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whose domain (the g-measurable sets) is some o-algebra of subsets of X.
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Abstract

We consider axioms asserting that Lebesgue measure on the real
line may be extended to measure a few new non-measurable sets.
Strong versions of such axioms, such as real-valued measurability, in-
volve large cardinals, but weak versions do not. We discuss weak
versions which are sufficient to prove various combinatorial results,
such as the non-existence of Ramsey ultrafilters, the existence of ccc
spaces whose product is not ccc, and the existence of S- and L- spaces.
We also prove an absoluteness theorem stating that assuming our ax-
iom, every sentence of an appropriate logical form which is forced to
be true in the random real extension of the universe is in fact already
true.
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1 INTRODUCTION. 2

We are primarily interested in finite measures, although most of our results
extend to o-finite measures in the obvious way. By the Axiom of Choice
(which we always assume), there are subsets of [0, 1] which are not Lebesgue
measurable. In an attempt to measure them, it is reasonable to postulate
measure extension axioms of the following form:

Definition 1.1 If 0 is any cardinal and p is a measure on the set X, then
MEy(X,p) holds iff whenever we choose a family £ of § or fewer subsets of
X, there is a measure v on X which extends p such that each set in & s
v-measurable. M Ey denotes M Fg([0, 1], X), where X is Lebesque measure on
[0, 1].

For § < w, M Ey(X, 1) holds for every finite measure g, but for infinite 6,
it can depend on (X, u) and the underlying model of set theory. Regardless
of the set theory, there is always some separable atomless probability space
(X, u) such that M E,(X,u) is false (by Theorem 4 of Grzegorek [10]; see
also §6). In this paper, we are concerned mainly with M Fy, not arbitrary
MEy(X, ), but in applications of M Fy, it is often convenient to replace [0, 1]
by 2% or by [0, 1]¥ (with the usual product measure). This is justified by the
following:

Proposition 1.1 Let p be a finite Borel measure on the compact metric
space X. Then M Ey implies M Eg(X, ). Furthermore, M Eq is equivalent
to MEg(X,p) unless pu is a countable sum of point masses.

Proof: To derive M FEg(X,u) from MFEg, let f : [0,1] — X be a Borel
measurable function such that p is the induced measure, ¢ - Af~!, where
¢ = u(X). Then we can extend p to measure a family € of subsets of X by
extending A to measure {f~!'(F) : £ € £}. Conversely, if 4 is not a sum of
point masses, we can fix a closed K C X of positive measure such that p
restricted to K is atomless. We can then derive M Ey from M Ey( X, 1) using
a function ¢ : K — [0,1] such that A = ¢ ug™", where c = 1/u(K). =

Note that if u is a countable sum of point masses, then M Fy(X, u) is a
triviality, since then every subset of X is p-measurable.
Now, consider M Ky for various infinite §. M E,, is false under CH or M A

(for numerous reasons — see below). Nevertheless, M E,, and also M E,, are
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consistent with ¢ (the continuum, 2¥) being wy. In general, for uncountable
0, one can get M Fy together with ¢ = §7:

Theorem 1.2 (Carlson [3]) Assume that in the ground model V',  is some
infinite cardinal with 0 = 0. Let V|G| be formed from V by adding 0 or
more random reals. Then M FEyg holds in V[G].

In particular, if C'H holds in V' and § = wy, then we get a model of
ME,, plus ¢ = wy. More generally, for regular § > w, we can get models
of M FEy with either ¢ = 8% or ¢ > 6%, Furthermore, for small § (e.g., below
the first weakly Mahlo cardinal), M FEy implies M Ay for the partial order
which adds one random real (see Corollary 2.9), and hence ¢ > 0%. Carl-
son’s paper [3] discusses applications of M Fy(2", 1) for various uncountable
cardinals k (where p is the usual product measure) to normal Moore space
problems, whereas our paper concentrates on applications of M Fy (that is,
MEy(2°, 1)),

The emphasis of this paper is on small 8, but we remark briefly on M FE,
for larger values, which leads naturally to large cardinal axioms. By the
method of Solovay [22] (see also [3]), the assumption of M FEy plus ¢ < 6 is
equiconsistent with a weakly compact cardinal . By Ulam [26], the existence
of a real-valued measurable cardinal is equivalent to what one might call
ME.,; that is, Lebesgue measure can be extended to measure all sets of
reals simultaneously. So, by Solovay [22], M F., is equiconsistent with the
existence of a (two-valued) measurable cardinal. For a discussion of PM E A,
which involves extending measures on various 2%, see Fleissner [7].

We turn now to applications of M Fy. These are all statements which hold
in random real extensions, and would thus would be easy to prove from a real-
valued measurable cardinal, using Solovay’s Boolean ultrapower method [22],
but require some care to derive from the weaker M Ey. In §3, we establish an
absoluteness theorem which says that, assuming M Ejy, if a statement ¢ of a
certain simple logical form is true about # in random real extensions, then
@ is already true in V. The form of ¢ enables us to produce in V' objects
which can be constructed from a single random real. Some applications are
given by the following theorem.
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Theorem 1.3 MFE,, implies
1. there are ccc topological spaces X and Y such that X x'Y is not cce;
2. there are strong S- and L-spaces;

3. there is an uncountable Ni-entangled set.

As usual, cce denotes the countable chain condition. By Galvin [9], CH
implies that cce is not productive, whereas M A + ~C'H implies that ccc is
productive (see, e.g., Theorem 2.24 of [15]). As is well known (see, e.g.,
Exercise 8.C1 of [15]), productivity of ccc is the same whether we deal with
topological spaces or with partial orders, and work on productivity of cecc
usually deals with the partial orders directly.

Roitman showed [20] that in random real extensions of V, ccc partial or-
ders P and Q, with P x @ not cce, may be constructed from a single random
real. In the same paper, she constructed strong S- and L-spaces from a sin-
gle random real. The fact that uncountable entangled sets are added by a
random real is due to Todorcevi¢ (see page 55 of [25] for a proof). It follows
almost immediately from these facts and Solovay’s Boolean ultrapower con-
struction [22] that the conclusions to Theorem 1.3 follow from a real-valued
measurable cardinal; see also Fremlin [8] for a discussion. To apply our abso-
luteness result to produce these results from the weaker assumption of M F,, ,
however, we exploit the form of the construction of the desired objects from
the random real; this is discussed in §3. Actually, Theorem 1.3(1) follows
directly from Theorem 1.3(3), by Todorcevié¢ [24].

While our absoluteness result applies to objects which can be constructed
from one random real, some further applications of M E; do not seem to fit
this pattern. For example, M F, implies M A,, for the partial order which
adds one random real (Corollary 2.5), which in turn has a number of well-
known consequences (e.g., every subset of [0, 1] of size w; is of first category).
Of course, this refutes CH. Also (Corollary 6.2), M F, implies that no
Lebesgue measurable set of positive measure can be an increasing union of
Lebesgue nullsets. This also refutes C'H, as well as full MA. Finally, we
mention:

Theorem 1.4 MFE, implies that there are no Ramsey ultrafilters.
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A Ramsey (or, selective) ultrafilter is a nonprincipal ultrafilter & on w
such that every partition @ : [w]* — 2 has a homogeneous set in U. As is well
known [2], this implies that for each finite n, U is also Ramsey for partitions
on n-tuples. Under C'H or M A, there is a Ramsey ultrafilter, as is easily seen
by W. Rudin’s construction [21] of a P-point ultrafilter. It is already known
[14] that there are no Ramsey ultrafilters in the model obtained by adding at
least ¢t random reals. Using this method of proof, Fremlin [8] shows that a
real-valued measurable cardinal refutes the existence of Ramsey ultrafilters.
A proof of Theorem 1.4 may be patterned after the argument in [8], but we
give a different argument, which also improves the result of [14] to:

Theorem 1.5 Let V[G] be formed from V by adding wy or more random
reals. Then in V[G], there are no Ramsey ultrafilters.

