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Abstract

We investigate properties of the class of compact spaces on which
every regular Borel measure is separable� This class will be referred to
as MS�

We discuss some closure properties of MS� and show that some
simply de	ned compact spaces� such as compact ordered spaces or com

pact scattered spaces� are in MS� Most of the basic theory for regular
measures is true just in ZFC� On the other hand� the existence of a
compact ordered scattered space which carries a non
separable �non

regular� Borel measure is equivalent to the existence of a real
valued
measurable cardinal � c�

We show that not being inMS is preserved by all forcing extensions
which do not collapse ��� while being in MS can be destroyed even by
a ccc forcing�

x�� Introduction� As we learn in a beginning measure theory course� every Borel
measure on a compact metric space is separable� It is natural to ask to what extent this
generalizes to other compact spaces� It is also true that every Borel measure on a compact
metric space is regular� In this paper� we study the class� MS� of compacta� X� with the
property that every regular measure on X is separable� This contains some simple spaces
�such as compact ordered spaces and compact scattered spaces�� and has some interesting
closure properties� One might also study the class of compacta X such that every Borel
measure on X is separable� but the theory here is very sensitive to the axioms of set theory
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for example� the existence of an ordered scattered compactum with a non
separable Borel
measure is independent of ZFC �see Theorem ����� There is also extensive literature about
compacta in which all Borel measures are regular ����

For the class MS� de	ned using regular measures� there are still some independence
results� but most of the basic theory goes through in ZFC�

First� some de	nitions�
All spaces considered here are Hausdor��
We shall consider primarily 	nite Borel measures on compact spaces�
If � is a Borel measure on X� the measure algebra of �X��� is the Boolean algebra of

all Borel sets modulo �
null sets� If � is 	nite� then such a measure algebra is also a metric
space� with the distance between two sets being the measure of their symmetric di�erence�
Then� we say that � is separable i� this metric space is separable as a topological space�

A Borel measure � on X is Radon i� the measure of compact sets is 	nite and the
measure of each Borel set is the supremum of the measures of its compact subsets� If
X is compact� this implies that the measure of each Borel set is also the in	mum of the
measures of its open supersets� Note that for compact spaces� the Radon measures are
simply the regular Borel measures�

The Baire sets are the sets in the least �
algebra containing the open F� sets� If X is
compact and � is a 	nite measure de	ned on the Baire sets� then � extends uniquely to a
Radon measure �see ���� Theorem ��D�� and every Borel set is equal to a Baire set modulo
a null set�

De�nition� MS is the class of all compact spaces X such that every Radon measure
on X is separable�

Observe� by the above remarks� that if X is compact� then X is in MS i� every 	nite
Baire measure on X is separable� We shall primarily be concerned with properties of MS�
but we shall occasionally �see Theorem ���� remark on 	nite non
regular Borel measures�
in which case non
separability could arise from a large number of non
Baire Borel sets�

If not speci	ed otherwise� we give ��� �� and � � f�� �g their usual probability measures�
and then ��� ��J and �J have the usual product measures� These measures de	ned in the
usual way would be de	ned on the Baire sets� but they then extend to Radon measures�
These product measures are in fact completion regular � that is� for every Borel set E�
there are Baire A�B such that A � E � B and BnA is a null set � but we do not need
this fact here�

Note that the measure algebras of �J and ��� ��J are isomorphic whenever J is in	nite�
and they are separable i� J is countable� So� for uncountable J � �J and ��� ��J are simple
examples of compact spaces which are not in MS�

If � is a Borel measure on X� and E is a Borel set� then � � E is the Borel measure
on E de	ned in the obvious way� �� � E��B� � ��B� for Borel B � E� We say that � is
nowhere separable i� � � E is non
separable for each Borel set E of positive measure�

