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Abstract

We consider axioms asserting that Lebesgue measure on the real

line may be extended to measure a few new non�measurable sets�

Strong versions of such axioms� such as real�valued measurability� in�

volve large cardinals� but weak versions do not� We discuss weak

versions which are su�cient to prove various combinatorial results�

such as the non�existence of Ramsey ultra�lters� the existence of ccc

spaces whose product is not ccc� and the existence of S� and L� spaces�

We also prove an absoluteness theorem stating that assuming our ax�

iom� every sentence of an appropriate logical form which is forced to

be true in the random real extension of the universe is in fact already

true�

� Introduction�

In this paper� a measure � on a set X is a countably additive measure
whose domain �the ��measurable sets� is some ��algebra of subsets of X�
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� INTRODUCTION� �

We are primarily interested in 	nite measures� although most of our results
extend to ��	nite measures in the obvious way� By the Axiom of Choice
�which we always assume�� there are subsets of 
�� �� which are not Lebesgue
measurable� In an attempt to measure them� it is reasonable to postulate
measure extension axioms of the following form


De�nition ��� If � is any cardinal and � is a measure on the set X� then
ME��X��� holds i� whenever we choose a family E of � or fewer subsets of
X� there is a measure � on X which extends � such that each set in E is
��measurable� ME� denotes ME��
�� ��� ��� where � is Lebesgue measure on

�� ���

For � � �� ME��X��� holds for every 	nite measure �� but for in	nite ��
it can depend on �X��� and the underlying model of set theory� Regardless
of the set theory� there is always some separable atomless probability space
�X��� such that ME��X��� is false �by Theorem � of Grzegorek 
���� see
also x��� In this paper� we are concerned mainly with ME�� not arbitrary
ME��X���� but in applications ofME�� it is often convenient to replace 
�� ��
by �� or by 
�� ��� �with the usual product measure�� This is justi	ed by the
following


Proposition ��� Let � be a �nite Borel measure on the compact metric
space X� Then ME� implies ME��X���� Furthermore� ME� is equivalent
to ME��X��� unless � is a countable sum of point masses�

Proof� To derive ME��X��� from ME�� let f 
 
�� �� � X be a Borel
measurable function such that � is the induced measure� c � �f��� where
c � ��X�� Then we can extend � to measure a family E of subsets of X by
extending � to measure ff���E� 
 E � Eg� Conversely� if � is not a sum of
point masses� we can 	x a closed K � X of positive measure such that �
restricted to K is atomless� We can then deriveME� fromME��X��� using
a function g 
 K � 
�� �� such that � � c � �g��� where c � �	��K��

Note that if � is a countable sum of point masses� then ME��X��� is a
triviality� since then every subset of X is ��measurable�

Now� considerME� for various in	nite �� ME� is false under CH or MA
�for numerous reasons � see below�� Nevertheless� ME� and also ME�� are
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consistent with c �the continuum� ��� being ��� In general� for uncountable
�� one can get ME� together with c � ��


Theorem ��� �Carlson �	
� Assume that in the ground model V � � is some
in�nite cardinal with �� � �� Let V 
G� be formed from V by adding �� or
more random reals� Then ME� holds in V 
G��

In particular� if CH holds in V and � � ��� then we get a model of
ME�� plus c � ��� More generally� for regular � 
 �� we can get models
of ME� with either c � �� or c 
 ��� Furthermore� for small � �e�g�� below
the 	rst weakly Mahlo cardinal�� ME� implies MA� for the partial order
which adds one random real �see Corollary ����� and hence c � ��� Carl�
son�s paper 
�� discusses applications of ME����� �� for various uncountable
cardinals � �where � is the usual product measure� to normal Moore space
problems� whereas our paper concentrates on applications of ME� �that is�
ME����� ����

The emphasis of this paper is on small �� but we remark brie�y on ME�

for larger values� which leads naturally to large cardinal axioms� By the
method of Solovay 
��� �see also 
���� the assumption of ME� plus c � � is
equiconsistent with a weakly compact cardinal � By Ulam 
���� the existence
of a real�valued measurable cardinal is equivalent to what one might call
ME�� that is� Lebesgue measure can be extended to measure all sets of
reals simultaneously� So� by Solovay 
���� ME� is equiconsistent with the
existence of a �two�valued� measurable cardinal� For a discussion of PMEA�
which involves extending measures on various ��� see Fleissner 
���

We turn now to applications ofME�� These are all statements which hold
in random real extensions� and would thus would be easy to prove from a real�
valued measurable cardinal� using Solovay�s Boolean ultrapower method 
����
but require some care to derive from the weakerME�� In x�� we establish an
absoluteness theorem which says that� assuming ME�� if a statement � of a
certain simple logical form is true about � in random real extensions� then
� is already true in V � The form of � enables us to produce in V objects
which can be constructed from a single random real� Some applications are
given by the following theorem�
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Theorem ��	 ME�� implies

�� there are ccc topological spaces X and Y such that X � Y is not ccc�

	� there are strong S� and L�spaces�


� there is an uncountable 	��entangled set�

As usual� ccc denotes the countable chain condition� By Galvin 
��� CH
implies that ccc is not productive� whereas MA � 
CH implies that ccc is
productive �see� e�g�� Theorem ���� of 
����� As is well known �see� e�g��
Exercise ��C� of 
����� productivity of ccc is the same whether we deal with
topological spaces or with partial orders� and work on productivity of ccc
usually deals with the partial orders directly�

Roitman showed 
��� that in random real extensions of V � ccc partial or�
ders P and Q� with P� Q not ccc� may be constructed from a single random
real� In the same paper� she constructed strong S� and L�spaces from a sin�
gle random real� The fact that uncountable entangled sets are added by a
random real is due to Todor�cevi�c �see page �� of 
��� for a proof�� It follows
almost immediately from these facts and Solovay�s Boolean ultrapower con�
struction 
��� that the conclusions to Theorem ��� follow from a real�valued
measurable cardinal� see also Fremlin 
�� for a discussion� To apply our abso�
luteness result to produce these results from the weaker assumption ofME���
however� we exploit the form of the construction of the desired objects from
the random real� this is discussed in x�� Actually� Theorem ������ follows
directly from Theorem ������� by Todor�cevi�c 
����

While our absoluteness result applies to objects which can be constructed
from one random real� some further applications of ME� do not seem to 	t
this pattern� For example� ME� implies MA�� for the partial order which
adds one random real �Corollary ����� which in turn has a number of well�
known consequences �e�g�� every subset of 
�� �� of size �� is of 	rst category��
Of course� this refutes CH� Also �Corollary ����� ME� implies that no
Lebesgue measurable set of positive measure can be an increasing union of
Lebesgue nullsets� This also refutes CH� as well as full MA� Finally� we
mention


Theorem ��� ME� implies that there are no Ramsey ultra�lters�
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A Ramsey �or� selective� ultra�lter is a nonprincipal ultra	lter U on �
such that every partition � 
 
��� � � has a homogeneous set in U � As is well
known 
��� this implies that for each 	nite n� U is also Ramsey for partitions
on n�tuples� Under CH orMA� there is a Ramsey ultra	lter� as is easily seen
by W� Rudin�s construction 
��� of a P �point ultra	lter� It is already known

��� that there are no Ramsey ultra	lters in the model obtained by adding at
least c� random reals� Using this method of proof� Fremlin 
�� shows that a
real�valued measurable cardinal refutes the existence of Ramsey ultra	lters�
A proof of Theorem ��� may be patterned after the argument in 
��� but we
give a di�erent argument� which also improves the result of 
��� to