Although the method of [14],[8] alone does not seem to prove this, in
proving Theorems 1.4 and 1.5, we emulate [14],[8] to refute a property weaker
than Ramsey, known as “rapid P-point” or “semi-selective”.

A special case of Theorem 1.2 is that M FE, becomes true if we add ¢t
random reals. But while adding wy random reals suffices for Theorem 1.5,
adding wy random reals may not be enough to get ME,. To see this, ob-
serve that M F, is false if the well-order on the cardinal ¢ is in the o-algebra
generated by rectangles, since, by Fubini’s Theorem, the sides of the rect-
angles will form a countable collection of subsets of ¢ (equivalently, of [0, 1])
which cannot be measured by any atomless o-additive probability measure.
In particular, by [12] or [19], M E,, is false under CH or M A. Furthermore,
suppose the ground model V' satisfies M A+ —~C' H. Then, adding wy random
reals does not change c, so it is still true in V[G] that the well-order on ¢ is
in the o-algebra generated by rectangles, so M E,, is false in V[G]. Further
use of rectangles to derive theorems from M F, occurs in §2.

We also cannot replace the wy by wy in Theorem 1.5: if the ground model
satisfies C'H, then C'H will remain true after adding w; random reals, so
there will be a Ramsey ultrafilter in the extension.

Theorems 1.4 and 1.5 both have the same conclusion, “no Ramsey ul-
trafilters”. The proofs, given in §4, are similar too, and utilize the same
probabilistic argument, although the proof of Theorem 1.5 adds a forcing in-
gredient. Our method for refuting Ramsey ultrafilters in §4 may seem a bit
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artificial, since the argument does not deal directly with the Ramsey prop-
erty at all, but rather with a rather technical consequence thereof. In §5,
we present a more natural argument using random graph theory. Actually,
the method in §5 requires more work in verifying the details than does the
method of §4, but it derives the lack of Ramsey ultrafilters directly from a
lemma about random graphs on finite sets, which might be of some interest
in its own right.

2 Preserving Suprema.

A key ingredient of §3’s proof of our absoluteness result is the existence of
a measure algebra in which certain suprema are preserved. We begin this
section by reviewing some basic facts about measure algebras, and then we
look at the suprema preserving strength of M Ey for various 6.

Definition 2.1 [f v is a probability measure on a set X, then B(v) is the
measure algebra of the v-measurable subsets of X modulo the v-nullsets. If k
is a cardinal, and v, is the usual product measure on 2%, then we abbreviate
B(vy) by Be. If € is a family of v-measurable sets, \| € abbreviates \/ gee[E].

Note that the elements of B(r) are equivalence classes [E] of v-measur-
able sets, with [D] < [E] iff D\ E is a nullset. B, is the measure algebra with
which one forces to add x random reals. This is equivalent to forcing with
the Baire sets of positive measure, as in [17]. When just doing forcing, it is
somewhat simpler to use the Baire sets, rather than their equivalence classes,
but when discussing algebraic properties, such as suprema, it is somewhat
simpler to work with the Boolean algebra.

As is well known, B(r) is a complete Boolean algebra, and the following
lemma relates suprema with unions:

Lemma 2.1 If € is a family of v-measurable sets, then \VE = [U&] for
some countable & C £.

If £ is uncountable, then |J & may fail to be measurable. If it is measur-
able, then \V € < [U€&], but this inequality may be strict; for example, let £
be a family of singletons from [0, 1].
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Definition 2.2 If £ is a family of v-measurable sets, with |E] = 0, then v
preserves the f-supremum V& iff UE is v-measurable and \V € = [UE] in
B(v).

First we look at preserving w;-suprema, and then we look at a not-so-large
cardinal property to handle preserving #-suprema.

Theorem 2.2 [f€ C P(X) and |E| = wy, then there is a countable collection
S C P(X) such that every measure on X which measures €U S preserves

VE.

We shall prove this after pointing out two corollaries. Note first that this
theorem applies when extending a measure y with €& C dom(pu):

Corollary 2.3 MFE,(X,u) = X is not a union of wy p-nullsets.

For Lebesgue measure, this gives us a form of Martin’s Axiom. Specifi-
cally, let M Ag(1rr) represent M Ag for random real forcing; that is, M Ag(1rr)
says that whenever P is a partial order for adding one random real, and D
is a family of no more than § dense subsets of P, then there is a filter GG in
P meeting each D € D. The following well-known proposition relates the
preservation of f-suprema to M Ag(1rr).

Proposition 2.4 M Ay(1rr) is equivalent to the statement that [0,1] is not
the union of 0 Lebesque nullsets.

Thus, by Corollary 2.3, we have the following.

Corollary 2.5 ME,= MA,, (1rr).

In particular, M E, = ¢> wy. Note that we cannot “raise the cardinals
by 17 in Corollary 2.5: M FE,, is consistent with ¢ = wq, so it cannot imply
MA,,(1rr). Hence, in Theorem 2.2, if |E] = wy, we cannot expect to get
|S| = wi. We can get an S of size wy, as we explain after proving Theorem
2.2.

Our proof employs the following ancient fact (proved in Kunen [12] and
Rao [19]) about w; X w;.
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Theorem 2.6 Fach subset of wy Xw; is in a o-algebra generated by countably
many rectangles of the form B x C, where B,C C wy.

Another easy fact we employ in proving Theorem 2.2 reduces suprema to
disjoint suprema:

Lemma 2.7 Suppose that E, is v-measurable for each o < wy. Let B! =

Eo\Upca Es (s0 By = Ey). Then Ve, [Fa] = Voo, [FL]-

Now we pPreserve our wi-supremas

Proof of Theorem 2.2: Fix a collection & = {F, : @« < w;}. By Lemma
2.7, we may assume that &£ is a disjoint collection. By Theorem 2.6, the set
L={(B,a): a < <w} below the diagonal is in the o-algebra generated
by a countable collection {B, x C, : n < w}, where each B, and C, is a
subset of wy. Let £ = E.. Define F': £ — w; so that F(x) = o iff
x e F,. Let

a<w]

S={E}U{FYB,):ncwlU{FC,):ncw}.

Let L' = Uy<pew, £5 X Ey. Observe that L is in the o-algebra generated by
the F=Y(B,) x F~YC,).

By way of contradiction, assume that v measures £ U S but fails to pre-
serve \/ &; that is, V., [Fa] < [E]. By Lemma 2.1, fix ¥ < wy such that
Vacw o]l = Vacy[Fal. Let G = U{Fy 1 v < a < wi}. Then G is mea-
surable and not null, but is partitioned into the E, (for v < o < wy),
which are null. Define M = U{Es X E, : v < o < < wi}. Note that
L', and hence also M, is measurable in the product measure v x v. Each
vertical slice M, = {y : (x,y) € M} is contained in a countable union
of the nullsets FE,, and is hence a nullset, whereas each horizontal slice
MY = {x : (x,y) € M} contains all but countably many of the E, (for
v < a < w), sov(MY) = v(G) > 0. But then M contradicts Fubini’s
Theorem.

We turn now to preserving #-suprema for § > w;. In order to pin down
the 6 for which M E, guarantees that we can preserve these suprema, we
define a not-so-large cardinal property.

