice of ¢
and A.

Thus, if we do have o'pyo’ 10" - - p,(x) = z, there will be some ¢ such that
i=1i(o'pp--0'on(x)) > i(0" om0 pu(x)) forallm # L. lfy =o' pp---0'p,(2),
we would then have o'(y) = pp---0'pn0’po -+ - e_1(y). Since all the intermediate
values used in computing ¢;---0'pn0'@o - - pe-1(y) lie in U, ; P; U Q;, we can
easily avoid these equalities by defining ¢’ | P; U @Q); by induction on i < r: Let
o' | BhUQy =0 | PyUQg. Fori > 0: Let 7; agree with ¢’ on Uj<z.Pj U @, and
with o on Uj>i P; U Q. Let o' | P; be a homeomorphism onto (); such that for
x € P

o'(z) ¢ {¢(x) v € J(A,miyn+1) or " € J(A,mi,n+ 1)} .

Then o' | Q; is just the inverse of o’ | P;.

Remark 6.5 Under CH (or M A), one can use this to construct a right topological
group operation on the Cantor set with no Haar measure. Just start with a
countable group acting freely on X so that some clopen set is moved to a proper
subset of itself, and then extend this action 2% times to get a free transitive action.

Lemma 6.6 Assume that G is a countable group and x is a free continuous action
of G on the Cantor set X = 2“. Then there is a countable group H > G, with
an action o on X which extends x, such that o s free, continuous, and super-
scrambled.
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Proof. We follow the notation in the proof of Lemma 6.4. Since there are only
countably many partitions into clopen sets, it is sufficient to fix a finite clopen
partition, { Py, ..., P,_1}, with r > 1, and extend G to an H = (G, 0’), where o'P,
is P; for + > 2 and P,_; for i« < 2. Fix a € Py and b € P, with a,b in different
G-orbits. Fix o € I such that o exchanges Py, P, and is the identity on P; for
i > 2. Choose a metric d on X such that d(z,y) > 1 whenever x € P;, y € P;, and

i # j. Then choose o’ € I with (G, 0’) free and d(o’,0) < 1.

The rest of the proof of Theorem 6.2 is now like the standard <} construction
of a Suslin tree, modified to capture antichains in X rather than antichains in the
tree. We follow the same basic notation as in the proof of Theorem 1.6 in Section
5. We again obtain X C C“!, where C' is the Cantor set.

Definition 6.7 For K clopen in C*', let supt(K) be the least « < wy such that
K = () '7mo(K). If B is a family of clopen subsets of C*' and @ < wy, then

Bla={m(K): KeB&supt(K) <a} .
If X CC* and B is a family of clopen subsets of C'*, then
BNX={KNX:KeB} .

Lemma 6.8 Suppose that B is a family of non-empty clopen subsets of C**, X s
closed in C“, and BN X is a maximal antichain in X. Then

{& <w: (B]&) Nme(X) is a maximal antichain in 7¢(X)}
18 club in w.

Definition 6.9 A {-sequence is a sequence {Bg : £ < wi} such that each Bg is
a family of non-empty clopen subsets of C¢ and {£ : B | & = B¢} is stationary
whenever B is any family of non-empty clopen subsets of C“'.

It is easily seen that the usual definitions of < imply that there is such a
{-sequence.
Proof of Theorem 6.2. Fix a diamond sequence {B; : @ < w;}. Choose

&ay Gq, by exactly as in in Section 5. Now construct X, , Gq, %, F}, satisfying:

Q1. X, is closed in C'*, and has no isolated points.
Q2. X, = 7%(X;s) whenever a < 3.
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Q3. Each G, is a group, with GG, countable whenever o < w;.

Q4. G, < G whenever a < 3.

Q5. %, is a free continuous super-scrambled action of G, on X,.

Q6. @ *xo 2 (x) = 7P (p %5 x) whenever a < 3, z € Xj, and ¢ € G,.

Q7. F, = {pa} for some p, € X,.

Q8. (m&*t1)~1(F,) has non-empty interior in X, 1.

Q9. [(mg™) ' ({z}) =1 for all 2 € Xo\ U, eq, ¢Fa-

Q10. pp, € U for all ¢ € G, and all U € U,; where U, is the family of all
U((mg)~" (B N X¢)) such that & < a and (7))~ (B¢ N X¢) is a maximal
antichain in X,.

Q11. If aq, by € X¢,, then pa = b for some ¢ € G, and some a,b € X, such that
mée(a) = a, and 75 (b) = by.

The induction uses the same sequence of steps (a)(b)(c)(d) as in Section 5,
deleting mention of the measure. In (b), use Lemmas 6.4 and 6.6 instead of Lemma
3.14. In (c), use the Baire Category Theorem to choose p, € ({pU : U € U,
& ¢ € Go}. In (d), again use I = G, X w; if we took I = G, then X, would
contain isolated points.

Next, note that whenever Be N X is a maximal antichain in X, induction on
a shows that (7¢)~"(Be N X¢) is a maximal antichain in X, for all @ > . The
usual ¢ argument now shows that X is ccc: Let BN X be a maximal antichain in
X, and assume that K N X # ) for all K € B. Fix £ < w; such that B | £ = B;
and (B | £) N X is a maximal antichain in X¢. Then B = (m¢) '(B¢), so that B is
countable. Also, X \ |JB is 2" countable, since 7¢ is 1-1 on X \ [JB. It follows
that every nowhere dense set is 2"¢ countable, so that X is HL.

Finally, to see that X is Suslin, let A,, for n € w, be maximal antichains.
So, A, = (m¢,) " (Be, N Xg,) for some &, < w;. Let @ = sup,&,. For each
n, choose K, € B, such that p, € (r¢ ) '(K,). Then (m¢,) '(K,) € A,, and

0 # int((ra) " {pa}) € No(me,) " (Kn)-
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