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1 Introduction

In this article, we survey some recent results which produce points with inter-
esting topological properties in the Stone space of a boolean algebra B. Our
primary focus is the case where B = P(k), a power set algebra; then the points
will be in the Cech compactification, Sk (where & is discrete). However, these
methods also apply to some other complete boolean algebras.

We also present some new results, and we unify all the results under the
one umbrella of “hatpoints”. In most cases, especially for the new results, we
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present complete proofs. However, occasionally we refer the reader to the liter-
ature when we do not see how to improve on a published proof. In addition, we
assume that the reader is already familiar with the Stone Representation Theo-
rem and the theory of Cech compactifications, although we begin by reviewing
some basic notation regarding these matters.

If B is a boolean algebra, we use st(B) to denote its Stone space. Thus,
the elements of st(B) are the ultrafilters on B, and the clopen sets of st(B)
are all of the form N, = {x € st(B) : b € x}, for b € B. This “st” is a
contravariant functor which produces an equivalence between the category of
boolean algebras and the category of compact 0-dimensional Hausdorff spaces.

When we work in the category of boolean algebras, the notation h : B — A
always implies that h is a homomorphism, and h : B — A means that in
addition, h is onto. When h : B — A, the dual h* : st(A) — st(B) (defined by
h*(x) = h~'(x)) will be continuous, and h : B — A implies that in addition,
h* :st(A) < st(B) is 1-1, so that it embeds st(.A) into st(B).

If Fis a filter on B, with Z its dual ideal, we use both B/F and B/T
to denote the quotient algebra. Then h* : st(B/F) — st(B), where h is
the natural surjection. We often identify st(B/F) with the subspace of st(B)
consisting of those ultrafilters x on B which extend F. We use a <7 b or
a<gbtomean a Al €.

This is illustrated by our view of [k:

Definition 1.1 FR = FR(k) is the Fréchet filter, {X C k: |[k\X]| < k}.

If k is any infinite cardinal, given the discrete topology, we have u(k) C
k* C Pk. Pk is the space of ultrafilters on k; that is, Sk = st(P(k)).
Then, «* = fr\rk = st(P(x/fin)) is the the space of nonprincipal ultrafil-
ters on k, where fin denotes the ideal of finite sets. wu(k) = st(P(k)/<r) =
st(P(k)/FR(k)) is the space of uniform ultrafilters; that is, x € u(x) iff every
set in x has size k. Here “<xk” denotes the ideal of sets of size less than . For
A,B € P(k), A C* B usually means A <zg(,) B.

Our methods construct points in st(B) which have properties related to
“weak P-point”:

Definition 1.2 If 6 is an infinite cardinal and X is a topological space:

[ xk X is a Py-point in X iff the intersection of any family of fewer than
0 neighborhoods of x is also a neighborhood of x.

[ xlk X is a weak Py-point in X iff x is not a limit point of any subset
of X\{x} of size less than 6.
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So, a P-point is a P, -point, and a weak P-point is a weak P, -point. Every
point is a P,-point. In any 77 space, every Py-point is a weak Py-point.

We now summarize the results we prove here, and explain how to unify
them under one framework.

One specific result is:

Theorem 1.3 Let B be a complete boolean algebra and T an ideal on B. As-
sume that |B| = 2% and that B has an antichain {a¢ : £ < Kk} such that the a¢
are distinct and each ag ¢ Z. Then there is an x € st(B/I) C st(B) such that
x is a weak P,-point in st(B).

Applying this to P(x) and P(x)/<k, and noting that x can be partitioned
into k disjoint sets of size k, we get:

Corollary 1.4 For every infinite k, there is an x € u(k) which is a weak
P.-point in [k.

In fact, good ultrafilters (Definition 2.8) have this property. These were
introduced by Keisler [10], who proved that they exist when 2* = k*. A ZFC
proof was given by Kunen [11] (see also Chang and Keisler [4], Theorem 6.1.4),
and it is a folklore result that these are weak P,-points (Lemma 2.13). The
fact that one might use good ultrafilters in arbitrary boolean algebras is due to
Balcar and Franék [3], who proved the following, obtained by setting Z = {0}:

Corollary 1.5 If B is a complete boolean algebra such that |B| = 2% and B
has an antichain of size k, then st(B) contains a weak Py-point.

Note that this article emphasizes weak P,-points. If B is complete and
of size less than the first measurable cardinal, then no non-isolated point in
st(B) can be a P-point. In fact, the methods discussed here can guarantee
that regardless of measurable cardinals, all of the points constructed will not
be P-points; see Section 6.

The following boolean algebra yields an example of Corollary 1.5:

Definition 1.6 D, denotes the regular open algebra of the metric space k“
(where k is discrete).

Alternatively, one may view D, as the completion of the forcing order
Fn(w, k) (finite partial functions from w to k).

Corollary 1.7 There is a dense subset E C st(D,) such that |E| = k and
each point of E is a weak P,-point in st(D,).
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Proof. For each p € Fn(w, k) let [p] = {f € k“ : f D p}. Then [p] is clopen
in k¥, so that [p] € D,. Note that Ny, is a clopen set in st(D,) which is
homeomorphic to all of st(D,), so by Corollary 1.5, we can choose a weak P,-
point x, € Npp. Let ' = {x,:p € Fn(w,x)}. Then |E| < Fn(w,x) = . The
x, may not all be distinct, but |E| = k because it is dense and all its elements
are weak P,-points. [ ]

This example also shows that in Corollary 1.5, one cannot strengthen weak
P.-point to weak P,+-point. Likewise, in Corollary 1.4, no x € u(x) can be a
weak P,+-point in [k, since x is a limit of the isolated points. However,

Theorem 1.8 For every infinite reqular k, there is an x € u(k) which is a
weak Pg+-point in u(k).

This is proved in Baker and Kunen [2], using mediocre points (a modifica-
tion of “good”). The case K = w (a weak P-point in w* = u(w)) is an older
result of Kunen [12], using OK points (another modification of “good”). In
fact, “good”, “mediocre”, and “OK” are all special cases of the notion of hat-
point (see Section 2), and we shall derive Theorems 1.3 and 1.8 by one proof,
which produces hatpoints in Stone spaces. The exact flavor of hatpoint we
get in a specific st(B) will depend on what kinds of matrices exists in B (see
Section 3). We do not know if Theorem 1.8 holds for singular «; it would hold
if a suitable matrix (described by Lemma 3.9) exists in P(k)/<k.

Besides constructing points in st(83), we shall, by the same proof, construct
subsets of st(B). By way of introduction, consider the following well-known
result:

Theorem 1.9 (Efimov [7]) Let A be a complete boolean algebra with |A| <
2%. Then st(A) can be embedded into u(k).

Equivalently, there is an h : P(k)/<rk — A. Since A is complete, this is easy
to prove (as we do in Section 4) using the Sikorski Extension Theorem.