In the following, £ is always a countable first order language containing
the symbol “<”. For any ordinal §, a structure 2 for £ is called a -structure
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iff 2 has universe § and “<” is interpreted as the usual well order on 4.
Another structure %8 for £ is called an end extension of 2 iff B is a proper
extension of 2 and no member of § gets a new element, that is, if @ < § and
b € B, then b <y o implies b € §; if in addition, B is an elementary extension,
it is called an elementary end extension, or eee. See [4] for general background
on elementary end extensions. We consider here real-valued elementary end
extendible ordinals:

Definition 2.3 An ordinal 6 has the rveee property, or is rveee, iff each
d-structure A has an eee in some random real extension of the universe.

The Compactness Theorem implies that w is rveee, and the end extension
is obtainable without adding random reals. We shall see presently (Proposi-
tion 2.12) that a rveee ordinal is, in fact, a cardinal; it is also weakly Mahlo,
and is weakly compact in L. Hence, the following theorem applies to pre-
serving #-suprema for a “reasonable” number of smaller 8:

Theorem 2.8 [f £ C P(X) and each uncountable § < |&| is not rveee, then
there is a family S C P(X) such that |S| = |&|, and such that every measure
on X which measures £ U S preserves \/ £.

Again, by Proposition 2.4, we have the following.

Corollary 2.9 For 0 > w, such that each uncountable & < 0 is not rveee,
ME;= MAg(1rr).

Since M A (1rr) is false and there are models of M FEy plus ¢ = 0% (see
Theorem 1.2), we cannot preserve §F-suprema using just M Fy. Similarly, if
§ = ¢ is real-valued measurable, then M Fy is true and M Ag(1rr) is false, so
the assumption on rveee ordinals cannot be dropped from the corollary or
the theorem.

We prove Theorem 2.8 by contradiction; assuming V€ < [J&] enables
us to use an ultrapower in some random real extension to build an eee. The
following lemma simplifies the construction:

Lemma 2.10 Suppose there are no uncountable rveee ordinals 6 < 6. Then
there s a O-structure A such that every proper elementary extension B of A
contains a nonstandard integer.
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Proof: Let 2 encode, for each uncountable ordinal § < 6, a §-structure ;s
witnessing that 4 is not rveee. =

To prove Theorem 2.8, we shall use an ultrapower based on definable sets.
For a f-structure 2, let Dy be the set of subsets of 8 first order definable in 2
from elements of #, and let Fy be the set of functions in #° first order definable
in 2 from elements of #. For any ultrafilter & on Dy, we have the ultrapower
Fa/U. A version of Los” Theorem for definable functions shows that Fy /U is
an elementary extension of 2. Although the original Los’ Theorem does not
apply directly here, one can prove the version we need simply by mirroring
the original’s proof, which inducts on the complexity of formulas, taking care
in the existential case to produce a definable function. The extension Fy /U
will be proper iff ¢ is nonprincipal. Also, Fy /U will be an w-model iff for each
function f € Fy with f : 6 — w, there is some n € w so that f~'({n}) € U.

Proof of Theorem 2.8: Fix £ C P(X) such that each uncountable § < |€|
is not rveee, and let § = |&|. Let {E, : o < 8} list £, and form the
corresponding disjoint family in the usual way: for each o < 0, set £/, =

Eo\Upco Bp. Let E = U, g o = Uyep B, and define ¢ : & — 0 so that

o ?

o(x) = a for each x € E!. Fix 2 as in Lemma 2.10, and let
S={E}U{E :a<0tU{s™(D): D €Dy} .

Suppose v measures S U &, and suppose that v does not preserve V&, so
[E] > VacolFal > VacslEL] in B(r). We shall derive a contradiction.

Let GG be a B(v)-generic filter over V with [E] € G but \,[F.] ¢ G.
Define!d = {D C 0 :[¢~'(D)] € G}. By upward closure of G, each [E'] ¢ G,
so U is nonprincipal, and hence Fy /U is a proper extension of L.

Finally, we show that Fy/U is an w-model, which will contradict the
choice of 2. Suppose f € Fy and f : 0 — w. Then @ is the disjoint union of
the sets C,, = {a < 0 : f(a) = n}. Since the [¢7(C,)] form a partition of
unity in the ground model V', some [¢~(C),)] is in G, so some C,, is in . =

Next, we show that rveee ordinals are weakly Mahlo in V', and weakly
compact in L. This argument uses nothing special about random real forcing
besides the fact that cofinalities are preserved.

First, observe that the Keisler-Silver [11] argument works also for forcing
extensions:
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Lemma 2.11 Let § be any uncountable reqular cardinal, and let P be any
forcing order such that 6 remains reqular in P-generic extensions. If each
d-structure has an eee in some P-extension of the universe, then each -
structure has a well-ordered eee in some P-extension of the universe.

Proposition 2.12 If§ > w and each §-structure has an eee in some cofinal-
ity-preserving forcing extension, then ¢ is weakly Mahlo and is weakly compact

i L.

Proof: As is well known, if 4 fails to be weakly Mahlo or fails to be weakly
compact in L, then there is a d-structure 20 which has no eee in V. We
simply observe that this 20 continues to work in cofinality-preserving forcing
extensions. Specifically, we consider cases:

If § fails to be a regular cardinal, let ¢f(§) = 8 < d, and set 2% = (§; <, g),
where ¢ | 3 is a cofinal map from 3 to §, and ¢(§) = 0 for § < ¢ < §. Then
2 will fail to have an eee in every extension of V.

If § is regular but not weakly Mahlo, let C' C § be a club which contains
only singular limit ordinals. For each ¢ < 9§, choose a cofinal map he :
cf(&) — & Code these by a map H : § x § — ¢ by letting H(£,() = he(C)
when ¢ < e¢f(€) < € € C, and H({,() = 0 otherwise. Let & = (§;<,C, H).
Then 2 will fail to have a well-founded eee in every extension of V' in which
4 is regular.

If § is regular but not weakly compact in L, then in L, there is a -
structure 2 such that 2 has no eee in any extension of L in which ¢ remains
regular. m

By a similar proof, one may show that if S is stationary in 4, then SN«
is stationary in « for some regular o < §. This property was also discussed
in [16]; it directly implies the usual weak-inaccessible type large cardinal
properties one gets from a weakly compact cardinal.

It is easy to see that every weakly compact cardinal is rveee in every
random real extension, so that a rveee cardinal < ¢ is equiconsistent with
a weakly compact cardinal. In fact, if § is weakly compact in V, and V[G]
is formed by adding more than 6 random reals or Cohen reals, then ¢ is
actually 2veee in V[G]; that is every d-structure has an eee in some the
universe (now, V[(G]) itself (see [13]). In particular, considering the Cohen
real case, we see that the existence of an rveee cardinal cannot have any
interesting measure-theoretic consequences.
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Corollary 2.13 M FE, implies that some 6 < ¢ is weakly compact in L.

Proof: If not, then by Proposition 2.12, each uncountable § < ¢ fails to be
rveee, so by Corollary 2.9, M A (1rr) holds, which is impossible. w

So, as Carlson notes in [3] by a somewhat different argument, ME, is
equiconsistent with the existence of a weakly compact cardinal.

3 An Absoluteness Result.

In this section, we describe our absoluteness result for random real models
and use it to prove Theorem 1.3. As in §2, we view random real models as
extensions by some measure algebra B,,. The following additional definitions
will be useful. If ¢ is a sentence in the forcing language, ||¢|| denotes its
Boolean value (the maximum condition which forces ¢). Each b € B, has
a countable support, supt(b), which is the minimal subset 7" C & such that
b is the equivalence class of a cylinder over T. If 7 is a By-name (in the
forcing language), supt(7) denotes the union of all supt(b) such that b is
used (hereditarily) in the construction of 7. Whenever we name reals or
subsets of w, we choose names with countable support.