Our basic notions never assume that non
empty open sets have positive measure� but
it is sometimes useful to reduce to this situation� If � is a Radon measure on the compact
space X� let U be the union of all open null sets� By regularity of the measure� U is also a
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null set� and is hence the largest null set� We call K � XnU the support of �� Note that
��K� � ��X�� and every relatively open non
empty subset of K has positive measure�

The following lemma is sometimes useful to reduce the study of non
separable mea

sures to nowhere separable measures�

Lemma ���� If X is compact and � is a non
separable Radon measure on X� then
there is a closed K � X such that ��K� � �� � � K is nowhere separable� and every
relatively open non
empty subset of K has positive measure�

Proof� By Maharam�s Theorem ����� there is a Borel E � X such that ��E� � � and
� � E is nowhere separable� We then apply regularity of � to choose C � E of positive
measure� and let K be the support of � � C� F

In x�� we consider some classes of topological spaces which are subclasses of MS� and
in x�� we discuss various closure properties of MS�

In xx���� we look at the behavior ofMS in transitive models of set theory� It is easy to
see that the property of not being in MS is preserved under any forcing extension which
does not collapse ��� In x�� we show that being in MS need not even be preserved by
ccc forcing
 assuming the existence of a Suslin tree T � we construct an X �MS such that
forcing with T adds a non
separable Radon measure on X in the generic extension� Of
course� since the notion of �compact space� is not absolute for models of set theory� some
care must be taken to say precisely what is meant by looking at the same compact space
in two di�erent models
 this is handled in x�� and in a somewhat di�erent way by Bandlow
����

We do not know if there is any simple way of expressing �X � MS� without men

tioning measures� By the results of xx���� there are some simple su�cient conditions for
a compact space X to be in MS
 for example� it is su�cient that X be a subspace of a
countable product of ordered spaces and scattered spaces� By the result of x�� any condi

tion of this form� which is preserved in the passage to a larger model of set theory� cannot
be a necessary condition as well �or� at least� cannot be proved to be necessary in ZFC��

x�� Subclasses of MS� We begin by pointing out some simple su�cient conditions
for a compact space to be in MS�

First� recall some de	nitions� A topological space is ccc i� there are no uncountable
disjoint families of open subsets of the space� If � is a Radon measure on a compact space�
X� then X need not be ccc� but the support of � is ccc� A space X is a LOTS �linearly
ordered topological space� if its topology is the order topology induced by some total order
on X�

Theorem ���� MS contains every compact X such that X satis	es one of the
following�

�� X is second countable �� metric��
�� X is scattered�
�� Every ccc subspace of X is second countable�
�� X is Eberlein compact�
�� X is a LOTS�

Proof� Suppose that X is compact and � is a Radon measure on X�
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For ���� 	x a countable basis B for X� which is closed under 	nite unions� and note
that B is dense in the measure algebra of �X���� For ��� and ���� if � were non
separable�
then the K provided by Lemma ��� would yield an immediate contradiction� Now� ���
follows because� by Rosenthal ����� every ccc Eberlein compact is second countable�

For ���� assume that X is a compact LOTS and that � is non
separable� By Lemma
��� and the fact that every closed subspace of X is a LOTS� we may assume� without loss
of generality� that � is nowhere separable on X
 in particular� every point in X is a null set�
We may also assume that ��X� � �� Let a be the 	rst element of X and b the last element
of X� De	ne f � X � ��� �� by� f�x� � ���a� x��� Then f is continuous �since points are
null sets�� f�a� � �� and f�b� � �� Let � � �f�� be the induced Borel measure on ��� ���
Then � is regular and separable� Let � be the family of all Borel subset B of X such that
there is a Borel subset E of ��� �� with ��B�f���E�� � �� To conclude that � is separable
�and hence a contradiction�� it is su�cient to show that � in fact contains all Borel sets�
since then the measure algebras of �X��� and ���� ��� �� will be isometric� This will follow
if we can show that � contains all Baire sets� Since � is a �
algebra and every Baire set is
in the �
algebra generated by intervals� it is su�cient to show that � contains all intervals�
Since � certainly contains all singletons �take E � ��� it is su�cient to show that each
�a� x� � �� Fix x� and let s � f�x�� and E � f��a� x�� � ��� s�
 then f���E� � �a� z� for
some z � x with f�z� � s� �a� x� � �a� z�� and ���a� x�� � f�x� � f�z� � ���a� z��� so
���a� x���a� z�� � �� F