Now, consider the special case where A is the 2-element algebra and |st(.A)|
= 1, in which case h can be identified with an ultrafilter, which defines a point
in u(k). Of course, Theorem 1.9 is trivial in this case, since it just says that
u(k) contains a point — but now we know that in fact it contains a weak P,-
point, or even a weak P,+-point. Thus, we shall investigate improvements of
Theorem 1.9 which embed st(.A) as a weak Py-set; the definition of this notion
is part of a general scheme for lifting properties of points to properties of sets:
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Definition 1.10 If “ L-pdint” is some property of points in a space, then
F C X is a [=seb in X iff the point F' is a [=pdint in the quotient space X/F
obtained by collapsing F' to a point.

Lemma 1.11 F is a weak Py-set in X iff no point of F' is a limit point of any
subset of X\ F of size less than 6.

We shall show:

Theorem 1.12 Let A be a complete boolean algebra with |A| < 2%. Then:

1. There is an F C u(k) such that F is homeomorphic to st(A) and F is a
weak Py-set in fk.

2. If k is regular, then there is an F C u(k) such that F is homeomorphic
to st(A) and F is a weak Pg+-set in u(k).

Note that Theorem 1.8 is the special case of (2) when A = {0,1}. In the
case kK = w, (2) is due to Simon [16], who produced st(A) as an OK set in
u(w) = w*. Here, we shall derive Theorems 1.3 and 1.12 as special cases of one
result, Theorem 5.6, which produces hatsets in Stone spaces.

Now, we can put our results together to obtain dense sets of weak P-points:

Definition 1.13 D C X is 0-fuzzy in X iff |D| =0, every element of D is a
weak Py-point in X, and D is dense in itself.

If D is 0-fuzzy, then no element of D is a weak Py+-point.

Theorem 1.14 For any infinite k:

1. There is an E C u(k) which is k-fuzzy in Bk.
2. If k is reqular, then there is an E C u(k) such that E is k" -fuzzy in
u(K).

As before, we do not know if the hypothesis that  is regular can be removed
in (2).

Since every point is a P,-point, item (1) for K = w is immediate from the
well-known fact that every non-scattered compact Hausdorff space contains a
countable subset which is dense in itself. However (2) has non-trivial content
even for k = w: there is a set of 8; weak P-points in w* = u(w) which is dense
in itself. We remark that given Theorem 1.8, (2) is easy when 2 = ™, since
we can just choose one weak P,+-point from each basic clopen set to get a
dense set of such points.
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Proof of Theorem 1.14.1. Since |D,| = 2%, apply Theorem 1.12.1 to let
F C u(k) be a weak Py-set in Sk homeomorphic to st(D,). By Corollary 1.7,
let £ C F be k-fuzzy in F'. But then F is also k-fuzzy in [k, since no point
of F' is a limit of any subset of Sk\F of size less than k. []

The exact same proof, now applying Theorem 1.12.2 to D,+, proves Theo-
rem 1.14.2, provided that 2(°7) = 2% (so that |D,+| = 2%). If 2(°") > 2% then
we certainly cannot embed st(D,+) into u(k), so we must apply a somewhat
more technical version of Theorem 1.12.2 which replaces A by A N N, where
N is a k-closed elementary submodel of the universe with |N| = 2%. This will
be discussed in Section 5, where we prove Theorem 1.14.2.

Now, any argument producing weak Py-points in u(x) faces the following
obstacle: The natural transfinite induction constructs an ultrafilter x on x in
2" stages. However, |u(k)| = 22" by a well-known theorem of Pospiil [13] (see
Corollary 3.5). Thus, there are too many sequences of ultrafilters to simply
diagonalize against them all (e.g., at stage o, make sure that x is not a limit of
the o' sequence). Rather, we define a base property of x which implies weak
Py-point. Such base properties involve x and a base for the space u(k). Since
the weight of u(k) is only 2%, there is a chance of success in building x in 2%
steps to have such a property.

The simplest such base property is probably “P-point”, and, under CH,
W. Rudin [14] constructed a P-point in u(w) = w* in 2 steps. However, for &
regular and strictly between w and the first measurable cardinal, there cannot
be a P-point in u(k) (since it would then be countably complete), and even
for k = w, Shelah [17] showed that P-points in u(w) cannot be proved to exist
in ZFC'. If we are looking for ZFC results, we must turn to somewhat more
complex base properties, such as Keisler’s notion of “good”, and modifications
thereof, such as “OK” and “mediocre”. These are discussed in Section 2.

Even given a base property, it is not necessarily obvious (or even true)
that there is an x € u(k) with that property. Successful constructions of such
x often proceed with the aid a matrix of sets consisting of 2* independent
rows. Then, each step in the construction eats up finitely many rows, and
the remaining rows provide the necessary freedom to allow the construction to
proceed. Matrices are taken up in more detail in Section 3, and their use in
Sections 4 and 5.

2 Hatpoints and Hatsets

Since we shall frequently be taking finite intersections from a given sequence
of sets, the following notation will be useful:
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Definition 2.1 Given e, in a boolean algebra for o < 6, and s € [0]<¥:

e:/\ea ; ezl

aEs

Of course, this definition applies to sequences of sets, E, € P(X), where A is
N; then E = X.

Definition 2.2 When k < 0, a (6, ) hatfunction is a function ~ : [6]<¥ —
[K]<w .

Definition 2.3 If ~ is a (0, k) hatfunction, then x is a ~ point in the space
X iff, given neighborhoods U, (r € [k]<¥) of x:

[There are neighborhoods Vo, (v < 0) of x such that Vi C Us for each
non-empty s € [0]<*.

Since £ < 6, we may also regard ~  as a (6, 0) hatfunction; then note that
the definition of ~ point remains unchanged, since only the U, for r € [k]<“ are
used. The importance of considering the possibility x < 6 arises in the actual
construction of these points. For example, for a suitable ~ : [sT]<% — [k]<¥,
every ~ point is weak P.+-point (see Lemma 2.15). In Section 5, we shall
construct such points in u(x). The construction works because we construct
x € u(k) in 2 steps and there are only 2 possible input sequences (U, : r €
[k]<“) of neighborhoods (subsets of %) to consider, even though 2") may be
bigger than 2~.

Now, let us consider how the notion of “hatpoint” depends on the hatfunc-
tion. First, we point out (Lemma 2.7) that bigger hatfunctions yield stronger
hatpoints.

Definition 2.4 A sequence of sets, (U, : r € [k]<¥), is monotone iff r C p =
U, 2 U,

Lemma 2.5 In the definition (2.3) of “hatpoint”, it is sufficient to verify (1
only in the case of monotone sequences of neighborhoods, (U, : r € [k]<¥).

Proof. Replace each U, by ({U,:p Cr}. []

Note that the hatfunctions form a lattice in the obvious way:

Definition 2.6 Given two (0, k) hatfunctions™ ,
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C I < 4ffSC5S forall s € [0]<~.
[T\ ~ is the hatfunction —  defined by 5 =35 U 5.

Lemma 2.7 Given two (0, k) hatfunctions ~,

I < ~ then every — pointis a ~ point.
C Ik isa (7 \/ ~ )point, then x is both a ~ point and a ~ point.

Proof. Apply Lemma 2.5; the result is clear when applied to monotone (U, :
r € [k]<). [

At the bottom of the lattice is the zero hatfunction; more generally, if ~
has finite range, then every point is a ~ point. There is no top hatfunction,
but, in the case k = #, there is a top hatpoint, obtained by using the the
identity hatfunction; this is just Keisler’s [10] notion of good:

Definition 2.8 x is 07-good iff x is a ~ point, where ~ : [0]<¥ — [0]<¥ is
the identity function.