Theorem 3.1 Fix 6 > w; such that each uncountable o < 0 is not rveee,
and assume M Ey. Suppose

Libg, (J2z:w — 2) (VY C0) o(x,Y) (1)

where @ is a first order formula over a -structure A. Then it is true (in V')
that
(Jx:w —2) (VY CO) p(a,Y) . (2)

Some remarks on syntax: The notion of §-structure is as in §2, but = and
Y are second order variables here, so that equation (2) expresses a special
kind of X} property of the cardinal § plus whatever function and relation
constants are contained in 2. Since 2 is fixed here, we write “p” instead of
“U = 7. If § is real-valued measurable, then by the method of [22], Theorem
3.1 holds for all X! properties.

Of course, the theorem holds also for § = w, but is trivial in that case by
Shoenfield’s Theorem. In proving the theorem, the following definitions will

be useful.
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Definition 3.1 [fY C 2¥ x §, then Y* = {x € 2 : (z,a) € Y} C 2% (for
each a € 8), and Y, ={a €0 : (z,a) € Y} C 0 (for each x € 2¥).

Definition 3.2 7 is the name for the official random real. That is, 1 I 7 :

w—= 2, and ||[r(n) =L =[{f: fln) =L}] (forn <w, { <2).

The notation r is used both when we are forcing with some B, , for k > w,
and when we are forcing with a B(»), where v is some measure on 2 extending
Lebesgue measure.

The following lemma lets us drop a quantifier in (1) of Theorem 3.1.

Lemma 3.2 Statement (1) of Theorem 3.1 implies that for some By-name
7, we have supt(7) Cw, kg, 71w — 2, and 1y, (VY C0) o(7,Y).

Proof: Apply the maximal principle to get such a 7; we can always permute
the coordinates to make supt(7) C w. w

In the case that the 7 here happens to be the official random real r,
Theorem 3.1 is immediate from the following:

Lemma 3.3 Fiz 6 > w; such that each uncountable o« < 6 is not rveee,
and assume MFEg. Let i be a first order formula over a 0-structure 2. Let
Y C2¥ x 0. Assume it is true (in V') that

(Vo :w—2) =(x,Y,) . (2")
Then for some By name Z, 1 Ik, 7 C 0 and
Ly, —0(F 2Z) . (1)

Proof: If v is any measure on 2¥ extending Lebesgue measure such that each
Y® is v-measurable, we may define the B(r)-name ¥ = {(&,[Y?]) : a < 6}.
Thus, 1 Ik, Y C 0 and each || € YH = [Y?]. As a preliminary, we shall
establish

1ibgy —0(FY) (1)

To conclude this from (2), we need to measure not only the Y, but some
sets derived from the formula ¢ as well.

To simplify the argument, we shall measure more sets than necessary. As

usual ([4]), let L4 be the language of 2 augmented by a constant symbol o7
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for each element o of 8, the domain of 2. For each sentence X of L4, let
Ey ={z €2¥:X(z,Y,)}. Let F be the collection of all the Ey, where X is
a sentence of L4. Note that F has size § and includes all the Y (by using
atomic X).

To prove (1”) from (2'), we shall produce a measure algebra in which we
have HX(T,Y)H = [Ey] for any sentence X of L£4. The proof of HX(T,Y)H =
[E£y] will be by induction on the complexity of X, but for this proof to work,
the measure algebra will have to preserve certain suprema. In particular,
each induction step handling an existential quantifier gives us a supremum
to preserve: For each formula X(v) of L4 with one free variable v, let £, =
{Ex(w) : o < 0}. Note that Ezuvv) = Uacg Ex(rany, 0 that a measure algebra
satisfies

[Eauxin] =V [Exon) (+)
a<b
iff it preserves \V €. Apply Theorem 2.8 to choose S C P(2¥) of size § such
that each measure on 2¢ which measure U S preserves each \/ &,. Then
apply M Ejy to fix a measure v, extending Lebesgue measure, which measures
FUS.

Now, in the measure algebra B(r), induction on the complexity of X does
indeed show that ||X(7, Y)H = [Ey] for each sentence X of £4. Then, in par-
ticular, for the sentence =), (2) says that E_, = 2, so that ||=¢(7, Y)H =1,
proving (1”).

Finally, we conclude (1’) by Maharam’s Theorem. We may assume that v
was chosen so that the v-measurable sets are generated by the 6 sets in FUS
together with the basic clopen sets in 2“, so that the Maharam dimension
of v cannot exceed . Thus, there is an isomorphism ¢ from B(r) onto some
complete subalgebra D of By, with i([{f : f(n) = (}]sw)) = [{f : f(n) = (}]s,
for each n < w and ¢ < 2. Since ¢ is an isomorphism, 1 Ikp = (7, Z), where
Z is the corresponding D-name; that is |l € D|| = i(]|ev € YH) Since v is
first order, it is absolute, so (1) follows. =

To finish the proof of Theorem 3.1, we must deal with the possibility that
the 7 resulting from Lemma 3.2 is different from 7. To do this, we use the
fact that 7 may be constructed from r by countable operations. Specifically,
suppose o(x,v) is an £ formula; that is, o mentions the parameter x, and
has a free first order variable v, but does not mention Y. Then, given the
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f-structure 2, and z € 2¥, define z*(z) € 2¥ by

2(x)(n)=1 & AE=o(x,n) .
Lemma 3.4 [f 7 is a Bg-name, supt(t) Cw, and 1 IF 7 : w — 2, then (in
V') there are a 0-structure 2 for some countable L and an L formula o such
that 11- 7= 22(r).

Actually, o need only quantify over w, so that the map = — z2(z) is a
Borel map from 2 to 2. The £ and the 2 from this lemma have nothing at
all to do with the £ and the 21 from Theorem 3.1. Nevertheless, by merging
the two structures, we may assume that they are the same.

Proof of Theorem 3.1: Assume (1), and let 7 be as in Lemma 3.2. Then,
let o be as in Lemma 3.4. Thus, 1 kg, (VY C ) (7, Y), where ¢(z,Y)
is the formula which asserts ¢(z,(x),Y). Now, applying Lemma 3.3, we get
that condition (1') must be false for every name 7, so that we could never
have chosen a Y C 2% x 6§ to satisfy (2'); hence

(Fz:w — 2)(VY C0) o(22(2),Ys)

which implies (2). =

We now explain how to derive Theorem 1.3 from our absoluteness result.
We concentrate on 1.3(1), the non-productivity of the cee, since the three
parts to Theorem 1.3 are similar.

The following standard construction produces a pair of partial orders
whose product is never cce. Start with a graph @ : [w]? — 2 on w; vertices.
Define the partial orders P® and P by setting P® = {a € [w]|<¥ : a is
homogeneous for color £}, and ordering each P? by reverse inclusion. Clearly,
the product P x P® isn’t cce: consider the subset {({a},{a}) : a < w;}.
Galvin [9] showed that under C'H there is a graph ® such that P§ and P}
are both ccc. By a different argument, Roitman [20] showed how to read off
such a ® from a random real. We use Roitman’s construction here:

Proof of Theorem 1.3(1): Following [20], fix (in V') injective functions
fo i a— w for each a < wy.