Theorem ��
 Let V 
G� be formed from V by adding �� or more random
reals� Then in V 
G�� there are no Ramsey ultra�lters�

Although the method of 
����
�� alone does not seem to prove this� in
proving Theorems ��� and ���� we emulate 
����
�� to refute a property weaker
than Ramsey� known as �rapid P�point or �semi�selective �

A special case of Theorem ��� is that ME� becomes true if we add c
�

random reals� But while adding �� random reals su!ces for Theorem ����
adding �� random reals may not be enough to get ME�� To see this� ob�
serve that ME� is false if the well�order on the cardinal c is in the ��algebra
generated by rectangles� since� by Fubini�s Theorem� the sides of the rect�
angles will form a countable collection of subsets of c �equivalently� of 
�� ���
which cannot be measured by any atomless ��additive probability measure�
In particular� by 
��� or 
���� ME� is false under CH or MA� Furthermore�
suppose the ground model V satis	es MA�
CH� Then� adding �� random
reals does not change c� so it is still true in V 
G� that the well�order on c is
in the ��algebra generated by rectangles� so ME� is false in V 
G�� Further
use of rectangles to derive theorems from ME� occurs in x��

We also cannot replace the �� by �� in Theorem ���
 if the ground model
satis	es CH� then CH will remain true after adding �� random reals� so
there will be a Ramsey ultra	lter in the extension�

Theorems ��� and ��� both have the same conclusion� �no Ramsey ul�
tra	lters � The proofs� given in x�� are similar too� and utilize the same
probabilistic argument� although the proof of Theorem ��� adds a forcing in�
gredient� Our method for refuting Ramsey ultra	lters in x� may seem a bit
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arti	cial� since the argument does not deal directly with the Ramsey prop�
erty at all� but rather with a rather technical consequence thereof� In x��
we present a more natural argument using random graph theory� Actually�
the method in x� requires more work in verifying the details than does the
method of x�� but it derives the lack of Ramsey ultra	lters directly from a
lemma about random graphs on 	nite sets� which might be of some interest
in its own right�

� Preserving Suprema�

A key ingredient of x��s proof of our absoluteness result is the existence of
a measure algebra in which certain suprema are preserved� We begin this
section by reviewing some basic facts about measure algebras� and then we
look at the suprema preserving strength of ME� for various ��

De�nition ��� If � is a probability measure on a set X� then B��� is the
measure algebra of the ��measurable subsets of X modulo the ��nullsets� If �
is a cardinal� and �� is the usual product measure on ��� then we abbreviate
B���� by B� � If E is a family of ��measurable sets�

W E abbreviates
W
E�E
E��

Note that the elements of B��� are equivalence classes 
E� of ��measur�
able sets� with 
D� � 
E� i� DnE is a nullset� B� is the measure algebra with
which one forces to add � random reals� This is equivalent to forcing with
the Baire sets of positive measure� as in 
���� When just doing forcing� it is
somewhat simpler to use the Baire sets� rather than their equivalence classes�
but when discussing algebraic properties� such as suprema� it is somewhat
simpler to work with the Boolean algebra�

As is well known� B��� is a complete Boolean algebra� and the following
lemma relates suprema with unions


Lemma ��� If E is a family of ��measurable sets� then
W E � 


S E�� for
some countable E� � E�

If E is uncountable� then
S E may fail to be measurable� If it is measur�

able� then
W E � 


S E�� but this inequality may be strict� for example� let E
be a family of singletons from 
�� ���
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De�nition ��� If E is a family of ��measurable sets� with jEj � �� then �
preserves the ��supremum

W E i�
S E is ��measurable and

W E � 

SE� in

B����

First we look at preserving ���suprema� and then we look at a not�so�large
cardinal property to handle preserving ��suprema�

Theorem ��� If E � P�X� and jEj � ��� then there is a countable collection
S � P�X� such that every measure on X which measures E � S preservesW E�

We shall prove this after pointing out two corollaries� Note 	rst that this
theorem applies when extending a measure � with E � dom���


Corollary ��	 ME��X��� � X is not a union of �� ��nullsets�

For Lebesgue measure� this gives us a form of Martin�s Axiom� Speci	�
cally� letMA���rr� representMA� for random real forcing� that is�MA���rr�
says that whenever P is a partial order for adding one random real� and D
is a family of no more than � dense subsets of P� then there is a 	lter G in
Pmeeting each D � D� The following well�known proposition relates the
preservation of ��suprema to MA���rr��

Proposition ��� MA���rr� is equivalent to the statement that 
�� �� is not
the union of � Lebesgue nullsets�

Thus� by Corollary ���� we have the following�

Corollary ��
 ME��MA����rr��

In particular� ME� � c � ��� Note that we cannot �raise the cardinals
by � in Corollary ���
 ME�� is consistent with c � ��� so it cannot imply
MA����rr�� Hence� in Theorem ���� if jEj � ��� we cannot expect to get
jSj � ��� We can get an S of size ��� as we explain after proving Theorem
����

Our proof employs the following ancient fact �proved in Kunen 
��� and
Rao 
���� about �� � ���
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Theorem ��� Each subset of ����� is in a ��algebra generated by countably
many rectangles of the form B � C� where B�C � ���

Another easy fact we employ in proving Theorem ��� reduces suprema to
disjoint suprema


Lemma ��� Suppose that E� is ��measurable for each 
 � ��� Let E�
� �

E� n S���E� �so E �
� � E��� Then

W
����
E�� �

W
���� 
E

�
���

Now we preserve our ���suprema


Proof of Theorem ���� Fix a collection E � fE� 
 
 � ��g� By Lemma
���� we may assume that E is a disjoint collection� By Theorem ���� the set
L � fh�� 
i 
 
 � � � ��g below the diagonal is in the ��algebra generated
by a countable collection fBn � Cn 
 n � �g� where each Bn and Cn is a
subset of ��� Let E �

S
���� E�� De	ne F 
 E � �� so that F �x� � 
 i�

x � E�� Let

S � fEg � fF���Bn� 
 n � �g � fF���Cn� 
 n � �g �
Let L� �

S
������ E� �E�� Observe that L� is in the ��algebra generated by

the F���Bn�� F���Cn��
By way of contradiction� assume that � measures E � S but fails to pre�

serve
W E� that is�

W
���� 
E�� � 
E�� By Lemma ���� 	x � � �� such thatW

����
E�� �
W
��� 
E��� Let G �

SfE� 
 � � 
 � ��g� Then G is mea�
surable and not null� but is partitioned into the E� �for � � 
 � ����
which are null� De	ne M �

SfE� � E� 
 � � 
 � � � ��g� Note that
L�� and hence also M � is measurable in the product measure � � �� Each
vertical slice Mx � fy 
 �x� y� � Mg is contained in a countable union
of the nullsets E�� and is hence a nullset� whereas each horizontal slice
My � fx 
 �x� y� � Mg contains all but countably many of the E� �for
� � 
 � ���� so ��My� � ��G� 
 �� But then M contradicts Fubini�s
Theorem�

We turn now to preserving ��suprema for � 
 ��� In order to pin down
the � for which ME� guarantees that we can preserve these suprema� we
de	ne a not�so�large cardinal property�

In the following� L is always a countable 	rst order language containing
the symbol �� � For any ordinal �� a structure A for L is called a ��structure
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i� A has universe � and �� is interpreted as the usual well order on ��
Another structure B for L is called an end extension of A i� B is a proper
extension of A and no member of � gets a new element� that is� if 
 � � and
b � B� then b �B 
 implies b � �� if in addition� B is an elementary extension�
it is called an elementary end extension� or eee� See 
�� for general background
on elementary end extensions� We consider here real�valued elementary end
extendible ordinals


De�nition ��	 An ordinal � has the rveee property� or is rveee� i� each
��structure A has an eee in some random real extension of the universe�

The Compactness Theorem implies that � is rveee� and the end extension
is obtainable without adding random reals� We shall see presently �Proposi�
tion ����� that a rveee ordinal is� in fact� a cardinal� it is also weakly Mahlo�
and is weakly compact in L� Hence� the following theorem applies to pre�
serving ��suprema for a �reasonable number of smaller �


Theorem ��� If E � P�X� and each uncountable � � jEj is not rveee� then
there is a family S � P�X� such that jSj � jEj� and such that every measure
on X which measures E � S preserves

W E�
Again� by Proposition ���� we have the following�

Corollary ��� For � � �� such that each uncountable � � � is not rveee�
ME��MA���rr��

Since MAc��rr� is false and there are models of ME� plus c � �� �see
Theorem ����� we cannot preserve ���suprema using just ME�� Similarly� if
� � c is real�valued measurable� then ME� is true and MA���rr� is false� so
the assumption on rveee ordinals cannot be dropped from the corollary or
the theorem�

We prove Theorem ��� by contradiction� assuming
W E � 


S E� enables
us to use an ultrapower in some random real extension to build an eee� The
following lemma simpli	es the construction


Lemma ���� Suppose there are no uncountable rveee ordinals � � �� Then
there is a ��structure A such that every proper elementary extension B of A
contains a nonstandard integer�
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Proof� Let A encode� for each uncountable ordinal � � �� a ��structure A�
witnessing that � is not rveee�

To prove Theorem ���� we shall use an ultrapower based on de	nable sets�
For a ��structure A� let DA be the set of subsets of � 	rst order de	nable in A

from elements of �� and let FA be the set of functions in �� 	rst order de	nable
in A from elements of �� For any ultra	lter U on DA� we have the ultrapower
FA	U � A version of "Lo�s� Theorem for de	nable functions shows that FA	U is
an elementary extension of A� Although the original "Lo�s� Theorem does not
apply directly here� one can prove the version we need simply by mirroring
the original�s proof� which inducts on the complexity of formulas� taking care
in the existential case to produce a de�nable function� The extension FA	U
will be proper i� U is nonprincipal� Also� FA	U will be an ��model i� for each
function f � FA with f 
 � � �� there is some n � � so that f���fng� � U �
Proof of Theorem ���� Fix E � P�X� such that each uncountable � � jEj
is not rveee� and let � � jEj� Let fE� 
 
 � �g list E� and form the
corresponding disjoint family in the usual way
 for each 
 � �� set E�

� �
E� n S���E�� Let E �

S
��� E� �

S
��� E

�
�� and de	ne � 
 E � � so that

��x� � 
 for each x � E �
�� Fix A as in Lemma ����� and let

S � fEg � fE �
� 
 
 � �g � f����D� 
 D � DAg �

Suppose � measures S � E� and suppose that � does not preserve
W E� so


E� 

W
���
E�� � W

���
E
�
�� in B���� We shall derive a contradiction�

Let G be a B����generic 	lter over V with 
E� � G but
W
���
E

�
�� 	� G�

De	ne U � fD � � 
 
����D�� � Gg� By upward closure of G� each 
E�
�� 	� G�

so U is nonprincipal� and hence FA	U is a proper extension of A�
Finally� we show that FA	U is an ��model� which will contradict the

choice of A� Suppose f � FA and f 
 � � �� Then � is the disjoint union of
the sets Cn � f
 � � 
 f�
� � ng� Since the 
����Cn�� form a partition of
unity in the ground model V � some 
����Cn�� is in G� so some Cn is in U �

Next� we show that rveee ordinals are weakly Mahlo in V � and weakly
compact in L� This argument uses nothing special about random real forcing
besides the fact that co	nalities are preserved�

First� observe that the Keisler�Silver 
��� argument works also for forcing
extensions
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Lemma ���� Let � be any uncountable regular cardinal� and let P be any
forcing order such that � remains regular in P�generic extensions� If each
��structure has an eee in some P�extension of the universe� then each ��
structure has a well�ordered eee in some P�extension of the universe�

Proposition ���� If � 
 � and each ��structure has an eee in some co�nal�
ity�preserving forcing extension� then � is weakly Mahlo and is weakly compact
in L�

Proof� As is well known� if � fails to be weakly Mahlo or fails to be weakly
compact in L� then there is a ��structure A which has no eee in V � We
simply observe that this A continues to work in co	nality�preserving forcing
extensions� Speci	cally� we consider cases


If � fails to be a regular cardinal� let cf��� � � � �� and set A � h���� gi�
where g � � is a co	nal map from � to �� and g��� � � for � � � � �� Then
A will fail to have an eee in every extension of V �

If � is regular but not weakly Mahlo� let C 
 � be a club which contains
only singular limit ordinals� For each � � �� choose a co	nal map h	 

cf��� � �� Code these by a map H 
 � � � � � by letting H��� �� � h	���
when � � cf��� � � � C� and H��� �� � � otherwise� Let A � h����C�Hi�
Then A will fail to have a well�founded eee in every extension of V in which
� is regular�

If � is regular but not weakly compact in L� then in L� there is a ��
structure A such that A has no eee in any extension of L in which � remains
regular�

By a similar proof� one may show that if S is stationary in �� then S � 

is stationary in 
 for some regular 
 � �� This property was also discussed
in 
���� it directly implies the usual weak�inaccessible type large cardinal
properties one gets from a weakly compact cardinal�

It is easy to see that every weakly compact cardinal is rveee in every
random real extension� so that a rveee cardinal � c is equiconsistent with
a weakly compact cardinal� In fact� if � is weakly compact in V � and V 
G�
is formed by adding more than � random reals or Cohen reals� then � is
actually 	veee in V 
G�� that is every ��structure has an eee in some the
universe �now� V 
G�� itself �see 
����� In particular� considering the Cohen
real case� we see that the existence of an rveee cardinal cannot have any
interesting measure�theoretic consequences�
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Corollary ���	 MEc implies that some � � c is weakly compact in L�

Proof� If not� then by Proposition ����� each uncountable � � c fails to be
rveee� so by Corollary ���� MAc��rr� holds� which is impossible�

So� as Carlson notes in 
�� by a somewhat di�erent argument� MEc is
equiconsistent with the existence of a weakly compact cardinal�

� An Absoluteness Result�

In this section� we describe our absoluteness result for random real models
and use it to prove Theorem ���� As in x�� we view random real models as
extensions by some measure algebra B� � The following additional de	nitions
will be useful� If � is a sentence in the forcing language� k�k denotes its
Boolean value �the maximum condition which forces ��� Each b � B� has
a countable support� supt�b�� which is the minimal subset T � � such that
b is the equivalence class of a cylinder over T � If � is a B� �name �in the
forcing language�� supt�� � denotes the union of all supt�b� such that b is
used �hereditarily� in the construction of � � Whenever we name reals or
subsets of �� we choose names with countable support�

Theorem 	�� Fix � � �� such that each uncountable 
 � � is not rveee�
and assume ME�� Suppose

� �B� ��x 
 � � �� ��Y � �� ��x� Y � � ���

where � is a �rst order formula over a ��structure A� Then it is true �in V �
that

��x 
 � � �� ��Y � �� ��x� Y � � ���

Some remarks on syntax
 The notion of ��structure is as in x�� but x and
Y are second order variables here� so that equation ��� expresses a special
kind of #�

� property of the cardinal � plus whatever function and relation
constants are contained in A� Since A is 	xed here� we write �� instead of
�A j� � � If � is real�valued measurable� then by the method of 
���� Theorem
��� holds for all #�

n properties�
Of course� the theorem holds also for � � �� but is trivial in that case by

Shoen	eld�s Theorem� In proving the theorem� the following de	nitions will
be useful�
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De�nition 	�� If Y � �� � �� then Y � � fx � �� 
 �x� 
� � Y g � �� �for
each 
 � ��� and Yx � f
 � � 
 �x� 
� � Y g � � �for each x � ����

De�nition 	�� $r is the name for the o!cial random real� That is� � � $r 

� � �� and k $r�n� � �k � 
ff 
 f�n� � �g� �for n � �� � � ���

The notation $r is used both when we are forcing with some B� � for � � ��
and when we are forcing with a B���� where � is somemeasure on �� extending
Lebesgue measure�

The following lemma lets us drop a quanti	er in ��� of Theorem ����

Lemma 	�� Statement ��� of Theorem 
�� implies that for some B� �name
� � we have supt�� � � �� � �B� � 
 � � �� and � �B� ��Y � �� ���� Y ��

Proof� Apply the maximal principle to get such a � � we can always permute
the coordinates to make supt�� � � ��

In the case that the � here happens to be the o!cial random real $r�
Theorem ��� is immediate from the following


Lemma 	�	 Fix � � �� such that each uncountable 
 � � is not rveee�
and assume ME�� Let � be a �rst order formula over a ��structure A� Let
Y � �� � �� Assume it is true �in V � that

��x 
 � � �� 
��x� Yx� � ����

Then for some B � name $Z� � �B�
$Z � � and

� �B� 
�� $r� $Z� � ����

Proof� If � is any measure on �� extending Lebesgue measure such that each
Y � is ��measurable� we may de	ne the B����name $Y � fh�
� 
Y ��i 
 
 � �g�
Thus� � �B�
�

$Y � � and each k
 � $Y k � 
Y ��� As a preliminary� we shall
establish

� �B�
� 
�� $r� $Y � � �����

To conclude this from ����� we need to measure not only the Y �� but some
sets derived from the formula � as well�

To simplify the argument� we shall measure more sets than necessary� As
usual �
���� let LA be the language of A augmented by a constant symbol p
q
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for each element 
 of �� the domain of A� For each sentence � of LA� let
E� � fx � �� 
 ��x� Yx�g� Let F be the collection of all the E�� where � is
a sentence of LA� Note that F has size � and includes all the Y � �by using
atomic ���

To prove ����� from ����� we shall produce a measure algebra in which we
have k�� $r� $Y �k � 
E�� for any sentence � of LA� The proof of k�� $r� $Y �k �

E�� will be by induction on the complexity of �� but for this proof to work�
the measure algebra will have to preserve certain suprema� In particular�
each induction step handling an existential quanti	er gives us a supremum
to preserve
 For each formula ��v� of LA with one free variable v� let E� �
fE��p�q� 
 
 � �g� Note that E�v��v� �

S
��� E��p�q�� so that a measure algebra

satis	es

E�v��v�� �

�
���


E��p�q�� ���

i� it preserves
W E�� Apply Theorem ��� to choose S � P���� of size � such

that each measure on �� which measure F � S preserves each
W E�� Then

apply ME� to 	x a measure �� extending Lebesgue measure� which measures
F � S�

Now� in the measure algebra B���� induction on the complexity of � does
indeed show that k�� $r� $Y �k � 
E�� for each sentence � of LA� Then� in par�
ticular� for the sentence 
�� ���� says that E�� � ��� so that k
�� $r� $Y �k � ��
proving ������

Finally� we conclude ���� by Maharam�s Theorem� We may assume that �
was chosen so that the ��measurable sets are generated by the � sets in F�S
together with the basic clopen sets in ��� so that the Maharam dimension
of � cannot exceed �� Thus� there is an isomorphism i from B��� onto some
complete subalgebra D of B � � with i�
ff 
 f�n� � �g�B�
�� � 
ff 
 f�n� � �g�B�
for each n � � and � � �� Since i is an isomorphism� � �D 
�� $r� $Z�� where
$Z is the corresponding D �name� that is k
 � Dk � i�k
 � $Y k�� Since � is
	rst order� it is absolute� so ���� follows�

To 	nish the proof of Theorem ���� we must deal with the possibility that
the � resulting from Lemma ��� is di�erent from $r� To do this� we use the
fact that � may be constructed from $r by countable operations� Speci	cally�
suppose ��x� v� is an L formula� that is� � mentions the parameter x� and
has a free 	rst order variable v� but does not mention Y � Then� given the
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��structure A� and x � ��� de	ne zA
 �x� � �� by

zA
 �x��n� � � � A j� ��x� n� �

Lemma 	�� If � is a B � �name� supt�� � � �� and � � � 
 � � �� then �in
V � there are a ��structure A for some countable L and an L formula � such
that � � � � zA
 � $r��

Actually� � need only quantify over �� so that the map x �� zA
 �x� is a
Borel map from �� to ��� The L and the A from this lemma have nothing at
all to do with the L and the A from Theorem ���� Nevertheless� by merging
the two structures� we may assume that they are the same�

Proof of Theorem 	��� Assume ���� and let � be as in Lemma ���� Then�
let � be as in Lemma ���� Thus� � �B�

��Y � �� �� $r� Y �� where ��x� Y �
is the formula which asserts ��z
�x�� Y �� Now� applying Lemma ���� we get
that condition ���� must be false for every name $Z� so that we could never
have chosen a Y � �� � � to satisfy ����� hence

��x 
 � � ����Y � �� ��zA
 �x�� Yx� �

which implies ����

We now explain how to derive Theorem ��� from our absoluteness result�
We concentrate on ������� the non�productivity of the ccc� since the three
parts to Theorem ��� are similar�

The following standard construction produces a pair of partial orders
whose product is never ccc� Start with a graph � 
 
���� � � on �� vertices�
De	ne the partial orders P�� and P�� by setting P�� � fa � 
����� 
 a is
homogeneous for color �g� and ordering each P�� by reverse inclusion� Clearly�
the product P�� � P�� isn�t ccc
 consider the subset fhf
g� f
gi 
 
 � ��g�
Galvin 
�� showed that under CH there is a graph � such that P�� and P

�
�

are both ccc� By a di�erent argument� Roitman 
��� showed how to read o�
such a � from a random real� We use Roitman�s construction here