Keisler defined A-good to mean " -good for all 6 < .
Lemma 2.9 If x is 07 -good, then x is a ~ point for all (0,0) hatfunctions.

Proof. Given neighborhoods U, (r € [0]<¥) of x, let Wy, = U;. Applying
“good”, obtain V, (o < #) so that Viz C W, and hence Vg C Us, for each
non-empty s € [0]<“. []

We shall see (Lemma 2.13) that #7-good points are weak Py-points. Thus,
one way to construct an x € u(x) which is a weak P,+-point would be to make
the point k*"-good (i.e., use the identity (k*,x") hatfunction). But then we
have 2(°") possible input sequences (U, : r € [k*]<) to consider, and it is not
clear how to handle them all in only 2% steps. It turns out that if x is regular
and 2% = 2(5") then there is a xt*-good point in u(k) (see [1], Corollary
4.9). However, if  is regular and uncountable but below the first measurable
cardinal, and 2" = k™, then no point in u(k) is k™ -good (see [2], Theorem
2.8). Thus, if we want a ZFC result, we need to use a smaller hatfunction,
weakening “good” to “mediocre”.

Definition 2.10 x is a ™ -mediocre point iff x is a ~ point, where for some
(pg: B <KT):
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Lk : 35—k is 1-1.
C T [6H]°Y = [k]<Y and @» = {ps(a)} whenever a < f < k™.
S () whenever |s| # 2.

Lemma 2.11 x is a k" -mediocre point iff for some (g : f < k¥):

Lok : [ — kK is 1-1 and
[C—Qiven any k neighborhoods of x, (Ug : £ < k), there are k™ neighborhoods
of X, (Vo : o < k™), such that Vo, N Vg C Uypya) whenever a < f < k7.

We do not know whether this property depends on the particular sequence
(pg: B < KkT) used.

Lemma 2.12 Ifx € X is a weak P,-point which is also k™ -mediocre, then x
15 a weak P,+-point.

Proof. Given Y = {y; : £ € k} C X\{x}, we wish to show that x ¢ Y.
For £ € k, let Ug be a neighborhood of x disjoint from {y, : n < £}. Now, fix
neighborhoods V,, (o € k™) of x such that V,, NV} C Usps(a)-

Then for some o, V,, N Y = (): If not, then we can fix £ € k and F C x*
with |E| = kT such that Vo € E (ye € Va,). So, if @ < f and «, 8 € E, then
ye € Vo NVg, so (o) < €. Now, fixing f € E with |fN E| = k, we contradict
the fact that g is 1-1. []

Lemma 2.13 Ifx is k" -good in the T\ space X, then x is a weak P.-point in
X.

Proof. Observe that for all A < k: x is A™*-good, and hence (by Lemma 2.9)
AT-mediocre. Now, use Lemma 2.12, and show, by induction on \ < k, that
x is a weak Py+-point for all A < k. []

By Lemmas 2.12 and 2.13, a point which is both xT-good and x*-mediocre
is a weak Py+-point. To combine these into one (7, k) hatfunction, we first
pad the domain of the “good” hatfunction from Definition 2.8:

Lemma 2.14 x is k*-good iff x is a ~ point for the (k*, k)-hatfunction de-
fined by: §=sNk.

Now, we can apply Lemma 2.7 directly, taking the join of the “mediocre”
and the “good” (k™ k)-hatfunctions, to get:
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Lemma 2.15 For some (k*, k)-hatfunction, ~, every ~ point in every T}
space is a weak P,.+-point.

Note that we did not discuss hatsets in this section, but we do not have to.
In view of Definition 1.10, the notion of F' C X being a hatset in X is already
defined, and, collapsing F' to a point, Lemmas 2.12, 2.13, 2.14, 2.15 apply to
obtain various versions of weak P-set from versions of hatset.

The above discussion has been in arbitrary topological spaces. We now see
how it applies to Stone spaces. Given h : B — A and h* : st(A) < st(B), the
clopen neighborhoods of h*(st(.A)) are of the form N, where h(c) = 14. Thus,

Lemma 2.16 Suppose h : B — A and ~ is a (0,k) hatfunction. Then
h*(st(A)) is a ~ set in st(B) iff: Whenever (¢, : r € [k]<¥) is a sequence of
elements of B with each h(c,) =14, there are d, € B for a < 0 such that:

Hach h(d,) = 1.4.
[dl; < ¢s for each nonempty s € [0]<.

When we actually obtain such an A in Section 5, the construction will be
easier if we assume that the hatfunction is monotone:

Definition 2.17 A (0, k) hatfunction ~ is monotone zﬂ’@ =0 ands Ct=
sCt.

Lemma 2.18 Given a (0, k) hatfunction ~, there is another (0, k) hatfunc-
tion ~ such that the notions of ~ point and ~— point are equivalent, and
such that ~~ s monotone.

Proof. Let t = | J{5: s C t} for non-empty ¢, and 0=0. O

We conclude this section with some remarks on OK points, although we
shall not mention them again in this article. For more, see [5, 12, 16].

Definition 2.19 x is 0-OK in the space X iff x is a ~ point for the (6,w)
hatfunction defined by: s = {|s|}.

It is easy to see that every point is w-OK, and that the notion “0-OK” gets
stronger as @ gets bigger.

Lemma 2.20 If X is a 1) space and x € X 1s wi-OK, then x is a weak
P-point in X.
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Proof. Given Y = {y, : n € w} C X\{x}, we wish to show that x ¢ Y.
For n € w, let U,, be a neighborhood of x disjoint from {y,, : m < n}. Now,
fix neighborhoods V,, (o < wy) of x as in the definition (2.3) of ~ point. So,
whenever ay,...,«a, are distinct, V,, N---NV,, C U,. Then no y, can be
contained in infinitely many V,,, so some V,, is disjoint from Y. []

However, an wy-OK point need not be a weak F,,-point. For example, by
[12] there are always 2%-OK points in w*, but if one adds Cohen reals to a
model of CH, one obtains a model of ZFC in which 2% is arbitrarily large
but there are no weak P, -points in w*.

Lemma 2.21 FEvery wy-mediocre point is wy-OK.

Proof. Now, we must verify the definition of OK point for a given sequence
of neighborhoods of x, (U, : n € w). Thus, we must find neighborhoods
Vo (a0 < wy) of x so that V,, N---NV,, C U, whenever a < --- < a,. We
may (and shall) assume that Uy D U; D - --

Applying Lemma 2.11 to (U,42 : n € w), fix neighborhoods V,, (o < wy)
so that V, NV C Ugs(a)+2 whenever o < 8 < k™. We can also assume that
each V, C Uy, so that we need only consider n > 3. Then, since ¢, is 1-1,
Jjr=max{@a, () 1 <m<n}>n—-2,50V, N---NV,, CUj12 CU,. []

We do not know if the converse of Lemma 2.21 holds.

3 Matrices

We consider here matrices of subsets of x, and, more generally, of elements of
some boolean algebra.