For (1), given any x : w — 2, we define the graph ®(z) : [wi]? — 2 by
O(z){a,8}) = «(fs(a)) for each o < B < wy. By [20], 1 forces that each
p®d") is cee; actually, [20] just states this for the forcing which adds only
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the one random real 7, but then it must be true also for the By extension,
since random real forcing never destroys the cce. Now, we can code the f,
along with the construction of the ®(z) in a suitable §-structure 2, and apply
Theorem 3.1 with 8 = wy. The formula ¢(x, Y') says that either Y is bounded
in wy or Y fails to be an antichain in one of the P®¢("), o

In [20], Roitman also used similar techniques to get S-spaces and L-spaces
from a single random real, and this implies Theorem 1.3(2); we omit the
details, which are almost verbatim the same as for Theorem 1.3(1). Note,
however, that to prove Theorem 1.3(2) we cannot simply quote the fact that
adding a random real adds an S-space and an L-space; we use the fact that
the proof constructs these spaces in a first-order way from the random real
and some structure in the ground model. In addition, using our absoluteness
result to prove Theorem 1.3(2) requires the fact that random real forcing
never destroys S-spaces and L-spaces. Similarly, Todorcevi¢’ construction of
an entangled set (see page 55 of [25]) gives us Theorem 1.3(3). Actually, he
shows that adding one random real adds an entangled set of size continuum.
Thus, we get:

Theorem 3.5 Assume MFE;, where 6 > w; and no uncountable o < 6 is
rveee. Then there is an Ny-entangled set of size 0.

4 Ramsey Ultrafilters.

We begin by explaining the property of Ramsey ultrafilters we intend to
refute. The following fact is easy to see, and was used also in [14].

Lemma 4.1 Suppose that U s a Ramsey ultrafilter on w.

1. Given a; € [0,1] for i € w, there is an H € U such that the sequence
(a; :1 € H) converges.

2. Given a; € [0,1] for ¢ € w with lim;_,, a; = 0, there is an H € U such
that ZiEH a; S 1

Of course, in (2), once the sum is finite, it may be made arbitrarily small
by choosing a smaller H.
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Definition 4.1 A nonprincipal ultrafilter U on w is semi-selective iff U sat-
isfies the conclusions (1) and (2) to Lemma 4.1.

This notion has occurred with different names in the literature. The term
“semi-selective” is taken from [14], where it was pointed out that under C H
(or M A), there are semi-selective ultrafilters which are not Ramsey. We shall
show that there are no semi-selective ultrafilters if either M E, holds or if
the universe was obtained by adding at least wy random reals to a model of
ZFC.

We remark that, taken separately, conclusions (1) and (2) of Lemma 4.1
yield two weaker properties of ultrafilters, neither of which can be refuted in
random real models (or, from any M Fy). A nonprincipal ultrafilter satisfying
property (2) is sometimes called “rapid”. There are none of these in the Laver
model (Miller [18]), but when we add random reals, any extension of a rapid
ultrafilter from the ground model will still be a rapid ultrafilter. Satisfying
property (1) is equivalent to being a P-point, and by a result of P. E. Cohen
[5] there are P-points in every random real extension of a model of C'H.

By amalgamating properties (1) and (2), we get the following lemma.

Lemma 4.2 Let [ be any continuous real-valued function on [0,1] such that
f(0) =0, and f(x) > 0 for x > 0. Let U be any nonprincipal ultrafilter on
w. Then U is semi-selective iff for all ® : w — [0,1], there are H € U and

t €[0,1] such that
> J(e@) i) <1 (*)

e

Of course, () implies lim;ey ®(¢) = ¢, since H is infinite. Now, consider
f to be fixed. Just in ZF(C', there is no problem choosing, for each ® &
[0,1]¥, an infinite Hg satisfying (*). We now present a probabilistic argument
showing that the set of all these Hg can never have the finite intersection
property, so that there can be no semi-selective ultrafilters. Of course, this
argument only works in some models of set theory.

The intuition is: Choose ® € [0,1]“ at random, and then, by some (non-
random) process, choose He C w and te € [0,1] so that (%) holds. If f is
“really large”, then each Hg must be so thin that with probability 1, we will
have chosen Hg, and Hg, such that He, N Hg, is finite.
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Corollary 4.4 below formalizes this intuition. First, some notation. Let
us use A both for Lebesgue measure on [0, 1], as well as for the usual product
measure on [0,1]? for any set I. Let u be a probability measure on a set
X. A random [I-sequence (indexed by the sample space (X, 1)) is a map VU :
X — [0,1]! such that for each Baire set B C [0, 1}1, the set u({z : ¥, € B})
is g-measurable and of measure A(B). Note that we are using ¥, for ¥(x).

Suppose H C X x [. Welet H, = {i € [ : (x,i) € H} and H' = {z €
X :(x,0) € H}.

For the rest of this section, let f(x) = —100/(In(z) — 2) for 0 < « < 1,
and let f(0) = 0. The justification for using this particular f is only that it
makes Theorem 4.3 true.

Given any ® € [0, 1]!, we say that H C I is ® - small iff for some ¢ € [0, 1],
Yier f(|®(2) —t]) < 1. A small process for a random [-sequence V¥ is a set
H C X x I such that for each x € X, H, is ¥, - small, and for each 7 € I,
H' is y-measurable. Trivial examples of small processes are 0), or X x {1} for
any ¢ € [.

Theorem 4.3 For any set I, if H is a small process for a random I - se-
quence, then Y cr(u(H*))? < 1.9.

Assuming Theorem 4.3 for a moment, we prove the following two corol-
laries; the second one immediately implies Theorem 1.4.

Corollary 4.4 For any countable set I, if H is a small process for a random
I - sequence, then there are some x,y such that |H, N H,| <1

Proof: Computing the expectation of |H, N H,|, we have, by Theorem 4.3,
/d:z;/dy |H. N H,| = /dx/dyZXH(x,i)-XH(y,i) =
1EW
S [ de [ dy i) Xl i) = Sl < 1.9
1EwW 1EW

so there must be some x,y such that |H, N Hy| < 1. =

Corollary 4.5 ME, implies that there are no semi-selective ultrafilters.
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Proof: Let U be a semi-selective ultrafilter on w. Let X be [0,1]* with the
usual product measure. Let W, = 2. For each x, choose H, € U such that
H, is U -small. This defines H C X x w. Applying MFE,, let ;1 extend the
usual product measure on X and measure all the H'. Then Corollary 4.4
yields an immediate contradiction. m

Later, in proving Theorem 4.9, it will be important that Theorem 4.3 was
stated for X an arbitrary sample space, not just [0, 1]“. Note that Corollary
4.4 has a non-vacuous content just in ZFC', since it is easy to find Borel
small processes H C [0,1]* X w such that each H, is infinite.

We turn now to a proof of Theorem 4.3. We first consider finite products.
For each ® € [0,1]", let h(®) be the largest size of a ® - small set. Note that
h is Borel measurable. For n > 0, let o,, be the expected value of h(®):

o = /h(cb) dA\(®)

It is easy to see that o9 < 07 < g9 < ---. Also, 0o = 0 and o7 = 1, since
every set of size 1 is small. Also, o, /' 0o as n / oo, although the growth
rate is fairly small, as we shall show in Lemma 4.7. First, we use the size of
the o, to place a crude upper bound to the sum in Theorem 4.3.

Lemma 4.6 Let [ be any set, and let H be a small process for a random [

- sequence. Then Y,cr(p(HY))?* < 0_ (0 /m)%.