The proof of ��� would have been a little nicer if we could have said that f were ����
since that would have implied that X is second countable� But we cannot say this� Even
if all non
empty open subsets of X have positive measure� there could be points x � z
with no points between them� in which case f�x� � f�z�� For a speci	c example� take X
to be the double arrow space� which is not second countable but which is the support of a
Radon measure�

Regarding ���� the statement that all Corson compacta are in MS is independent of
ZFC� See Kunen and van Mill ���� and x� for further discussion�

The proofs of ��� and ��� involve passing to the support of the measure� by Lemma
���� which is justi	ed by regularity of the measure� If we drop regularity� X can be both
scattered and a LOTS and still have a non
separable Borel measure�

Theorem ���� There is a compact scattered LOTS which has a non
separable 	nite
Borel measure i� there is a real
valued measurable cardinal � c�

Proof� If 	 is real
valued measurable� let � be a real
valued measure on 	 such that
the set of limit ordinals is a null set
 then every subset of 	 is equal to a Borel �in fact� open�
set modulo a null set� This measure is non
separable by the Gitik
Shelah Theorem ��������
So� � on 	 � yield an example of an ordered scattered continuum having a non
separable
Borel measure�

Now we show that� if there are no real
valued measurable cardinals � c� and � is a
	nite Borel measure on a compact scattered LOTS X� then � is completely atomic�

We do not lose generality if we assume that � is atomless onX� there are no real
valued
measurable cardinals � c� and ��X� � �� We derive a contradiction�
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Remark � If S � X has the property that every subset of S is Borel� then ��S� � �
�by no real
valued measurable cardinals�� More generally� call �S� f� 
� a dangerous triple
i� S is a Borel subset of X� ��S� � �� 
 is a cardinal� and f � S � 
 has the property
that f���Z� is Borel for each Z � 
 and ��f���fzg�� � � for all z � 
� Then the
induced measure� �f��� is a non
trivial measure de	ned on all subsets of 
� and must
then be completely atomic �again� by no real
valued measurable cardinals�� This is not
immediately a contradiction �unless there are no two
valued measurable cardinals either��
But� since � is atomless� there must be a Borel Y � S which is not equal to any f���Z�
�for Z � 
� modulo a null set� We shall use this remark later�

Let X��� be the �th derived subset of X� If x � X� let rank�x� be the least � such
that x �� X������ If C is a non
empty closed subset of X� let rank�C� be the least � such
that C �X����� � �� Note that if � � rank�C�� then C �X� is 	nite and non
empty�

Let C be the set of all closed C � X such that ��C� � � and C contains the 	rst and
last elements of X� If C � C� let I�C� be the set of all non
empty maximal intervals of
XnC� If x � XnC� let comp�x�C� be the �unique� I � I�C� such that x � I� Note that if
C�D � C� C � D� and x � XnD� then comp�x�D� � comp�x�C��

If C�D � C� say C 	 D i� C � D and for all x � XnD� rank�cl�comp�x�D��� �
rank�cl�comp�x�C��� �here� cl denotes topological closure�� Observe that if we get Cn � C
for n � � with each Cn 	 Cn��� we will have a contradiction� since

S
n�� Cn will have

measure � and equal X �since an x not in the union would yield a decreasing �
sequence
of ordinals��

Thus� it is su�cient to 	x C � C and 	nd a D � C with C 	 D� First� note that if
S � XnC and S contains at most one point from each I � I�C�� then every subset of S
is Borel� so ��S� � �� So� ��S� � � whenever S contains at most countably many points
from each I � I�C��

By expanding C if necessary� we may assume that for each �a� b� � I�C�� the points
of maximal rank in �a� b� are among fa� bg�

For each �a� b� � I�C�� If b is a successor point� let R��b� be the singleton of its
predecessor� If cf�b� � �� let R��b� be some increasing �
sequence in �a� b� converging to
b� Otherwise� let R��b� � �� Likewise de	ne L��a� to be a singleton if a is a predecessor
point� a decreasing �
sequence if ci�a� � �� and empty if ci�a� � ��

Let F be the set of all closed D 
 C such that D is of the form

C �
�
fR�b� � L�a� � �a� b� � I�C�g �

where for each �a� b� � I�C�� R�b� � R��b� if R��b� �� �� and otherwise R�b� is a closed
co	nal sequence of type cf�b� in �a� b� converging to b
 and� L�a� � L��a� if L��a� �� ��
and otherwise L�a� is a closed coinitial sequence of type ci�a� in �a� b� converging to a�

Note that F is closed under countable intersections� so we may 	x D � F of minimal
measure� Then� note that ��D� � �� To see this� consider �S� f� 
�� where S � DnC�

 � jI�C�j� and f maps I � �DnC� to one point in 
 for each I � I�C�� If ��D� � ��
then �S� f� 
� would be a dangerous triple� But also� note that if cf�b� � �� then every
Borel set either contains or is disjoint from a closed co	nal sequence in b� Using this� and
minimality of ��D�� we see that every Borel Y � S is equal to some f���Z� modulo a null
set� which is a contradiction�
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So� C 	 D� F

x�� Closure Properties of MS� In this section� we consider questions about the
closure of MS under subspaces� continuous images� continuous pre
images� and products�
We begin with�

Lemma ���� If X �MS� then every closed subspace of X is in MS�

Of course� this is trivial� since a measure on a subspace induces a measure on X in
the obvious way� The same argument works for continuous images� but requires a little
care�

Lemma ���� Suppose that X � MS and f is a continuous map from X onto Y �
Then Y is in MS�

Proof� Suppose � were a non
separable Radon measure on Y � Choose a Radon
measure 
 on X such that � � 
f��� The existence of such a 
 follows easily from the
Hahn
Banach Theorem plus the Riesz Representation Theorem
 see also Henry ����� who
proved this� plus some more general results� Now� the measure algebra of � embeds into
the measure algebra of 
� so 
 is non
separable� contradicting X �MS� F

In particular� if X maps onto ��� ���� � then X ��MS� It is a well
known open question
of Haydon whether the converse holds
 that is� if X is compact and X ��MS� must X map
onto ��� ����! Many counter
examples are known under CH or some other axioms of set
theory ������������ but it is unknown whether a �yes� answer is consistent� or follows from
MA  
CH�

We shall now show that MS is closed under countable products
 it is obviously not
closed under uncountable products� First� consider a product of two spaces�

Lemma ���� If X�Y �MS� then X � Y �MS�
Proof� Let � be a Radon measure on X � Y � We show that � is separable�
Let � be the Radon measure on X induced from � by projection on the 	rst co


ordinate� Since X � MS� there is a countable family fDn � n � �g of closed subsets of X
which is dense in the measure algebra of �X����

For each n� let 
n be the Radon measure on Y induced from � � �Dn�Y � by projection
on the second co
ordinate� Since Y � M � for each n there is a family fEn

m � m � �g of
closed subsets in Y which is dense in the measure algebra of �Y� 
n��

Then the family of the 	nite unions of the sets of the form Dn � En
m is dense in the

measure algebra of �X � Y� ���F

Theorem ���� MS is closed under countable products�
Proof� Suppose that Xn�n � �� are in MS and � is a Radon measure on X �

"n��Xn�
For every n� let �n denote the natural projection from X onto Y n � "k�nXk� Then