Definition 3.1 A matrix in a boolean algebra B is a sequence M = (M® : i €
I) such that each M' C B. Then:

is independent with respect to an element ¢ € B iff by A---Abp Ac >0
whenever k is finite, each by € M* (0 = 1,...,k), and iy,... i are
distinct elements of I.

15 independent iff M is independent with respect to 1.

L_IAF C B is a filter, then M is independent with respect to F iff it is
independent with respect to every ¢ € F.

1s independent with respect to an ideal iff it is independent with respect
to the dual filter.
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Informally, we think of the M® as the “rows” of the matrix. Usually, each
row conforms to some configuration specified in advance. The most well-known
configuration is just a disjoint family:

Definition 3.2 The matrit M = (M" : i € I) is a |I]| X r disjoint matrix iff
each M' is an antichain in B of size k.

Thus, a 0 x  disjoint matrix may be indexed as {b} : i € 6 & n < &},
Where.each b, /\.blC = 0 whenever 1 # (. Independence of the matrix asserts
that by, A---Abk > 0 whenever the i1, ..., are distinct. Indgpendence with
respect to a filter F asserts that in addition, these b\ A---Abk ¢ T, where T
is the dual ideal. When 6 = 2%, B = P(k), and F = FR(k), the existence of
such a matrix is equivalent to the following well-known result on independent

functions:

Lemma 3.3 (Engelking and Kartowicz [8]) For any infinite k, there are
functions f; - k = k, fori < 2%, which are independent in the sense that when-
ever k is finite, i1, ...,1 < 2% are distinct, and 1y, ..., < Kk are arbitrary,

<k fu()=m& ... & fi,(§) =m}| =K .

Proof. Index the functions as {f4 : A C k}, and let f4 : E — &k, where
E ={(s,p) : s € [k]*¥ & p: P(s) — k}; note that |E| = k. Define fa(s,p) =
p(AN's). Independence is proved by noting that given distinct A;,..., Ay €
P(k), there are £ many finite s such that the A; Ns,..., A N s are distinct,
and for these, one can choose p so that each p(4,Ns) =n,. [

A direct application of Lemma 3.3, letting M’ = {f;"'{n} : n < x}, yields:

Lemma 3.4 In P(k), there is a 2% X k disjoint matriz which is independent
with respect to FR(K).

This improves the earlier theorem of Hausdorff [9] on the existence of 2"
independent sets, which yields a 2% x 2 disjoint independent matrix. We digress
to point out a well-known consequence of this matrix:

Corollary 3.5 (Pospisil [13]) |u(k)]| = 22",

Proof. Let {A} :i € 2 & n < 2} be a 27 x 2 disjoint matrix independent with
respect to FR(k). For each f : 2% — {0,1}, choose an ultrafilter x; € u(x)
such that all Al}(i) € Xy, and note that these x, are all distinct. []
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Pospisil’s paper does not explicitly mention matrices or Hausdorft’s paper,
but the construction of the independent matrix is embedded in his proof.

Lemma 3.4 is best possible, in that there cannot be x* disjoint subsets
of k. However, there are ™ almost disjoint subsets, and in fact, there is a
2% x k1 independent disjoint matrix in the boolean algebra P(k)/<k (Baker
[1], Corollary 4.15; for regular «, this was due earlier to Dow [5]).

Lemma 3.4 generalizes to:

Lemma 3.6 Let B be a complete boolean algebra and Z an ideal on B. Assume
that B has an antichain, {a¢ : £ < Kk}, such that the a¢ are distinct and each
ag ¢ Z. Then in B there is a 2° X k disjoint matriz which is independent with
respect to L.

Proof. With the f; as in Lemma 3.3, let b, = \/{a¢ : f:(§) =n}. [

Balcar and Franék [3] show that this matrix is sufficient to construct x*-
good points in st(B) when |B| < 2% proving Theorem 1.3. However, if we
wish to construct hatpoints for a general (6, k) hatfunction, we need a more
complicated matrix, each row of which is described by the following definition:

Definition 3.7 Let ~ be any monotone (0, k) hatfunction. If B is a complete
boolean algebra and G is a filter on B, with dual ideal J: a ~ step-family on
(B,G) is a collection of elements of B of the form

M = {e,:re[k]*“}U{a,:a <6}
U {agAhe :self]™ &rek™&sCr} ,

where the e, and a, satisfy:

S1. e, :r € [k} =1, and e, AN e, =0 for each distinct r,p € [k]<“.
S2. ag AN\/{er 7 25} e T for each s € [0]<“.
S3. agNe, & J for each s € [0 and r € [k]<¥ such that 5 C r.

Note that the step-family M is determined by the e, and the a,; we have
thrown in the ag A e, so that independence has the desired meaning. Sup-
pose M = (M® : i € I) is a matrix where each M" is a step-family, with
corresponding e’ and a’,. Then independence with respect to c¢ asserts:

(a/\eiﬁ)/\---/\(a/\ef.’;)/\c;«é() : (%)
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whenever k is finite, each §; C r, (¢ = 1,...,k), and iy,..., i are distinct
elements of 1. It is not necessary to consider the a, (since ag > aF A es) or
the e, (since e, > ag) A € and (by monotonicity, Definition 2.17) h=0cC r).

(S1) says that the e, for r € [k]<*, form a partition of unity; the e, # 0 by
(S3) (setting s =), so § =0 C r). Conversely, if § = k and ~ is the identity
hatfunction, which is what we need for a x™-good point, then an antichain
yields a matrix of step-families:

Lemma 3.8 Let B be a complete boolean algebra with an ideal T and dual
filter F. Assume that B has an antichain, {a¢ : £ < K}, such that the a¢ are
distinct and each ag ¢ T. Let ~ be the identity (k, k) hatfunction. Then there
is a matriz Ml = (M" : i € 2%) in B such that each M® is a ~ step-family on
(B,{1}), and M is independent with respect to F.

Proof. By Lemma 3.6, let N = (N : i € 2%) be a 2 x x disjoint matrix
which is independent with respect to Z. Index each row N as {e : r € [s]<“};
so, the €’ are disjoint as r varies. Since B is complete, we can expand the
el and assume that \/{e’ : r € [k]<“} = 1, so that (S1) holds. Then, define
a, = /e, : aer}. Now, aig=\/{e] : 7 D s} for each s € [£]<“, so that (S2)
holds with J = {0}. If s C r, then a/z A€} = el # 0, so (S3) holds and ()
above reduces independence of M to independence of N.  []

The usual constructions of k*-good ultrafilters in the literature [3, 4, 11]
work directly from the 2* x x independent disjoint matrix obtained by Lemmas
3.4 or 3.6, but a step like the above proof is embedded somewhere in the
argument. Here, we shall present a general proof which constructs ~ points in
boolean algebras, provided that the correct matrix exists for ~ ; then, Lemma
3.8 yields the correct matrix for the “good” hatfunction whenever B has an
appropriate antichain.