Proof. It suffices to prove this for [ finite, and it is trivial if [ is empty, so
say [I| = n+ 1. Then, we may as well assume that [ is the ordinal n + 1,
arranged so that u(H°) > u(H') > - > u(H™). For each m < n+1, H,Nm
is W, [ 'm - small, so |H, Nm| < h(W, | m). Then

> u(H') = /IH Nom|du(z </ ) du(z) =

i<m
/ h(®)dA(®) = o,
[0,1]™

Setting m = 7 + 1,

1
— > u(H') < 6,/m
m

<m

u(H?) <

(since u(H') \, as 1 /), and the result now follows by summing over j. m



4 RAMSEY ULTRAFILTERS. 20

Lemma 4.7 Whenever 1 <r <n, o, < (2r — 1) + n?e?- e 10"

Proof. First note that f’ is positive and f” is negative on (0, 1), which
implies that f is increasing on [0,1] and f(a 4+ b) < f(a) 4 f(b) whenever
0 <a,b<a+b< 1. Also, the inverse of f is a “small” exponential. If
y = —100/(In(x) — 2) then x = 2. =190y,

Now, fix n,r, and let S = {® € [0,1]" : h(®) > 2r}. Then, o, <
(2r — 1) + nA(S). To estimate A(S), fix ® € S and then fix H C n such that
|H| = 2r and H is ®-small. Then, fix ¢ € [0,1] such that > ;cqy f(|®(¢) —
t]) < 1. List H as {i1,j1,.--,0r, g} For £ = 1,000, f(|®(i0) — (50)]) <
F(®Ge) —t]) + f(|P(je) — t]). Since the sum is < 1, there is an ¢ such that
F(®(ie) — ®(ge)]) < 1/r. So, we have shown that for each ® € S, there are
distinct ¢, 7 such that f(|®(¢) — ®(y)]|) < 1/r.

Now, for each particular i # j, AM{® € [0,1]" : f(|®(¢) — ®(j)]) < 1/r} <
2¢? - e71997  Since there are (g) < n?/2 possibilities for 7, j, we have A(S) <

n?e? . 1% proving the lemma. m

Of course, for some r,n, the estimate in Lemma 4.7 is worse than the
obvious ¢, < n, but by choosing an appropriate r for each n, we may obtain
an upper bound which is sufficient to prove the desired result.

Proof of Theorem 4.3: By Lemma 4.6, it is sufficient to prove that
52 [(0,/n)* < 1.9. To do this we break the sum into blocks, where block 1
sums from n = 1 to 100 and block r, for r > 1 sums for n = 100"~! + 1 to
100". On each block, we apply Lemma 4.7.

On block 1: For n = 1,...,100, we have o, < 1+ 10%? . 719 < 1.01
(using r = 1), which implies that

100 7.[.2
> (oa/n)* < o 1.01* < 1.7
n=1

On block r, for r > 1: o, < 2r, so

100" o0 1 2 2
S (e Y Lo @1
n:lOOT_l—I—l n:lOOT_l—I—l n 100

and it is easy to see that
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We now add forcing to this proof and show that there are no semi-selective
ultrafilters in any model obtained by adding ws or more random reals. We
continue the notation of §§2.3, forcing with B,. We continue to use A to
denote Lebesgue measure on [0, 1] or any power thereof, and i to denote the
usual measure on any power of 2 = {0,1}.

Definition 4.2 For any set I, a random [-sequence-name is a name 7 in
the forcing language such that ||x : I — [0,1]|| = 1, and for each Baire
B C[0,1), u(llm € Bll) = A(B).

Note that in the formalism of forcing, inside the ||---||, I should really
be I, whereas B should really be a Borel code (see [17]), not B.

Lemma 4.8 Suppose that m; and my are random [-sequence-names and sup-
pose that Ty and T names in the forcing language such that each T, is forced
by 1 to be a subset of I and to be wp-small (( =1,2). Assume that supt(m)N
supt(ry) is disjoint from supt(mwi) U supt(ma). Then some forcing condition p
forces |1y N < 1.

Proof. This lemma involves forcing, so it may be perceived to take place in
some ground model, V. The proof is more transparent if we view V' as being
countable from the outside, so we may refer explicitly to generic objects. Let
7 = 2%, In the case of random real forcing, it is more convenient to think
of the generic object as an object z € Z which is random over V (that is,
not in any V-coded Baire nullset), rather than a generic filter (see [17]). To
prove the lemma, it is sufficient to find some z random over V' such that
lval(y, z) N val(m, z)] < 1 (where val refers to the value of a name in the
generic extension).

Let T = supt(my) N supt(ry), let Y = 27, and let X = 2°\T. Then we
may identify Z with X x Y, and think of the extension V]z] = V|[(z,y)]
as the iterated extension V[y|[z]. Fix a y € Y which is random over V.
Then for all # € X, x is random over V[y| iff (x,y) is random over V.
Furthermore, x is random over V[y] for almost every x € X. For £ = 1,2, let
Uy = val(my, (x,y)). Since supt(my) is disjoint from T', Wy is a random [-
sequence. Define H, C X x [ so that Hy, = val(7, (x,y)) when x is random
over V]y], and H,, = 0 otherwise. Then H, is a small process for ¥,. For
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each 1 € I, supt(|li € mi||) N supt(]|i € w||) € T, which implies that H! and
H} are (stochastically) independent. Now, applying Theorem 4.3 and the
Cauchy-Schwarz inequality:

J 1He 1V Holde = 32 p(HY 0V HG) = 32 () - pu(Hy) <

el el

S uH D)) - (S p(Hy)H)'? < 1.9

el el

Hence, p{x € X : |H1 N Hy,| < 1} > 0.1, so we may choose an & random
over V]y] such that val(r, (z,y)) Nval(rs, (x,y)) = Hi» N Hz, has size 0 or
1, as required. m

Now, Theorem 1.5 follows immediately from:

Theorem 4.9 Suppose that k > w,. Then it is forced by 1 that there are no
semi-selective ultrafilters in the generic extension by B, .

Proof. If the theorem fails, then by homogeneity of By, there would be a
name U such that 1 forces U to be a Ramsey ultrafilter. In V', fix disjointly
supported random w-sequence-names, m,, for a < w,. Then fix names 7, such
that 1 forces that 7, € U and that To 1s mo-small. By the usual pressing-down
argument, we may find distinct o, 5 such that supt(7,) N supt(7s) is disjoint
from supt(m,) U supt(mg). Then 7,73, 74, g contradict Lemma 4.8. w

5 Random Graphs

In this section, we show how to derive Theorems 1.4 and 1.5 directly from a
result in random graph theory about partitions on finite sets. For background
in this subject, see [1][23].

The intuition is: for a fixed set I, choose a partition ¥ : [[]? — 2 at
random, and then, by some (non-random) process, construct a homogeneous
set H for W. There are many results in the literature, going back to a 1947
paper of Erdos [6], to the effect that with high probability, H must be fairly
“thin”. Erdos used this to establish an exponential lower bound for the
Ramsey numbers.

To formalize this intuition, we use the following general framework. Let
(X, 1) be a probability space. A random partition of a set I, indexed by
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(X, i), is amap ¥ such that for each © € X, U, (i.e., ¥(x)) is a partition, ¥, :
[I]* — 2, and such that the sets FE;; = {z : ¥,(i,5) = 0}, for {i,5} € [I]?,

are p-measurable and are independent events of probability (i.e., measure)
1

A homogeneous process (for W) is a set H C X x [ such that for each
x € X, H, is homogeneous for W, and for each 7 € I, H' is y-measurable.
Trivial examples of homogeneous processes are (), or X x {7, j} for any 7,j € I.
The specific theorem we need is:

Theorem 5.1 [f H is a homogeneous process for a random partition of a

set I, then e (n(H))? < 3.96.

Note that Theorem 5.1 does not assume [ to be finite, although once we
prove it for finite I, it follows immediately for all /. From Theorem 5.1, we
may derive Theorems 1.4 and 1.5 exactly as in §4; we omit the details of this.