�n � ����n is a Radon measure on Y n� and therefore separable� by the previous Lemma
�plus induction�� For each n� 	x a countable family Dn which is dense in the measure
algebra of �Y n� �n�� Then D �

S
n��f�

��
n �D� � D � Dng is dense in the measure algebra

of �X����F
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By the same argument�

Lemma ��� MS is closed under inverse limits of countable length�

SinceMS is closed under countable products and not closed under uncountable prod

ucts� it is reasonable to consider now �
products� a notion between countable and un

countable products� Let X��� � 	� be topological spaces� let X be the usual Tychonov
product of the X�� and let a � ha� � � � 	i be a point in X� We de	ne ��a� to be
the set of all points x of X which di�er from a on just a countable set of coordinates�
Considered as a subspace of X� this set is called the ��product of the X� with base point
a� If 	 is countable� this is just the Tychonov product� If 	 is uncountable� then except
in trivial cases� ��a� is not compact and is a proper subset of the Tychonov product� So�
the question we address now is� if each X� � MS� must every compact subspace of ��a�
be in MS! The answer turns out to be independent of ZFC� and in fact equivalent to a
weakened version of Martin�s Axiom �MA��

Let MAma���� denote the statement that MA���� is true for measure algebras
 that
is� whenever P is a ccc partial order which happens to be a measure algebra� then one can
always 	nd a 	lter meeting �� dense sets� So�MAma���� implies 
CH� andMAma���� fol

lows fromMA����� But also�MAma���� is true in the random real model� or in any model
with a real
valued measurable cardinal� where most of the combinatorial consequences of
full MA fail �see ����� Consequences of MA���� for measure algebras in measure theory
are numerous �see ����� and some of them really only require MAma���� �

By Kunen and van Mill ����� MAma���� is equivalent to the fact that all Corson
compacta are in MS� Recall that X is called a Corson compact i� X is homeomorphic
to a compact subspace of a �
product of copies of ��� ��� So� if MAma���� fails� there is a
compact subspace of a �
product of spaces in MS which fails to be in MS� Conversely�
we can adapt the proof in ���� to show�

Theorem ��	� Assuming MAma���� � if Y is a compact subspace of a �
product of
spaces in MS� then Y �MS�

Proof� Suppose that Y is a compact subspace of the �
product of the X� �� � 	��
with base point a� where eachX� �MS� Assume that � is a non
separable Radon measure
on Y � By Lemma ���� we may assume that every non
empty relatively open subset of Y
has positive measure� Let J � f� � 	 � �y � Y �y� �� a��g� If J is countable� then Y is
a homeomorphic to a closed subspace of the Tychonov product of the X� �� � J�� so Y
would be in MS by Theorem ��� and Lemma ���� So� we assume J is uncountable and
derive a contradiction�

Choose distinct �� � J for � � ��� For each �� let �� � Y � X�� be the natural
projection� For each �� there is a y� � Y with ���y�� �� a�� � and hence there is a relatively

open U� � Y such that a�� �� ���U ���
Since each U� has positive measure� we can apply MAma���� to 	nd an uncountable

L � J such that fU� � � � Lg has the 	nite intersection property� L exists becauseMA����
for a ccc partial order implies that the order has �� as a precaliber� Here the order in
question is the measure algebra of X�

By compactness� choose z �
T
��L U�� Then z� �� a� for all � � L� contradicting the

de	nition of �
product� F
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We now consider the situation with continuous preimages of spaces in MS� Suppose
X is compact� f � X � Y � and Y � MS� Obviously� we cannot conclude X � MS� since
��� maps onto ��� But we might hope to conclude X � MS if we know also that the
preimage of each point is in MS� Unfortunately� this is false� at least under CH� by an
example of Kunen ����� under CH� there is a closed subset X of ��� such that X supports
a non
separable Radon probability measure� yet� the projection f � X � �� satis	es that
for each y � ��� f��fyg is second countable�

However� there are two special cases where we can conclude from f � X � Y that
X � MS� One �Theorem ���� is where Y � MS and the point preimages are scattered�
The other �Theorem ���� is where the point preimages are in MS and Y is scattered� Of
course� there is a third special case which we have already covered� if X is a product�
Y � Z� and f is projection� it is su�cient that the point preimages �i�e� Z� be in MS to
conclude X �MS by Lemma ����

In the proof of Theorem ���� we shall use the following general notation� Suppose
X and Y are compact� f � X � Y � and � is a Radon measure on X� Let 
 � �f��

be the induced measure on Y � If E is any Borel subset of X� let 
E be the measure on
Y de	ned by 
E�B� � ��E � f���B��� Clearly� � � 
E � 
� Let ��E� � L��
� be the
Radon
Nikodym derivative of 
E
 so d
E � ��E�d
� Then � � ��E��x� � � for ae x� In
the following� k � k always denotes the L� norm on L��
��

The next lemma shows how to split a closed subset of X into two independent pieces�

Lemma ��
� Suppose that X and Y are compact and f � X � Y � Suppose that �
is a nowhere separable Radon measure on X� but 
 � �f�� is a separable measure on Y �
Let H � X be closed� and 	x � � �� Then there are disjoint closed K��K� � H such that
for i � �� �� ��Ki� �

�
���H� and k

�
���H� � ��Ki�k � ��

Proof� Let M be the measure algebra of X��� Let N be the sub �
algebra of
M generated by H and all f���B�� where B is a Borel subset of Y � SinceM is nowhere
separable whileN is separable� Maharam�s Theorem implies that there are complementary
Borel sets E�� E� � X such that ��E� � A� � ��E� � A� � �

���A� for all A � N � In
particular� whenever B � Y is Borel� and i is � or �� ��Ei�H�f���B�� �

�
���H�f

���B���
Thus� ��Ei �H� �

�
���H��

Now� for i � �� �� let Kn
i for n � � be an increasing sequence of closed subsets of

Ei� such that ��Kn
i �� ��Ei�� Then ��Kn

i � � ��Ei� in L��
�� so� for n su�ciently large�
setting Ki � Kn

i will satisfy the Lemma� F

Theorem ���� Suppose that X is compact� f � X � Y � Y � MS� and f��fyg is
scattered for all y � Y � Then X �MS�

Proof� Suppose X �� MS� We shall 	nd a y � Y such that f��fyg is not scattered�
Let � be a non
separable Radon measure on X� We may assume that � is nowhere
separable� since otherwise we may simply replace X by a closed subset of X on which � is
nowhere separable�

We shall 	nd closed subsets of X� Hs� for s � ���� such that they form a tree�

��
 H�� � X� For each s� Hs� and Hs� are disjoint non
empty closed subsets of Hs�

Note� now� that if y �
T
ff�Hs� � s � ���g� then f��fyg has a closed subset which maps

onto ��� so f��fyg is not scattered� To ensure that there is such a y� we assume also
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��
 For each n � �� there is a closed Ln � Y such that f�Hs� � Ln for all s � �n�

Then the Ln will form a decreasing sequence of closed sets� so� by compactness� we may
simply choose y �

T
n�� Ln� So� we are done if we can actually construct the Hs and Ln

to satisfy ������ To aid in the inductive construction� we assume also�

��
 
�Ln� � � for all n�
��
 ��Hs� � ���n ae on Ln� for each s � �n�

Here� 
 and ��H� are as de	ned above� Since items ��
�� are trivial for n � �� we are done
if we can show how� given Ln and the Hs for s � �n� we can construct Ln�� and each
Hs��Hs�� First� apply Lemma ��� and choose� for each s� disjoint closed Ks��Ks� � Hs