In the most general situation which we shall consider here (see Theorem
5.6), we shall have two filters G C F on the complete boolean algebra B,
with a matrix of step-families on (B,G) which is independent with respect to
F. Then st(B/F) C st(B/G) C st(B), and we produce points x € st(B/F)
which are hatpoints in st(B/G). For example, with B = P(k), G = {1}, and
F = FR(k), Lemma 3.8 will allow us to construct an x € st(B/F) = u(k)
which is kT-good, and hence a weak P,-point, in st(B8/G) = k. x cannot be
a weak P.+-point in Sk; if we want x to be a weak P,+-point in u(k), we let
F =G =FR(r)andlet ~ be the appropriate hatfunction (see Lemma 2.15);
the same Theorem 5.6 yields a weak ~ point because the appropriate matrix
exists by the following result, which we quote from [2]:
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Lemma 3.9 Assume that k is reqular and ~— is any monotone (k*, k) hat-
function. Then there is a matric M = (M" : i € 2¥) in P(k) such that each
Mt is a ~step-family on (P(k), FR(k)), and M is independent with respect
to FR(K).

We do not know if this lemma is true for singular . If it is, then the results
proved in this article for regular x hold also for singular x, since regularity is not
used in the construction of hatpoints or hatsets in Section 5. The construction
will use the following consequence of the definition.

Lemma 3.10 A step-family as in Definition 3.7 satisfies also:

Si. amNe ¢ T iff sCr.
S5. am <z \/{er : v D5} for each s € [0]<~.

Note that the monotonicity of ~ comes in naturally here: If s C ¢, then
ag) > ag; so, if in addition 5 ¢ 1, then setting r = ¢ would contradict (S4).

Also, note that mglz)ton/icicy do/es\not imply that ~ preserves U. We
might well have r := {a} U {8} G {a,3}. Then, modulo J, a, and as meet
e, but a, A ag does not. In fact, this does happen with the monotone version
of the (K™, k)-hatfunction used for weak P,+-points (Lemmas 2.15 and 2.18).
Thus, for general step-families, we should not expect the situation occurring
in the proof of Lemma 3.8, where each «a, is simply a join of some of the e,.

In this article, step-families for (#,x) hatfunctions will be applied only
with § = k (using Lemma 3.8) and 6§ = k™ (using Lemma 3.9). However, the
construction in [12] of 2%-OK points in w* using independent linked fam-
ilies could be presented as a construction using an independent matrix of
2% step-families, where ~ is the (2% w) hatfunction from Definition 2.19
(made monotone by Lemma 2.18).

4 The Sikorski Extension Theorem

In this section, we isolate some basic features of the inductive construction of
a homomorphism from B to A. In Section 5, we apply this to the construction
of hatpoints and hatsets. Our inductions always follow the pattern:

Chbk C© C Coevvvns C C C Cuyy Coveees

S

AO - Al Cevnn C AH - AM-H Covvnns
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Definition 4.1 If A, B are boolean algebras: A A-homomorphism sequence
from B to A is a sequence (C,, Ay, hy : 1 < A) such that:

P1. C, is a subalgebra of B, A, is a subalgebra of A, and h, :C, — A,.
P2 If pn<v then A, C A, C,CCy, and hy, =h, [ C,.
P3. For limitv: C, =, ,C, and A, =, Ay

u<v

Thus, the construction is determined at limit stages. All of the work takes place
at successor stages, where, to avoid excessive subscripts, we always display the
extension problem as:

Here, we are given h = h, and C = C,, and we have to define C = Cu41 and
h= hy+1 to accomplish a desired task (so, A, =ran(h) and A,;; = ran(h)).
The simplest task is just to make sure that at the end, we get a homomorphism
defined on all of B. Then, at a successor stage, we are given some y € B\C,
and we want to extend to get y &€ C. If Ais complete, this can always be
done by Lemma 4.4, which is the main lemma behind the Sikorski Extension

Theorem (see [15], Theorem 33.1).

Definition 4.2 If S is any subset of the boolean algebra B, then ((S)) is the
subalgebra finitely generated by S.

Note that if S = C U {y}, where C is a subalgebra, then the elements of
(8)) are all of the form (y A ¢1) V (¥ A ¢3), where ¢, ¢ € C.

Definition 4.3 Suppose that C is a subalgebra of B and h is a homomorphism
from C into the complete boolean algebra A. For y € B, let

ht(y) = /\{h(c) :c€Cand ¢ >y} h™(y) = \/{h(c) cce€Candc<y}.

Lemma 4.4 (Sikorski) With A, B,C,h,y as in Definition 4.3, and z any
element of A: h™(y) < z < h*(y) iff there is an extension of h to a homomor-
phism h from (C U {y})) into A with h(y) = z. In this case, h is unique, and
is defined by:

h((y Ae)) V(Y Aer)) = (2 Ah(er)) V (2" Ab(cr))

for all ¢1,c0 € C.
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For a proof, see [15], p 142. Applying this inductively:

Theorem 4.5 (Sikorski Extension Theorem) Suppose that C is a subal-
gebra of B and h is a homomorphism from C into the complete boolean algebra
A. Then h can be extended to some h : B — A.

Proof. List B as {b, : © < A}, and construct h using a A-homomorphism
sequence. Here, Cy = C, hg = h, and we make sure that b, € C,,41. []

Now, suppose that we want & to be onto, so that A~ : st(A) < st(B). In
many cases this can be done with the method of independent matrices, obtain-

ing the following lemma, which is the abstract version of Efimov’s Theorem
1.9:

Lemma 4.6 Suppose that A,B are boolean algebras with A complete and
|A| < 6, and suppose that in B, there is a 6 x 2 independent disjoint ma-
triz (M? :i < 6). Then there is a homomorphism h from B onto A.

Proof. Here M' = {c!, ¢}, where ¢, A¢; = 0. We may also assume, expanding
the ¢}, that ¢j vV ¢t = 1. Let C = (J; M")). List A as {a; : i < 6}, and define
h :C — A by h(c)) = a;. By independence (C is the free algebra on 6
generators; see [15], §14), this really defines a homomorphism. Now, extend h
to B by Theorem 4.5. []

Proof of Theorem 1.9. Apply Lemma 4.6. The appropriate matrix exists
by Lemma 3.4. []

Now, if, in Lemma 4.6, we want i : st(A) < st(B) to embed st(.A)
into st(B) as some sort of a hatset, then we must work harder. In these
constructions, the use of the matrix is interleaved with the inductive definition
of the homomorphism. We take this up in Section 5, and conclude this section
with a more elementary remark:

In Lemma 4.4, say we replace y € B by a set ) C B, and we want to extend
h to h on (CUY)). Of course, this is possible, by Theorem 4.5, but it is not so
simple to describe the possibilities for h I Y. However, in the following special
case, we can send all of Y to 1:

Lemma 4.7 With A,B,C,h as in Lemma 4.4, suppose Y C B is such that
R (y1 A~ Ayp) = 1 for all finite n and all yy,...,yn € Y. Then there is a
unique estension of h to a homomorphism h from (C U Y)) into A such that
ran h = ran h and E(y) =1 forallye).
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Proof. We just describe ﬁ; it is then easy to verify that it works. Fix a
b€ (CuUY)), and then choose yi,...,y, € Y such that b € (CU{y1,...,yn}).
Write b in disjunctive normal form as b = \/f(cf Ay(f)), where each ¢; € C, f

ranges over all functions f : {1,...,n} — {0,1}, and y(f) = y{(l) A Ayl™,
where yj = y, and y; = (y¢)’. In particular, if 0 denotes the identically 0