Before proving Theorem 5.1, we mention the following corollary in finite
combinatorics. Roughly, if we choose homogeneous sets for partitions using
any (non-random) process, then there is a non-0 probability that two of the
homogeneous sets will have small intersection. Formally,

Corollary 5.2 Assume that I is countable (or finite), W is a random par-
tition of I indexed by (X, u), and H is a homogeneous process for W. Then
px p({(e,y) : [He 0 H, | < 3)) = 0,01

Proof: Let F = [dx [dy |H, N H,| (that is, the expectation of |H, N H,|).
Let w = p x p({(z,y) : |H: 0" Hy| <3}). Then £ > 4. (1 —w). But also,
exactly as in the proof of Corollary 4.4, we have E < 3.96. Combining these,
we get w > 0.01. »

We remark that the corollary is probably interesting primarily for the
special case of the “natural” random partition, where X is 20" (with the
usual product measure), and W, is just x, but we seem to need the more
general statement of Theorem 5.1 to derive Theorem 1.5, and the proof of
the general statement is no harder than the proof of the special case.

We proceed now to prove Theorem 5.1. Actually, we suspect that our
result is not best possible, in that possibly the “3.96” in Theorem 5.1 could
be replace by “2.97”, which would mean that the “< 3” in Corollary 5.2 could
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be replaced by “< 2”7. However, our proof involves a sequence of estimates,
each one introducing a bit of slop in the final result.
First, the following lemma can be used to bound a sum of squares:

Lemma 5.3 Suppose ag,...,a,, by,...,b, are real numbers such that
ap+---+a; <bog+---+bj forj=0,...,n; and ag > ay > - > a, >0 (*)
Then ag 4 -+ + a2 < bz +--- 4 b2.

Proof: We may assume that each b; > 0 (otherwise replace b; by |b;|). Since
the lemma is trivial for n = 0, we proceed by induction. So, fix n > 0, and fix
non-negative b;, and assume that the lemma holds for all smaller values of n.
Now, by compactness, fix numbers aq, ..., a, satisfying (*) which maximize
a% 4.+ ai‘

If, for some 3 < n, we have ag+ ---+a; = by + -+ + b;, then we have
ajp1+-Fap <bjyi+--Fbyfor k=3 +1,...,n, so applying the induction
hypothesis, a?_l_l +oota? < b?_l_l + -+ b2. Since the induction hypothesis
also implies that a%—l—- . -—I—a? < bg—l—- . -—I—bf, we have a%—l—- . -—|—a721 < bg—l—- . -—I—bi.

So, assume that ag 4+ -+ 4+ a; < by + -+ + b; for each j < n. We must
then have ag + -+ + a, = bg + - - - + b,; otherwise, we could replace each «a;
by some a; + ¢ and contradict maximality. But then a, > 0, so, for a small
enough ¢, the sequence ag + €, as, ..., a,-1,a, — € satisfies (x) and contradicts
maximality, since ag > a,, implies that (ag + €)* + (a, — €)* > a2 + 2. =

We shall prove Theorem 5.1 by using this lemma plus a crude upper
bound (Lemma 5.4) on the partial sums of the u(H;). Let G, = 2("1) | and
let v denote the usual counting probability measure on G,. We may think
of elements of G, as random graphs (or partitions) on n nodes, since each
® € G, is a partition of the pairs from the n-element set n ={0,...,n — 1}
into 2 pieces. For each ® € G,, let h(®) be the largest size of a homogeneous
set for ®. For n > 0, let o, be the expected value of h(®):

o = /h(cb) du(®)

It is easy to see that g < o7 <0y < -+, Also, 00 =0, 0y =1 and o3 = 2,
since every set of size 2 or less is homogeneous. It is not hard to see by direct
computation (Lemma 5.5) that o3 = 2.25 and o4 = 2.75. It is well-known
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[1][23] that for large n, o, is approximately 2 - lg(n), where lg(x) is loga(z).
A suitable upper bound on the o, can be used to prove Theorem 5.1 by
applying the following lemma:

Lemma 5.4 Suppose that for each m, s, > o,,, with so = 0. As in Theorem
5.1, let H be a homogeneous process for a random partition ¥ of a set . Then

Eiel(/v‘(Hi))z < ZZO:O(SnH - Sn)Q'

Proof: Asremarked above, it is sufficient to prove this when [ is finite, and it
is trivial if [ is empty, so say |/| = n+1. Then, we may as well assume that [
is the ordinal n+1, arranged so that u(H®) > u(H') > --- > u(H"™). For each
m < n+1, H.N'm is homogeneous for ¥, | [m]?, so |H,Nm| < (¥, | [m]?).
Then

St = [ H | du(e) < [ R, 1)) dafe) =

<m

/ (D) di(®) = 0y < 5

Let a; = p(H*) and b; = s;11 — s;. Settingm = j + 1, for j = 0,...,n, we
have ag + -+ 4+ a; < ;41 = bg + - -+ + b; (since 5o = 0), so the result follows
by Lemma 5.3 =

Using the approximation o, &~ 2 -lg(n), together with the fact that
(log(n 4+ 1) — log(n)) = log(1 + L) < L, we can now bound Y ;e (u(H"))?
by something like (log2(2))2 Yool 25 ~ 13.69. However, to achieve the bound
of 3.96, we must work a little harder. For small n, we use the exact value o,

rather than the asymptotic approximation.
Lemma 5.5 Og — 0, g1 = 1, 09 — 2, 03 — 225, 04 — 2.75.

Proof: For o3: §3 has size 2° = 8. By inspection, 2 of the ® € G5 have
h(®) = 3, and 6 of the ® € G5 have h(P) = 2.

For o4: G, has size 2° = 64. By inspection, 2 of the ® € G4 have h(®) = 4,
44 of the ® € G4 have h(®) = 3, and 18 of the & € G5 have h(P) =2. »

For larger n, we compute an upper bound on o, as follows. For r < n,

we define € =v{® € G, : h(®) > r}.
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Lemma 5.6 a. Forr < n:
Ungr—l—l—cf—l—cf_l_l-(n—r)

b. Forr <n:
"< (n) . 21—|—7’/2—7’2/2

7

Proof: For (a), we partition G, into three pieces, where h(®) < r, h(®) = r,
and h(®) > r. This yields o, < (r —1)- (L =€)+ 7 - (e —€elpy) +n- €.

For (b), note that A(®) > r iff there is some A C n of size r which
is homogeneous for ®. Assume r > 2, since otherwise (b) is trivial (since
€ < 1). Then, there are exactly (f) possibilities for A, and each A can be
homogeneous by having all its pairs colored either 0 or 1, so the probability

that A is homogeneous is exactly 2 - 9. u

These estimates on o, are not quite as crude as they may seem at first
sight, since it is known [1][23] that for large n, there is some r = 2 - lg(n)
such that “most” of the ® € G, have h(®) equal to r or r — 1, so that o, ~ r.
For this r, the estimates in Lemma 5.6 will compute ¢, - n to be negligible,
bounding o, by some value near r. It was our use of g, at all, in Lemma 5.4,
that was really crude.

Lemma 5.7 0y < 1.0, 09 < 2.0, o3
0 < 3.493, 07 < 4.042, 05 < 4.115, 09
0192 S 5.061.

2.375, o4 < 2.75, o5 < 3.159,
4.267, 019 < 4.557, o1y < 5.030,

INIA

Proof: We just choose the value the r which yields the best estimate on o,
by Lemma 5.6. For n =5.6, weuser =4 ; forn =7,8,9,10, we use r =5 ;
for n = 11,12, we use r = 6. For n < 5, we use Lemma 5.5 instead.