Proof of Theorem ��	���� Following 
���� 	x �in V � injective functions
f� 
 
� � for each 
 � ���

For ���� given any x 
 � � �� we de	ne the graph ��x� 
 
���� � � by
��x��f
� �g� � x�f��
�� for each 
 � � � ��� By 
���� � forces that each
P��� �r� is ccc� actually� 
��� just states this for the forcing which adds only
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the one random real $r� but then it must be true also for the B � extension�
since random real forcing never destroys the ccc� Now� we can code the f�
along with the construction of the ��x� in a suitable ��structure A� and apply
Theorem ��� with � � ��� The formula ��x� Y � says that either Y is bounded
in �� or Y fails to be an antichain in one of the P��� �r��

In 
���� Roitman also used similar techniques to get S�spaces and L�spaces
from a single random real� and this implies Theorem ������� we omit the
details� which are almost verbatim the same as for Theorem ������� Note�
however� that to prove Theorem ������ we cannot simply quote the fact that
adding a random real adds an S�space and an L�space� we use the fact that
the proof constructs these spaces in a 	rst�order way from the random real
and some structure in the ground model� In addition� using our absoluteness
result to prove Theorem ������ requires the fact that random real forcing
never destroys S�spaces and L�spaces� Similarly� Todor�cevi�c� construction of
an entangled set �see page �� of 
���� gives us Theorem ������� Actually� he
shows that adding one random real adds an entangled set of size continuum�
Thus� we get


Theorem 	�
 Assume ME�� where � � �� and no uncountable 
 � � is
rveee� Then there is an 	��entangled set of size ��

� Ramsey Ultra�lters�

We begin by explaining the property of Ramsey ultra	lters we intend to
refute� The following fact is easy to see� and was used also in 
����

Lemma ��� Suppose that U is a Ramsey ultra�lter on ��

�� Given ai � 
�� �� for i � �� there is an H � U such that the sequence
hai 
 i � Hi converges�

	� Given ai � 
�� �� for i � � with limi�� ai � �� there is an H � U such
that

P
i�H ai � ��

Of course� in ���� once the sum is 	nite� it may be made arbitrarily small
by choosing a smaller H�
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De�nition ��� A nonprincipal ultra�lter U on � is semi�selective i� U sat�
is�es the conclusions ��� and �	� to Lemma 
���

This notion has occurred with di�erent names in the literature� The term
�semi�selective is taken from 
���� where it was pointed out that under CH
�orMA�� there are semi�selective ultra	lters which are not Ramsey� We shall
show that there are no semi�selective ultra	lters if either ME� holds or if
the universe was obtained by adding at least �� random reals to a model of
ZFC�

We remark that� taken separately� conclusions ��� and ��� of Lemma ���
yield two weaker properties of ultra	lters� neither of which can be refuted in
random real models �or� from anyME��� A nonprincipal ultra	lter satisfying
property ��� is sometimes called �rapid � There are none of these in the Laver
model �Miller 
����� but when we add random reals� any extension of a rapid
ultra	lter from the ground model will still be a rapid ultra	lter� Satisfying
property ��� is equivalent to being a P�point� and by a result of P� E� Cohen

�� there are P�points in every random real extension of a model of CH�

By amalgamating properties ��� and ���� we get the following lemma�

Lemma ��� Let f be any continuous real�valued function on 
�� �� such that
f��� � �� and f�x� 
 � for x 
 �� Let U be any nonprincipal ultra�lter on
�� Then U is semi�selective i� for all � 
 � � 
�� ��� there are H � U and
t � 
�� �� such that X

i�H

f�j��i�� tj� � � ���

Of course� ��� implies limi�H ��i� � t� since H is in	nite� Now� consider
f to be 	xed� Just in ZFC� there is no problem choosing� for each � �

�� ���� an in	niteH� satisfying ���� We now present a probabilistic argument
showing that the set of all these H� can never have the 	nite intersection
property� so that there can be no semi�selective ultra	lters� Of course� this
argument only works in some models of set theory�

The intuition is
 Choose � � 
�� ��� at random� and then� by some �non�
random� process� choose H� � � and t� � 
�� �� so that ��� holds� If f is
�really large � then each H� must be so thin that with probability �� we will
have chosen H��

and H��
such that H��

�H��
is 	nite�
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Corollary ��� below formalizes this intuition� First� some notation� Let
us use � both for Lebesgue measure on 
�� ��� as well as for the usual product
measure on 
�� ��I for any set I� Let � be a probability measure on a set
X� A random I�sequence �indexed by the sample space �X���� is a map % 

X � 
�� ��I such that for each Baire set B � 
�� ��I� the set ��fx 
 %x � Bg�
is ��measurable and of measure ��B�� Note that we are using %x for %�x��

Suppose H � X � I� We let Hx � fi � I 
 �x� i� � Hg and H i � fx �
X 
 �x� i� � Hg�

For the rest of this section� let f�x� � ����	�ln�x� � �� for � � x � ��
and let f��� � �� The justi	cation for using this particular f is only that it
makes Theorem ��� true�

Given any � � 
�� ��I � we say that H � I is � � small i� for some t � 
�� ���P
i�H f�j��i� � tj� � �� A small process for a random I�sequence % is a set

H � X � I such that for each x � X� Hx is %x � small� and for each i � I�
H i is ��measurable� Trivial examples of small processes are �� or X �fig for
any i � I�

Theorem ��	 For any set I� if H is a small process for a random I � se�
quence� then

P
i�I���H

i��� � ����

Assuming Theorem ��� for a moment� we prove the following two corol�
laries� the second one immediately implies Theorem ����

Corollary ��� For any countable set I� if H is a small process for a random
I � sequence� then there are some x� y such that jHx �Hyj � �

Proof� Computing the expectation of jHx �Hyj� we have� by Theorem ����

Z
dx
Z
dy jHx �Hyj �

Z
dx
Z
dy
X
i��

�H�x� i� � �H�y� i� �
X
i��

Z
dx
Z
dy �H�x� i� � �H�y� i� �

X
i��

���H i��� � ���

so there must be some x� y such that jHx �Hyj � ��

Corollary ��
 ME� implies that there are no semi�selective ultra�lters�
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Proof� Let U be a semi�selective ultra	lter on �� Let X be 
�� ��� with the
usual product measure� Let %x � x� For each x� choose Hx � U such that
Hx is %x�small� This de	nes H � X � �� Applying ME�� let � extend the
usual product measure on X and measure all the H i� Then Corollary ���
yields an immediate contradiction�

Later� in proving Theorem ���� it will be important that Theorem ��� was
stated for X an arbitrary sample space� not just 
�� ���� Note that Corollary
��� has a non�vacuous content just in ZFC� since it is easy to 	nd Borel
small processes H � 
�� ��� � � such that each Hx is in	nite�

We turn now to a proof of Theorem ���� We 	rst consider 	nite products�
For each � � 
�� ��n� let h��� be the largest size of a � � small set� Note that
h is Borel measurable� For n � �� let �n be the expected value of h���


�n �
Z
h��� d����

It is easy to see that �� � �� � �� � � � �� Also� �� � � and �� � �� since
every set of size � is small� Also� �n � � as n � �� although the growth
rate is fairly small� as we shall show in Lemma ���� First� we use the size of
the �n to place a crude upper bound to the sum in Theorem ����

Lemma ��� Let I be any set� and let H be a small process for a random I
� sequence� Then

P
i�I���H

i��� � P�
m	���m	m���

Proof� It su!ces to prove this for I 	nite� and it is trivial if I is empty� so
say jIj � n � �� Then� we may as well assume that I is the ordinal n � ��
arranged so that ��H�� � ��H�� � � � � � ��Hn�� For eachm � n��� Hx�m
is %x � m � small� so jHx �mj � h�%x � m�� Then