—,

function, then y(0) = y1 A--- Ay,. Let h(b) = h(cz). [

5 Hatsets in Stone Spaces

We now take up the problem of embedding st(A) as a ~ set. First, we ex-
pand on the general framework outlined in Section 3. We start with com-
plete boolean algebras A, B, and two filters G C F on B. Then st(B/F) C
st(B/G) C st(B), and we wish to embed st(.A) into st(B/F) so that it is a
hatset in st(B/G). This embedding will be via an h*, where h : B/F — A;
equivalently, h : B — A with h(F) = {1}. This will be done using the in-
ductive scheme described in Section 4. Let Z be the ideal dual to F. Now,
we start off with Cop = (F)) = FUZ, and hg : Co - Ag = {0, 1} defined by
ho(F) = {1} and ho(Z) = {0}. We work with the aid of a matrix which is kept
“independent” in the following sense, due to Simon [16]:

Definition 5.1 IfM is a matriz in B, C is a subalgebra of B, and h : C — A,
then M s strongly independent with respect to h iff M is independent with
respect to every ¢ € C such that h(c) > 0.

At the start of the induction, strong independence with respect to hy means
that M is independent with respect to F, and the appropriate M will be given
by Lemma 3.8 or Lemma 3.9.

Now, we consider a homomorphism sequence (Definition 4.1) augmented
by the use of a matrix.

Definition 5.2 Let M = (M":i € I) be a matriz in B. A A\-matrix sequence
from B to A is a sequence (Cp, Ay, by, Iy 2 0 < A) such that (Cpy Ay, by o pp < A)
1s a homomorphism sequence and:

Pl Iy=1.

P5. If p<v thenlI, 2 1,.

P6. M | 1, is strongly independent with respect to h,.
P7. For limitv: I, =(,., Ly

pu<v
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Again, there is no problem at limits, and we use the matrix at successor
stages to achieve the goals of the construction. We first modify the extension
lemmas, 4.4 and 4.7, to include the matrix:

Lemma 5.3 Suppose that C is a subalgebra of B and h is a homomorphism
from C into the complete boolean algebra A. Assume that the matriz M =
(M i € 1), is strongly independent with respect to h. Fiz any j € I and let
J=1\{j}. Then:

1. Ifbe M?, then h*(b) = 1.

2. Assume that bye € M7 and e Nb=0. Fiz any z € A. Then h*(b) =1,
h=(b) = 0, and if h : (CU{b}) — A estends h with h(b) = z (as in
Lemma 4.4), then ML [ J is strongly independent with respect to h.

3. Fix' Y C B. Assume that for all finite n and all yy,...,y, € Y, there are
be M’ and c € C such that h(c) =1 and y; A+ ANy, > bAc. Then
W A Ayn) =1 for each yy,...,yn €Y, and if h: (CUY) — A
with h(Y) = {1} (as in Lemma 4.7), then M | J is strongly independent
with respect to h.

Proof. (1) is clear by strong independence, as is h~(b) = 0 in (2). To prove
strong independence of M [ J in (2): Fix distinct ji,...,jr € J, and fix
dp € Mt (( = 1,...,k). Assume that h((b A 1)V (0 A c3)) > 0, where
c1, ¢ € C. We must show that dy A---Adp A (DA e1) V(Y Aez)) > 0. Since
R((bAc) V(B Acs)) = (2 Ah(c1)) V (2 A h(cs)), there are two cases:

Case 1. z A h(c1) > 0. Then h(c;) > 0,80 dy A---Adg AbA ¢y > 0 by
strong independence of M with respect to h.

Case 2. Z' A h(ey) > 0. Then h(cy) > 0,80 dy A--- Ad ANV AN ey >
dl/\---/\dk/\e/\cz > 0.

To verify AT (y1 A+ -Ay,) = 1in (3), fix 2 € C with 2A(y1 A+ - -Ay,) = 0; we
must show that h(z) = 0. Fix b, ¢ as in the hypothesis of (3). Then bAzAc =0
and b € M7, s0o h(z A ¢) = 0 by strong independence. Then, h(c) = 1 yields
h(z) = 0.

To prove strong independence of M [ J in (3): Fix w € (C U Y)) with
h(w) > 0 and fix distinct ji,...,j5 € I\{j} and b, € Mt (£ = 1,...,k);
we must show that by A --- A by Aw > 0. But, h(w) > 0 implies that we
can find some yi,...,y, € Y and z € C such that w > 2z Ay A--- Ay, and
h(z) = h(z Ayir A -+ Ayn) > 0 (see the proof of Lemma 4.7). Fix b, c as in
the hypothesis of (3). Then h(z A ¢) = h(z) > 0, and (z A ¢) € C, so strong
independence of M with respect to h yields by A---Ab, AbA zAc>0. Now,
w>2AbAc,soby N---Aby Aw > 0. []
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Lemma 5.3.2 tells us how to make h : B — A onto in our inductive con-
struction. Assuming that each row of the matrix contains a pair of disjoint
elements, we can, at some stage u, choose an arbitrary z € A and put z into
the range of h,i, sacrificing one row. However, if y is an arbitrary element
of B (not a matrix element), it is a bit tricky to put y into the domain. We
cannot simply quote Lemma 4.4, as there is no guarantee that the matrix will
stay strongly independent. However, by the following argument, due to Simon
[16], we may put y in the domain if we sacrifice |ran(h,)| rows of the matrix.

Lemma 5.4 Let A,B,C,h,M be as in Lemma 5.3 and fix y € B. Then there
is an extension of h to h : (CU{y}) — A and a J C I with |[I\J| <
max(| ran(h)], o) such that M | J is strongly independent with respect to h.

Proof. Call d € ran(h) bad iff for some finite k, some ¢ € C, some distinct
i1,...,i, € I, and some by € M% (¢ = 1,...,k), we have h(c) = d and
cANYyANby A---ANby =0. So, 0is bad, and the set of bad elements is closed
downward in ran(h). Note that the lemma requires us to set h(y) Ad = 0
for each bad d (otherwise, h(c A y) = h(y) Ad > 0 would contradict strong
independence).

List all the bad elements as {d, : @ < 6}. For each «, choose k,, cq,
ity ,ip ,and b, ... b as in the definition of “bad”. Let J =T\ {i} : a <
B&1<l<ky} Leta=(V,pda) = Noey(da) € A. We shall set h(y) = a,
applying Lemma 4.4, but first we must verify that A~ (y) < a < h*(y).

To prove h™(y) < a, it is sufficient to fix z < y with z € C and fix « and
show that h(z) < (d,)'. From z <y we get co A 2 ADF A --- AbY = 0, where
k = ko Since (cq A z) € C, strong independence yields h(c, A z2) = 0, so
h(z) < (h(ca))" = (da)".

To prove a < h*(y), we fix z > y with z € C, and show h(z) > a. From
z >y weget 2 Ay =0,s0 h(z') is bad (and the corresponding k can be 0), so
h(Z") = d, for some «, and hence h(z) = (d,)" > a.