Calling the estimate in Lemma 5.7 s,, (as in Lemma 5.4) (for 1 <n < 12),
and setting so = 0, we get Y11 (8,41 — 5,)? = 3.198711 < 3.199. Note that
replacing the exact 2.25 be the larger 2.375 yielded a smaller (by 1/32) value
of the sum. Let § = 2-1g(12) — 512 &= 2.109, so s12 = 2-1g(12) — 4. To estimate
the tail of the series, it will be sufficient to prove that o, < 2-1lg(n) — ¢ for
all n > 12. To do that, we use the following estimate.
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Lemma 5.8 Suppose that r is an integer with 11 < r < n and suppose
r=2-lg(n) —a, where a < 3. Then

1 1
o <r—1+4 (Z 4+ -)- 9(a=3)r/2

7

Proof: By Stirling’s Formula, r! > +27r - r"¢™". Since n = or/2+a/2 414
(Z) < n"/r!, Lemma 5.6 implies

< 1 ) (E)r . 21-|—r/2-|—a7’/2

\ 2T r

Of course, the same estimate holds if we replace r by r + 1 and a by a — 1.
We may simplify this by observing that (1 + 1/r)"*" > e for all r > 1 (take
the log of both sides). It follows that (e/(r 4+ 1))"t* < e"/(r"t1), so

1 1 e\”
6? < — .. (_) . 23/2—|—a7’/2
= e r

Since n = 27/2+4/2

< 1 ) l ] (E)r . 93/24ar/24r/24a/2
B r

\ 2T r

Since, by Lemma 5.6, 0, <r — 14 ¢ + ¢/, - n,

n
67’—|—1

1 e\" 1
n<r—1 . (—) - (1 —. 21/2—|—a/2 . 21+7’/2+a7’/2
=t * \2mr AT (1+ r )

Now, r > 11 implies that r > 4e and 27r > 64, so

1 1
o, <r—1+ Z . (1 + ; . 21/2"“1/2) . 9=3r/2+ar/2

Finally, using a < 3 yields the desired result. =
Lemma 5.9 [fn > 128 then o, <2-lg(n) — 2.5.

Proof: We apply Lemma 5.8. Choose a such that 2 < ¢ < 3 and such that
r=2-lg(n)—ais an integer. Then r—1 < 2-lg(n)—3,and o, < r—14+3+1.
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Proof of Theorem 5.1: First note that foralln > 13, 0, < 2-lg(n)—2.2.
For n > 128, this follows from Lemma 5.9. For smaller n, we just compute
it using Lemma 5.6, using r = 6 for 13 < n < 17, r = 7 for 18 < n < 26,
r=28for 27 <n <40, r =9 for 41 < n <62, r = 10 for 63 < n <95, and
r =11 for 96 < n < 127.

Thus, we can in fact set s, = 2 -lg(n) — § for all n > 12, as indicated
above, whence, applying Lemma 5.4

> (u(HY))?* <
€]
11 0
Z(Sn—l—l - Sn)2 —I' Z (Sn—l—l - Sn)2 S
n=0 n=12
3.199 + (2/log(2))* - > (log(n + 1) — log(n))? <
n=12
=1
3.199 + (2/log(2) Z — <
_ TL
1
3199+ (2/log(2)* - = < 396

6 Additional Remarks.

We point out here that, at least for small 8, our results about M Fy are best
possible.

First, we note that in the axiom MF,, one cannot replace [0,1] by an
arbitrary measure space. For example (Theorem 9 of Rao [19]), consider the
measure space (wi, i), where countable sets have measure 0, co-countable sets
have measure 1, and other sets are not y-measurable. Then no extension of y
can measure the countable collection of sides of rectangles whose generated o-
algebra contains the well-order on wy, since such a measure would contradict
Fubini’s Theorem. By a related use of Fubini’s Theorem, Grzegorek [10]
shows that M E, (X, p) must fail some atomless measures. Specifically, if &
is the least size of a non Lebesgue measurable subset of the real line, and
(X, u) is any atomless probability space with |X| = &, then M FE, (X, p) is
false. The following lemma and corollary also use this method of proof.
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Lemma 6.1 Suppose Y C [0,1], and suppose Y* /7Y as o 7 v, where
~ 1s some limit ordinal and each Y is a Lebesgue nullset. Then there is a
countable family € of subsets of [0,1] such that every measure v extending
Lebesgue measure which measures all the sets in € makes Y a v-nullset.

Proof: First, fix € > 0. Let A be Lebesgue measure on [0,1]. For each
a < v, cover Y by an open set, U”, with A(U?) < e. Ify € Y, let V¥
be U, where « is least such that y € Y. If y ¢ YV, let V¥ = (). Now, we
have constructed a V' C [0,1] x [0, 1], with every horizontal slice V¥ an open
set of measure < e. Let {B, : n € w} be an open base for [0,1], and let
A, = A.(e) ={y: B, C V¥}. Let v be any extension of A such that each
A, is v-measurable. Then V' is in the o-algebra generated by v-measurable
rectangles, and hence is v x v measurable, so fy v(V,)dv(z) < € by Fubini’s
Theorem. Now, for € Y, the vertical slice V., contains all of Y except for
a Lebesgue nullset, so fi v(V,)dv(x) > v*(Y)? (where v* is outer measure).
Hence, v*(Y)?* < e.
Now, ¢ was arbitrary, so we may let & = {A4,(27) :n,i <w} =

Of course, Lemma 6.1 is trivial unless M E,, is true.

Corollary 6.2 MFE, implies that no Lebesgue measurable set of positive
measure is an increasing union of Lebesque nullsets.

Next, we make some remarks on the additivities of our measures.

Theorem 6.3 For any cardinal 6, there is a family € of 0 subsets of 7T,
with the following property: Whenever p is a probability measure on 6% such
that each set in € is u-measurable and each singleton is a nullset, then 07 is
a union of 0 nullsets.

Proof. Note that if we allowed & to have size 8T, there would be an obvious
Ulam [26] matrix argument here, but to get £ of size 6, we need a bit more
care.

For each a < 0T, let R, well-order # in type at least a. Let £ be the
family of all sets of the form {a < 0% : {R,n}, where {,n < . Fix a
measure p as above. By the standard exhaustion argument, it is sufficient
to find a union of # nullsets which covers some p-measurable set of positive
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measure, so we assume that this never happens and derive a contradiction.
This argument may be viewed either as an attempt to produce the Ulam
matrix by just measuring 6 sets, or as an attempt to apply Solovay’s [22]
Boolean ultrapower technique to the R, to produce, in some random real
extension, a well-order of 8 of type 6T.

Let 7 be the family of all X C #% such that X C Ug<g Ne¢ for some
sequence N¢ of p-nullsets. By our assumption on g, no p-measurable set
of positive measure is in Z. Clearly, Z is an ideal, and every union of < 6
elements of 7 is in 7.

Let ¥ be the family of all X C 6% such that XAB € T for some pu-
measurable B. Observe that ¥ is a subalgebra of P(07), and is closed under
< # unions and intersections. Define a measure v on ¥ so that v(X) = u(B)
for some p-measurable B with XAB € T; note that this definition of v(X)
is independent of the B chosen. Also note that v is #T-additive, in the sense
that v(Ugcs Xe) = 2ecp ¥(Xe) whenever the X, are disjoint sets in X. In
particular, every proper initial segment of #T has measure 0.

For a < 0% and { <0, let Ef = {8 :a < B <0t A rank(¢, Rg) = a}.
By induction on o < 0%, prove that each £¢ is v-measurable. Now, the £
form a r-measurable Ulam matrix, which yields an immediate contradiction.
|

In [3], Carlson proves this for the case § < ¢. For this case, his argument
is much simpler than ours. He notes that the rows of the Ulam matrix are
disjoint, so each row can be countably generated by countably many sets, so
the entire § x T matrix can be countably generated by 6 sets.
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