X
i�m

��H i� �
Z
X
jHx �mj d��x� �

Z
X
h�%x � m� d��x� �

Z

����m

h��� d���� � �m

Setting m � j � ��

��Hj� � �

m

X
i�m

��H i� � �m	m

�since ��H i�� as i��� and the result now follows by summing over j�
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Lemma ��� Whenever � � r � n� �n � ��r � �� � n�e� � e����r �

Proof� First note that f � is positive and f �� is negative on ��� ��� which
implies that f is increasing on 
�� �� and f�a � b� � f�a� � f�b� whenever
� � a� b � a � b � �� Also� the inverse of f is a �small exponential� If
y � ����	�ln�x�� �� then x � e� � e�����y�

Now� 	x n� r� and let S � f� � 
�� ��n 
 h��� � �rg� Then� �n �
��r� �� � n��S�� To estimate ��S�� 	x � � S and then 	x H � n such that
jHj � �r and H is ��small� Then� 	x t � 
�� �� such that

P
i�H f�j��i� �

tj� � �� List H as fi�� j�� � � � � ir� jrg� For � � �� � � � � r� f�j��i�� � ��j��j� �
f�j��i�� � tj� � f�j��j��� tj�� Since the sum is � �� there is an � such that
f�j��i�� � ��j��j� � �	r� So� we have shown that for each � � S� there are
distinct i� j such that f�j��i�� ��j�j� � �	r�

Now� for each particular i �� j� �f� � 
�� ��n 
 f�j��i�� ��j�j� � �	rg �
�e� � e����r� Since there are

�
n
�

�
� n�	� possibilities for i� j� we have ��S� �

n�e� � e����r� proving the lemma�

Of course� for some r� n� the estimate in Lemma ��� is worse than the
obvious �n � n� but by choosing an appropriate r for each n� we may obtain
an upper bound which is su!cient to prove the desired result�

Proof of Theorem ��	� By Lemma ���� it is su!cient to prove thatP�
n	���n	n�

� � ���� To do this we break the sum into blocks� where block �
sums from n � � to ��� and block r� for r 
 � sums for n � ���r�� � � to
���r� On each block� we apply Lemma ����

On block �
 For n � �� � � � � ���� we have �n � � � ��
e� � e���� � ����
�using r � ��� which implies that

���X
n	�

��n	n�
� � ��

�
� ����� � ���

On block r� for r 
 �
 �n � �r� so

���rX
n	���r����

��n	n�
� � ��r��

�X
n	���r����

�

n�
� ��r��

���r��

and it is easy to see that
�X
r	�

��r��

���r��
� ���
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We now add forcing to this proof and show that there are no semi�selective
ultra	lters in any model obtained by adding �� or more random reals� We
continue the notation of xx���� forcing with B� � We continue to use � to
denote Lebesgue measure on 
�� �� or any power thereof� and � to denote the
usual measure on any power of � � f�� �g�

De�nition ��� For any set I� a random I�sequence�name is a name � in
the forcing language such that k� 
 I � 
�� ��k � �� and for each Baire
B � 
�� ��I � ��k� � Bk� � ��B��

Note that in the formalism of forcing� inside the k � � � k� I should really
be �I� whereas B should really be a Borel code �see 
����� not �B�

Lemma ��� Suppose that �� and �� are random I�sequence�names and sup�
pose that �� and �� names in the forcing language such that each �� is forced
by � to be a subset of I and to be ���small �� � �� ��� Assume that supt�����
supt���� is disjoint from supt����� supt����� Then some forcing condition p
forces j�� � ��j � ��

Proof� This lemma involves forcing� so it may be perceived to take place in
some ground model� V � The proof is more transparent if we view V as being
countable from the outside� so we may refer explicitly to generic objects� Let
Z � ��� In the case of random real forcing� it is more convenient to think
of the generic object as an object z � Z which is random over V �that is�
not in any V �coded Baire nullset�� rather than a generic 	lter �see 
����� To
prove the lemma� it is su!cient to 	nd some z random over V such that
jval���� z� � val���� z�j � � �where val refers to the value of a name in the
generic extension��

Let T � supt���� � supt����� let Y � �T � and let X � ��nT � Then we
may identify Z with X � Y � and think of the extension V 
z� � V 
�x� y��
as the iterated extension V 
y�
x�� Fix a y � Y which is random over V �
Then for all x � X� x is random over V 
y� i� �x� y� is random over V �
Furthermore� x is random over V 
y� for almost every x � X� For � � �� �� let
%��x � val���� �x� y��� Since supt���� is disjoint from T � %� is a random I�
sequence� De	ne H� � X � I so that H��x � val��l� �x� y�� when x is random
over V 
y�� and H��x � � otherwise� Then H� is a small process for %�� For
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each i � I� supt�ki � ��k� � supt�ki � ��k� � T � which implies that H i
� and

H i
� are �stochastically� independent� Now� applying Theorem ��� and the

Cauchy�Schwarz inequality
Z
jH��x �H��xjdx �

X
i�I

��H i
� �H i

�� �
X
i�I

��H i
�� � ��H i

�� �

�
X
i�I

��H i
��

����� � �X
i�I

��H i
��

����� � ���

Hence� �fx � X 
 jH��x �H��xj � �g � ���� so we may choose an x random
over V 
y� such that val���� �x� y�� � val���� �x� y�� � H��x �H��x has size � or
�� as required�

Now� Theorem ��� follows immediately from


Theorem ��� Suppose that � � ��� Then it is forced by � that there are no
semi�selective ultra�lters in the generic extension by B� �

Proof� If the theorem fails� then by homogeneity of B� � there would be a
name $U such that � forces $U to be a Ramsey ultra	lter� In V � 	x disjointly
supported random ��sequence�names� ��� for 
 � ��� Then 	x names �� such
that � forces that �� � $U and that �� is ���small� By the usual pressing�down
argument� we may 	nd distinct 
� � such that supt����� supt���� is disjoint
from supt���� � supt����� Then ��� ��� ��� �� contradict Lemma ����

� Random Graphs

In this section� we show how to derive Theorems ��� and ��� directly from a
result in random graph theory about partitions on 	nite sets� For background
in this subject� see 
��
����

The intuition is
 for a 	xed set I� choose a partition % 
 
I�� � � at
random� and then� by some �non�random� process� construct a homogeneous
set H for %� There are many results in the literature� going back to a ����
paper of Erd&os 
��� to the e�ect that with high probability� H must be fairly
�thin � Erd&os used this to establish an exponential lower bound for the
Ramsey numbers�

To formalize this intuition� we use the following general framework� Let
�X��� be a probability space� A random partition of a set I� indexed by
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�X���� is a map % such that for each x � X� %x �i�e�� %�x�� is a partition� %x 


I�� � �� and such that the sets Ei�j � fx 
 %x�i� j� � �g� for fi� jg � 
I���
are ��measurable and are independent events of probability �i�e�� measure�
�
� �

A homogeneous process �for %� is a set H � X � I such that for each
x � X� Hx is homogeneous for %x� and for each i � I� H i is ��measurable�
Trivial examples of homogeneous processes are �� orX�fi� jg for any i� j � I�
The speci	c theorem we need is


Theorem 
�� If H is a homogeneous process for a random partition of a
set I� then