Now, to verify strong independence, fix w € ((C U {y}) with h(w) > 0,
and fix distinct j1,...,7, € J and elements b, € M’ We must show that
wAby A---Ab. > 0. Say w= (uAy)V (vAY'), where u,v € C. There are two
cases: N

Case 1: h(u Ay) > 0. That is, h(u) Aa > 0. Then h(u) is not one of the
dw, S0 h(u) is not bad, so u Ay Aby A---Ab, > 0.

Case 2: h(vAy') > 0. That is, h(v) AV, do > 0. Fix o with h(v) Ady > 0,
so h(v A ¢q) > 0. By strong independence of M with respect to h, we have
VACGADFA- - - ADFAby A~ - -Ab, > 0, where k = k,. But also c, AyADTA---AbEt =
0,50y > co ANOEA---ADY, and hence v Ay Aby A---Ab. > 0. []
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Finally, while we are building h : B — A, we must ensure that h*(st(A))
becomes a hatset. To do this, we need to obtain the condition in Lemma 2.16,
but, bear in mind that h*(st(.A)) need only be a hatset in st(B/G), not in
st(B). So, we phrase the extension lemma as follows:

Lemma 5.5 Let A,B,C,h,M,j,J be as in Lemma 5.3. Let ~ be any mono-
tone (0, k) hatfunction. Assume that B is complete and G is a filter on B, with
dual ideal J C ker(h). Assume that M7 is a ~ step-family on (B,G), as in
Definition 3.7. Let {(c, : r € [k]<¥) be a sequence of elements of C with each
h(c,) = 14. Then there are d, € B for a < 0 and an extension of h to some
h:C=(CU{dy:a<8})— A so that:

[ Fach h(d,) = 14,
[dly <7 cs for each nonempty s € [0]<,

M [ J s strongly independent with respect to 7», and ran h = ran h.

Proof. We may assume that the sequence (¢, : r € [k]<¥) is monotone by
replacing each ¢, by A{c, : p C r}, as in the proof of Lemma 2.5. Now, define

da:aa/\\/{c,«/\er:r € [k]<¥} .

Then, applying S5 (Lemma 3.10), S1, and monotonicity of (¢, : r € [k]<¥):

ds = a/\\/{c,n/\er:re[/i]@}
<7 \/{er:rg/s\}/\\/{cr/\er:re[/ﬁ]“"}
= \/{cr/\er:rg/s\}§\/{c,ur2§}zc§.

Observe that dg > ag A es A ¢z, and that ag A eg € M?. We thus get h by
applying Lemma 5.3.3, with Y = {d, : @ < #}. As in Lemma 4.7, which was
used by Lemma 5.3.3, we get ranh =ranh. []

We can now put this all together:

Theorem 5.6 Let B be a complete boolean algebra of size 2%, with two filters,
G C F on B (sost(B/F) Cst(B/G) Cst(B)). Let ~ be any monotone (6, k)
hatfunction. Assume that Ml = (M" : i € 2%) is a matriz which is independent
with respect to F, such that each M is a ~ step-family on (B,G). Then for
every complete boolean algebra A with |A| < 2%, there is an h : B — A such

that h(F) = {1} and such that h*(st(A)) C st(B/F) is a ~ set in st(B/G).
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Proof. We follow the pattern described in the beginning of Section 4. We
construct h by a 2® matrix sequence (C,, Ay, hy, I, < 2%). Cy = (F)),
Ay ={0,1}, ho(F) = {1}, and I, = 2~.

There are three tasks to be accomplished: making h*(st(.A)) a hatset, mak-
ing h onto A, and making h defined on all of B. These are accomplished by
Lemmas 5.5, 5.3.2, and 5.4, respectively. When we apply one of these lemmas
at step p, we set C =C,, h = h,, and I = I, and use the appropriate lemma
to obtain C, 1, = 5, hys1 = E, and [,.; = J. Which one we apply at step p
will depend on px mod 3.

We inductively assume that |I\I,| < max(|u|,Ro), so that in particular I,
is never empty, which is important when we apply Lemmas 5.5 and 5.3.2. But,
since the use of Lemma 5.4 eliminates |A,| rows of the matrix, we must also
assume inductively that |A,| < max(|u|,R). We must exercise some caution
here; we cannot assume that |C,| < max(|x|,®), since as soon as we apply
Lemma 5.5, |C,| will grow to size ¢, which might even equal 2*. Fortunately,
our extension lemmas bound the size of the range.

To ensure that h*(st(.A)) is a hatset: Before beginning the construction, fix
ct € B for p < 2" and p = 0 (mod 3), such that (c¥ : r € [k]<¥) is a sequence
of elements of B and such that each such sequence is listed cofinally often in
2%, At stage p with =0 (mod3): If each ¢# € C, and h,(c¥) = 1, we apply
Lemma 5.5 at this stage to ensure this instance of hatpoint, so [I,\I,4+1| = 1.
If not, then let C,y1 = Cy, hyy1 = hy, and 1,4 = I,,. Note that in either case,
A=A,

To ensure that A is onto: Before beginning the construction, list A as
{a, :p < 2" & pp=1 (mod3)}. Then, at stage p with o =1 (mod 3), apply
Lemma 5.3.2 to make sure that a,, € A, 1. Again, |I,\I,+1| =1. A1, which
is obtained via Lemma 4.4, is generated from A, and the one element a,, so
that |A,| < max(|pl,Ro) implies that | A, 1] < max(|u|,Rg) = max(|p+1|,Ro).

To ensure that h is defined on all of B: Before beginning the construction,
list B as {b, : p < 2" & p =2 (mod3)}. Then, at stage p with 1 = 2 (mod 3),
apply Lemma 5.4 to make sure that b, € C,+1. Assume, inductively, that
| A, < max(|p|,No) and |I,| < max(|p|,Ro). Again, A, is generated from
A, and one element, so that |A,1| < max(|p + 1],RXg). Also, |1, \ 41| <
max(| A, [, No), 50 [T\ Tyt < max(ju+ 1], %), [

In particular, we may apply this to the “good” hatfunction, where the
matrix can be constructed directly from a disjoint family (see Lemma 3.8);

G = {1} here:
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Corollary 5.7 Let B be a complete boolean algebra of size 2. Let T be an
ideal on B with dual filter F, and assume that B has an antichain, {a¢ : £ < K},
such that the a¢ are distinct and each agc ¢ Z. Let A be any complete boolean
algebra such that |A| < 2%. Then there is an h : B — A such that h(F) = {1}
and such that h*(st(A)) C st(B/F) is a kT -good set (and hence a weak Py-set)
in st(B).

Theorem 1.3 is immediate from this, as is Theorem 1.12.1. To prove The-
orem 1.12.2, we apply Theorem 5.6 with B = P(k) and F = G = FR(k),
where, by Lemma 3.9, we have the correct matrix for every monotone (k" k)
hatfunction. In particular, we can use a hatfunction such that hatsets are
weak P,+-sets; note that by Lemma 2.18, we can replace every hatfunction by
a monotone one. We thus have the following corollary, from which Theorem
1.12.2 follows immediately:

Corollary 5.8 Let k be any regular cardinal and A any complete boolean al-
gebra with |A| < 2%, Let ~ be any (k*, k) hatfunction. Then st(A) can be
embedded into u(k) as a ~ set.

As pointed out in the Introduction, we have now proved Theorem 1.14.1.
However, we have not yet proved Theorem 1.14.2, except in the case 2" = 2+,
Here, we wish to construct £ = {x5 : 6 < K1} C u(k) such that F is k-fuzzy
in u(k). We know, by Corollary 1.7, that there isa D = {y; : § < k™} C
st(D,+) which is k*-fuzzy in st(D,+); so each ys is a weak P,+-point, and D
is dense in itself. Now, |D,+| = 2(57) 50 if 2% = 257) we can insert st(Dy+)
into u(k) as a weak P,+-set. In the general case, we must prove a variant of
Theorem 5.6 which applies with A of arbitrary size.

With any complete A, we can certainly follow all the steps in the proof of
Theorem 5.6 and produce a homomorphism h : B — A; we just cannot make it
onto if |A| > 2%. If A = ran(h), we have h: B — A, and then h* : st(A) < B.
So, if we have D = {y; : 6 < Kt} C st(A), then we will have ultrafilters
¥s = ys N A € st(A), and then x5 = h*(y;) and E = {x; : 6 < s} C st(B).
Note that y5 = i*(ys), where i is inclusion, i : A < A. If D is dense in itself,
then £ will be dense in itself by continuity of 7* and h*, provided that the x;
are distinct; that is, A must be large enough to distinguish the ys;. We can,
for 6 # [, fix an element 255 € y;\ys (WLOG, the y; are all distinct). It is
easy to modify the proof of Theorem 5.6 to make sure that the k™ elements
25,6 all wind up in ran h.

Also, the proof of Theorem 5.6 easily makes h*(st(A)) a hatset, and hence
a weak P, +-set, as in Corollary 5.8, assuming that B has the correct matrix.
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Thus, the x5 € h*(st(A)) will not be limits of sets of size < k coming from
outside of h*(st(A)). However, they might be limits of such sets coming from
inside h*(st(A)), since the y; might fail to be weak P,+-points in st(A) even
if the ys are Weali P,.+-points in st(.A). To make sure that the y; are weak

P.+-points in st(A), we generalize Theorem 5.6 to allow a closure operation:

Theorem 5.9 Let B,G,F,k, ~ ,M, A be exactly as in Theorem 5.6, except
that we do not assume |A| < 2%. Let ® be a family of 2% functions, with
o A® = A for each ¢ € ®. Then there is a subalgebra A C A and an
h: B — A such that A is closed under all the p € ®, and such that h(F) = {1}

and h*(st(A)) Cst(B/F) is a ~ set in st(B/G).

Proof. Exactly as for Theorem 5.6, except that to ensure that ran(h) is
closed under ®: Before beginning the construction, list 2% x 2% as {(f(u), (1)) :
p<2%& p=1(mod3)}, with each g(p) < p. At each stage v < 2%: list the
closure of A, under ® as {a¢ : ¢ < 2"}. Then, at stage p with 4 =1 (mod 3),

apply Lemma 5.3.2 to make sure that agf’((z)) €A, [

Proof of Theorem 1.14.2. Let the ys; and 255 € ys\ys be as described
above, with A = D+, B = P(k) and F = G = FR(k); ~ is any (k1, k)
hatfunction such that all ~ sets are weak Py+-sets (see Lemma 2.15). Assume
that among the functions in ® are the functions with constant value z54; then
the ys will be distinct.

In addition, we assume that the y; are weak P,+-points in st(.A4) because
they are ~ points; in fact, they can be k*T-good (by Corollary 5.7), which
implies ~ point (by Lemma 2.9). So, given a sequence @ = (u, : r € [k]<¥)
of elements of y;, there are elements v, = v2(@) € y; such that vz < uz for
each non-empty s € [x7]<“. Now, @ can be coded as an element of A" (since
[k]<“| = k), so that we may view each v° as a function from A* — A. Making
sure that these functions are all in ® ensures that the y; are also ™ points,
and hence weak P,+-points, in st(A). []

We remark that Theorem 5.9 could be viewed in the context of elementary
submodels (see Dow [6]). That is, we can get A = AN N, where N is a k-
closed elementary submodel of the universe with |N| = 2%. Then, in proving
Theorem 1.14.2, we just used closure of N under the Skolem functions needed
for the argument to work.
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6 Avoiding P-points

This article has emphasized weak Pg-points. If k is a measurable cardinal and
x € u(k) is a k-complete ultrafilter, then x is a Pe-point in fk. If x is a
normal ultrafilter, then it is also a P,+-point in u(x). Inductive constructions
like the ones in Section 5 cannot be guaranteed to generate one of these points.
However, they can be guaranteed not to generate one of these points. Specific
instances of this have been pointed out in the literature. By [12], there are
weak P-points in w* which are not P-points. By [11], there are good ultrafil-
ters on x which are countably incomplete, which is important for their use in
model theory (see §6.1 of Chang and Keisler [4]). Here, we show that these
constructions in [4, 11, 12] are part of a general procedure which always works.

One way to build a non-P-point x € st(B) is to fix some decreasing w-
sequence by > b; > -+ - and put all the b, into x, together with the complement
of any element which is below all the b,. The following lemma lets us integrate
this remark into our constructions of weak P,-points.

Lemma 6.1 Let B be a boolean algebra with o filter F and a matric M =
(M : i € I) which is independent with respect to F. Assume that J C I and
dj,e; € MJ for j € J with d; Ne; =0. Let F be the filter generated by F, all
the d;, and all the w € B such that w' <z d; for infinitely many j € J. Then
F'is a proper filter and ML | (I\.J) is independent with respect to F1.

Proof. We must show that b;, A ---Ab;, Ac > 0 whenever iy,...,7, are
distinct elements of I\J, each b;, € M% ({ = 1,...,7), and ¢ € F!. By
definition of FT, we have ¢ > dj, A--- Ady, Awy A -+ Awy, where ky,... k,
are distinct elements of J and each (w;)' <z d; for infinitely many j € J.
Now, choose distinct jy,...,j € J\{ki,...,ks} such that each (wy)" <z dj,,
so that wy > ey,, and then choose u, € F such that w, > ey, A uy. Then
bz-l/\---/\bz-r/\c Z bil/\"'/\biT/\dkl/\"'/\dks/\ejl/\"'/\Gjt/\Uj/\"'/\Uj >0
by independence of Ml with respect to F. []

So, in Theorems 5.6 and 5.9, where we started with filters G C F on B, we
now have G C F C FT, and hence st(B/FT) C st(B/F) C st(B/G) C st(B).
As long as J is infinite in Lemma 6.1, each point of st(B/F ") will be a non-P-
point in the space st(B/F), and hence also in the larger spaces st(B/G) and
st(B). Here, I = 2%, and as long as |I\J| = 2¥, we can replace F by F ' in the
theorem to get our hatset inside st(B/FT). Thus, we have:

Theorem 6.2 In Theorems 5.6 and 5.9, we can obtain h so that no point of

the ~set (h*(st(A)) in 5.6 and h*(st(A)) in 5.9) is a P-point in st(B/F).
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