P
i�I���H

i��� � �����

Note that Theorem ��� does not assume I to be 	nite� although once we
prove it for 	nite I� it follows immediately for all I� From Theorem ���� we
may derive Theorems ��� and ��� exactly as in x�� we omit the details of this�

Before proving Theorem ���� we mention the following corollary in 	nite
combinatorics� Roughly� if we choose homogeneous sets for partitions using
any �non�random� process� then there is a non�� probability that two of the
homogeneous sets will have small intersection� Formally�

Corollary 
�� Assume that I is countable �or �nite�� % is a random par�
tition of I indexed by �X���� and H is a homogeneous process for %� Then
�� ��f�x� y� 
 jHx �Hyj � �g� � ����

Proof� Let E �
R
dx
R
dy jHx �Hyj �that is� the expectation of jHx �Hy j��

Let w � � � ��f�x� y� 
 jHx �Hy j � �g�� Then E � � � �� � w�� But also�
exactly as in the proof of Corollary ���� we have E � ����� Combining these�
we get w � �����

We remark that the corollary is probably interesting primarily for the
special case of the �natural random partition� where X is �
I�

�

�with the
usual product measure�� and %x is just x� but we seem to need the more
general statement of Theorem ��� to derive Theorem ���� and the proof of
the general statement is no harder than the proof of the special case�

We proceed now to prove Theorem ���� Actually� we suspect that our
result is not best possible� in that possibly the ����� in Theorem ��� could
be replace by ����� � which would mean that the �� � in Corollary ��� could



� RANDOM GRAPHS ��

be replaced by �� � � However� our proof involves a sequence of estimates�
each one introducing a bit of slop in the 	nal result�

First� the following lemma can be used to bound a sum of squares


Lemma 
�	 Suppose a�� � � � � an� b�� � � � � bn are real numbers such that

a��� � ��aj � b��� � ��bj for j � �� � � � � n� and a� � a� � � � � � an � � ���

Then a�� � � � � � a�n � b�� � � � �� b�n�

Proof� We may assume that each bj � � �otherwise replace bj by jbjj�� Since
the lemma is trivial for n � �� we proceed by induction� So� 	x n 
 �� and 	x
non�negative bj� and assume that the lemma holds for all smaller values of n�
Now� by compactness� 	x numbers a�� � � � � an satisfying ��� which maximize
a�� � � � � � a�n�

If� for some j � n� we have a� � � � � � aj � b� � � � � � bj� then we have
aj��� � � ��ak � bj��� � � ��bk for k � j��� � � � � n� so applying the induction
hypothesis� a�j�� � � � �� a�n � b�j�� � � � �� b�n� Since the induction hypothesis
also implies that a���� � ��a�j � b���� � ��b�j � we have a���� � ��a�n � b���� � ��b�n�

So� assume that a� � � � � � aj � b� � � � � � bj for each j � n� We must
then have a� � � � � � an � b� � � � �� bn� otherwise� we could replace each ai
by some ai � � and contradict maximality� But then an 
 �� so� for a small
enough �� the sequence a� � �� a�� � � � � an��� an � � satis	es ��� and contradicts
maximality� since a� � an implies that �a� � ��� � �an � ��� 
 a�� � a�n�

We shall prove Theorem ��� by using this lemma plus a crude upper
bound �Lemma ���� on the partial sums of the ��Hi�� Let Gn � ��
n�

��� and
let � denote the usual counting probability measure on Gn� We may think
of elements of Gn as random graphs �or partitions� on n nodes� since each
� � Gn is a partition of the pairs from the n�element set n � f�� � � � � n � �g
into � pieces� For each � � Gn� let h��� be the largest size of a homogeneous
set for �� For n � �� let �n be the expected value of h���


�n �
Z
h��� d����

It is easy to see that �� � �� � �� � � � �� Also� �� � �� �� � � and �� � ��
since every set of size � or less is homogeneous� It is not hard to see by direct
computation �Lemma ���� that �� � ���� and �� � ����� It is well�known
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��
��� that for large n� �n is approximately � � lg�n�� where lg�x� is log��x��
A suitable upper bound on the �n can be used to prove Theorem ��� by
applying the following lemma


Lemma 
�� Suppose that for each m� sm � �m� with s� � �� As in Theorem
���� let H be a homogeneous process for a random partition % of a set I� ThenP

i�I���H
i��� � P�

n	��sn�� � sn���

Proof� As remarked above� it is su!cient to prove this when I is 	nite� and it
is trivial if I is empty� so say jIj � n��� Then� we may as well assume that I
is the ordinal n��� arranged so that ��H�� � ��H�� � � � � � ��Hn�� For each
m � n��� Hx�m is homogeneous for %x � 
m��� so jHx�mj � h�%x � 
m����
Then

X
i�m

��H i� �
Z
X
jHx �mj d��x� �

Z
X
h�%x � 
m��� d��x� �

Z
Gm

h��� d���� � �m � sm

Let ai � ��H i� and bi � si�� � si� Setting m � j � �� for j � �� � � � � n� we
have a� � � � �� aj � sj�� � b� � � � � � bj �since s� � ��� so the result follows
by Lemma ���

Using the approximation �n � � � lg�n�� together with the fact that
�log�n � �� � log�n�� � log�� � �

n
� � �

n
� we can now bound

P
i�I���H

i���

by something like � �
log����

�P�
n	�

�
n�
� ������ However� to achieve the bound

of ����� we must work a little harder� For small n� we use the exact value �n�
rather than the asymptotic approximation�

Lemma 
�
 �� � �� �� � �� �� � �� �� � ����� �� � �����

Proof� For ��
 G� has size �� � �� By inspection� � of the � � G� have
h��� � �� and � of the � � G� have h��� � ��

For ��
 G� has size �
 � ��� By inspection� � of the � � G� have h��� � ��
�� of the � � G� have h��� � �� and �� of the � � G� have h��� � ��

For larger n� we compute an upper bound on �n as follows� For r � n�
we de	ne �nr � �f� � Gn 
 h��� � rg�
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Lemma 
�� a� For r � n�

�n � r � � � �nr � �nr�� � �n � r�

b� For r � n�

�nr �
�
n

r

�
� ���r���r���

Proof� For �a�� we partition Gn into three pieces� where h��� � r� h��� � r�
and h��� 
 r� This yields �n � �r � �� � ��� �nr � � r � ��nr � �nr��� � n � �nr���

For �b�� note that h��� � r i� there is some A � n of size r which
is homogeneous for �� Assume r � �� since otherwise �b� is trivial �since

�nr � ��� Then� there are exactly
�
n
r

�
possibilities for A� and each A can be

homogeneous by having all its pairs colored either � or �� so the probability

that A is homogeneous is exactly � � ���r���
These estimates on �n are not quite as crude as they may seem at 	rst

sight� since it is known 
��
��� that for large n� there is some r � � � lg�n�
such that �most of the � � Gn have h��� equal to r or r��� so that �n � r�
For this r� the estimates in Lemma ��� will compute �nr�� �n to be negligible�
bounding �n by some value near r� It was our use of �n at all� in Lemma ����
that was really crude�

Lemma 
�� �� � ���� �� � ���� �� � ������ �� � ����� �� � ������
�
 � ������ �� � ������ �� � ������ �� � ������ ��� � ������ ��� � ������
��� � ������

Proof� We just choose the value the r which yields the best estimate on �n
by Lemma ���� For n � �� �� we use r � � � for n � �� �� �� ��� we use r � � �
for n � ��� ��� we use r � �� For n � �� we use Lemma ��� instead�

Calling the estimate in Lemma ��� sn �as in Lemma ���� �for � � n � ����
and setting s� � �� we get

P��
n	��sn�� � sn�� � �������� � ������ Note that

replacing the exact ���� be the larger ����� yielded a smaller �by �	��� value
of the sum� Let � � ��lg�����s�� � ������ so s�� � ��lg������� To estimate
the tail of the series� it will be su!cient to prove that �n � � � lg�n�� � for
all n � ��� To do that� we use the following estimate�
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Lemma 
�� Suppose that r is an integer with �� � r � n and suppose
r � � � lg�n�� a� where a � �� Then

�n � r � � � �
�

�
�

�

r
� � ��a���r��

Proof� By Stirling�s Formula� r' 

p
��r � rre�r� Since n � �r���a�� and�

n
r

�
� nr	r'� Lemma ��� implies

�nr �
�p
��r

�
�
e

r

�r
� ���r���ar��

Of course� the same estimate holds if we replace r by r � � and a by a � ��
We may simplify this by observing that �� � �	r�r�� � e for all r 
 � �take
the log of both sides�� It follows that �e	�r � ���r�� � er	�rr���� so

�nr�� �
�p
��r

� �
r
�
�
e

r

�r
� �����ar��

Since n � �r���a���

�nr�� � n �
�p
��r

� �
r
�
�
e

r

�r
� �����ar���r���a��

Since� by Lemma ���� �n � r � � � �nr � �nr�� � n�

�n � r � � �
�p
��r

�
�
e

r

�r
� �� � �

r
� �����a��� � ���r���ar��

Now� r � �� implies that r � �e and ��r � ��� so

�n � r � � �
�

�
� �� � �

r
� �����a��� � ���r���ar��

Finally� using a � � yields the desired result�

Lemma 
�� If n � ��� then �n � � � lg�n�� ����

Proof� We apply Lemma ���� Choose a such that � � a � � and such that
r � ��lg�n��a is an integer� Then r�� � ��lg�n���� and �n � r��� �

��
�
��
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Proof of Theorem 
��� First note that for all n � ��� �n � ��lg�n������
For n � ���� this follows from Lemma ���� For smaller n� we just compute
it using Lemma ���� using r � � for �� � n � ��� r � � for �� � n � ���
r � � for �� � n � ��� r � � for �� � n � ��� r � �� for �� � n � ��� and
r � �� for �� � n � ����

Thus� we can in fact set sn � � � lg�n� � � for all n � ��� as indicated
above� whence� applying Lemma ���

X
i�I

���H i��� �
��X
n	�

�sn�� � sn�
� �

�X
n	��

�sn�� � sn�
� �

����� � ��	log����� �
�X

n	��

�log�n � ��� log�n��� �

����� � ��	log����� �
�X

n	��

�

n�
�

����� � ��	log����� � �

��
� ����

� Additional Remarks�

We point out here that� at least for small �� our results about ME� are best
possible�

First� we note that in the axiom ME�� one cannot replace 
�� �� by an
arbitrary measure space� For example �Theorem � of Rao 
����� consider the
measure space ���� ��� where countable sets have measure �� co�countable sets
have measure �� and other sets are not ��measurable� Then no extension of �
can measure the countable collection of sides of rectangles whose generated ��
algebra contains the well�order on ��� since such a measure would contradict
Fubini�s Theorem� By a related use of Fubini�s Theorem� Grzegorek 
���
shows that ME��X��� must fail some atomless measures� Speci	cally� if �
is the least size of a non Lebesgue measurable subset of the real line� and
�X��� is any atomless probability space with jXj � �� then ME��X��� is
false� The following lemma and corollary also use this method of proof�
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Lemma ��� Suppose Y � 
�� ��� and suppose Y � � Y as 
 � �� where
� is some limit ordinal and each Y � is a Lebesgue nullset� Then there is a
countable family E of subsets of 
�� �� such that every measure � extending
Lebesgue measure which measures all the sets in E makes Y a ��nullset�

Proof� First� 	x � 
 �� Let � be Lebesgue measure on 
�� ��� For each

 � �� cover Y � by an open set� U�� with ��U�� � �� If y � Y � let V y

be U�� where 
 is least such that y � Y �� If y 	� Y � let V y � �� Now� we
have constructed a V � 
�� ��� 
�� ��� with every horizontal slice V y an open
set of measure � �� Let fBn 
 n � �g be an open base for 
�� ��� and let
An � An��� � fy 
 Bn � V yg� Let � be any extension of � such that each
An is ��measurable� Then V is in the ��algebra generated by ��measurable
rectangles� and hence is � � � measurable� so

R �
� ��Vx�d��x� � � by Fubini�s

Theorem� Now� for x � Y � the vertical slice Vx contains all of Y except for
a Lebesgue nullset� so

R �
� ��Vx�d��x� � ���Y �� �where �� is outer measure��

Hence� ���Y �� � ��
Now� � was arbitrary� so we may let E � fAn���i� 
 n� i � �g
Of course� Lemma ��� is trivial unless ME� is true�

Corollary ��� ME� implies that no Lebesgue measurable set of positive
measure is an increasing union of Lebesgue nullsets�

Next� we make some remarks on the additivities of our measures�

Theorem ��	 For any cardinal �� there is a family E of � subsets of ���
with the following property� Whenever � is a probability measure on �� such
that each set in E is ��measurable and each singleton is a nullset� then �� is
a union of � nullsets�

Proof� Note that if we allowed E to have size ��� there would be an obvious
Ulam 
��� matrix argument here� but to get E of size �� we need a bit more
care�

For each 
 � ��� let R� well�order � in type at least 
� Let E be the
family of all sets of the form f
 � �� 
 �R��g� where �� � � �� Fix a
measure � as above� By the standard exhaustion argument� it is su!cient
to 	nd a union of � nullsets which covers some ��measurable set of positive
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measure� so we assume that this never happens and derive a contradiction�
This argument may be viewed either as an attempt to produce the Ulam
matrix by just measuring � sets� or as an attempt to apply Solovay�s 
���
Boolean ultrapower technique to the R� to produce� in some random real
extension� a well�order of � of type ���

Let I be the family of all X � �� such that X � S
	�� N	 for some

sequence N	 of ��nullsets� By our assumption on �� no ��measurable set
of positive measure is in I� Clearly� I is an ideal� and every union of � �
elements of I is in I�

Let # be the family of all X � �� such that X(B � I for some ��
measurable B� Observe that # is a subalgebra of P����� and is closed under
� � unions and intersections� De	ne a measure � on # so that ��X� � ��B�
for some ��measurable B with X(B � I� note that this de	nition of ��X�
is independent of the B chosen� Also note that � is ���additive� in the sense
that ��

S
	�� X	� �

P
	�� ��X	� whenever the X	 are disjoint sets in #� In

particular� every proper initial segment of �� has measure ��
For 
 � �� and � � �� let E�

	 � f� 
 
 � � � �� � rank���R�� � 
g�
By induction on 
 � ��� prove that each E�

	 is ��measurable� Now� the E�
	

form a ��measurable Ulam matrix� which yields an immediate contradiction�

In 
��� Carlson proves this for the case � � c� For this case� his argument
is much simpler than ours� He notes that the rows of the Ulam matrix are
disjoint� so each row can be countably generated by countably many sets� so
the entire � � �� matrix can be countably generated by � sets�
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