such that for i � �� �� ��Ksi� �
�
���Hs� and k

�
���Hs�� ��Ksi�k � ���n��
�Ln�� Let

Asi � fy � Ln � ��Ksi��y� �
�

�
� ���ng �

Since �
�
��Hs� �

�
�
���n on Ln�

���n��
�Ln� � k
�

�
��Hs�� ��Ksi�k � 
�Asi� �

�

�
���n �

so 
�Asi� � ��n��
�Ln�� Let B �
S
fAsi � s � �n� i � �� �g� Then 
�B� � �

�

�Ln��

so 
�LnnB� � �� For all y � LnnB� ��Ksi��y� � ����n��� for each s� i� In particular�
then� 
�LnnBnf�Ksi�� � �� So� we may choose a closed Ln�� � �LnnB� such that

�Ln��� � � and Ln�� � f�Ksi� for each s� i� Finally� let Hsi � Ksi � f���Ln���� Note
that ��Hsi� � ��Ksi� � ����n��� on Ln��� F

Now� before turning to the case that Y is scattered� let us pursue the following idea�
If X ��MS� X could still have a clopen subset inMS
 for example� X could be the disjoint
sum of ��� and ��� However� if one deletes all the open subsets of X which are in MS�
one gets a �kernel� which is everywhere non
MS by Theorem �����d� below�

Given a compact X� de	ne

ker�X� � Xn
�
fU � X � U is open and cl�U� �MSg �

Theorem ���� If X is any compact space�
a� ker�X� is a closed subset of X�
b� If Y is any closed subset of X� then ker�Y � � ker�X��
c� X �MS i� ker�X� � ��
d� ker�ker�X�� � ker�X��

Proof� �a� is obvious� �b� follows from Theorem ���� For �c�� if ker�X� � �� then by
compactness� X is a 	nite union of closed sets inMS� which clearly implies that X �MS�

If �d� fails� 	x p � ker�X�nker�ker�X��� Applying the de	nition of ker to ker�X��
p has a neighborhood U in X such that cl�U � ker�X�� � MS
 let V be a neighborhood
of p in X such that cl�V � � U 
 then �by Theorem ����� cl�V � � ker�X� � MS� Since
cl�V � �� MS� let � be a non
separable Radon measure on cl�V �� Applying Lemma ����

�



let K be a closed subset of cl�V � such that ��K� � �� � � K is nowhere separable�
and every relatively non
empty relatively open subset of K has positive measure� Then�
K � ker�K�� and� applying �b�� ker�K� � ker�X�� so K � cl�V � � ker�X�� contradicting
cl�V � � ker�X� �MS� F

Theorem ���� Suppose X and Y are compact� Y is scattered� f � X � Y � and the
preimages of all points in Y are in MS� Then X is in MS�

Proof� If X �� MS� ker�X� �� �� so let y � f�ker�X�� be an isolated point in
f�ker�X��� Then f���y��ker�X� is a clopen subset of ker�X�� so f���y��ker�X� ��MS
by Theorem ����d�� so f���y� ��MS by Theorem ���� F

Corollary ����� Suppose S is a direct sum of compact spaces X�� for � � 	 �so S
is locally compact�� Suppose that each X� � MS� Then any compacti	cation of S with
remainder in MS is in MS �in particular� the �
point compacti	cation��

Proof� Apply Theorem ��� with Y being the �
point compacti	cation of a discrete
	� and f taking each X� to � and the remainder to the point at in	nity� F

x�� Compact Spaces in Models of Set Theory� In forcing� we frequently discuss
the preservation of a property �such as MS� as we pass between two models of set theory�
Suppose that M � N are two transitive models of ZFC� with X a topological space in
M � If M thinks that X has some property� we may ask whether N also thinks that the
same space X has that property� But� since being a space is not a 	rst
order notion� we
must be more precise about what �same space� means� There are actually two possible
meanings to this� only one of which makes sense in the case of MS�

The 	rst meaning is the most common one� and is frequently used without comment�
Formally� a space is a pair� hX�T i� where X is a set and T is a topology on X� If
hX�T i � M � N � and the statement �T is a topology on X� is true in M � then this
statement will not in general be true in N � but it will be true in N that T is a basis for a
topology� T �� on X� In the future� we shall often suppress explicit mention of T and T ��
and simply say something like� �Let X be a space in M � and now consider the same X in
N��

However� in dealing with properties of compact spaces� such as MS� it is really the
second meaning which is required� If X is a compact space in M �i�e�� the statement�
�hX�T i is compact� is true relativized to M�� then the same X in N is not necessarily
compact� For example� if X is ��� ��M �the unit interval of M�� and N has new reals
which are not in M � then the same X in N is not compact from the point of view of
N 
 more generally� if N has new reals� then it is only the scattered compact spaces of M
which remain compact in N � If X is a compact space in M � we shall de	ne a compact
space in N � which we shall call #M�N�X�� or just #�X� when M�N are clear from the
context� Informally� #�X� will be the compact space in N which �corresponds� to X� In
some simple cases� #�X� is the �obvious thing�� For example� if X is the unit interval
of M � then #�X� is the unit interval of N 
 if X is the n
sphere in M � then #�X� is the
n
sphere in N 
 if X is the Stone space of a Boolean algebra B � M � then #�X� is the
Stone space of the same B as computed within N � But� we must be careful to check that
this #�X� is computed for every compact X in some natural way� Here� �natural� can be

��



expressed formally in terms of categories� Let CT be the category of compact T� spaces
and continuous maps� If M is a transitive model of ZFC� CTM is just the relativized CT �
computed within M � Then� #M�N will be a functor from CTM to CTN �

#�X� will in fact be computed in N as some compacti	cation of X� so we pause to
make some remarks on compacti	cations� Here� we just work in ZFC� forgetting tem

porarily about models�

Let C�X� denote the family of all bounded continuous real
valued functions on X�
This is a Banach space� and we let kfk denote the usual sup norm� Also� C�X� is a Banach
algebra under pointwise product� If S is any non
empty subset of C�X�� let eS � or just e�
denote the usual evaluation map from X into the cube�

Q
f��kfk� kfk� � f � Sg
 that is�

�e�x���f� � f�x�� Let ��X�S� be the closure of e�X� in this cube� It is always true that
e is continuous� In some cases �for example� if S separates points and closed sets�� e will
be a homeomorphic embedding of X� in which case ��X�S� is a compacti	cation of X� If
S � C�X� and X is completely regular� then ��X�S� � ��X�� and we have just given one
of the standard de	nition of the �Cech compacti	cation� If X is completely regular� then
every compacti	cation of X is of the form ��X�S� for some S � namely� the collection of
all those f � C�X� which extend to the compacti	cation�

If T � S � C�X�� let us use � to denote the natural projection from ��X�S� to
��X�T �� In the case S � C�X�� this is just expressing the maximality of ��X� among all
compacti	cations� If T �generates� S� then � is a homeomorphism� More precisely� let
c�T � denote the closure of T in the Banach algebra C�X�
 this is the smallest closed linear
subspace of C�X� containing T and closed under pointwise products of functions�

Lemma ���� ��X�T � and ��X� c�T �� are homeomorphic�
Proof� It is easy to check that the projection � � ��X� c�T �� � ��X�T � is �
�
 that

is� if ��� � ��X� c�T �� and ��f� � ��f� for all f � T � then ��f� � ��f� for all f � c�T ��
F

The functorial properties of these compacti	cations are a little complicated because of
the additional parameter� S� Suppose that X�Y are both compact spaces and h � X � Y is
a continuous function� S � C�X�� and T � C�Y �� If we know that h�f � S for each f � T �
then in a natural way we can de	ne a continuous function ��h�S�T � � ��X�S� � ��Y�T �
by ��h�S�T �����f� � ��h � f��

Returning now to models� letM � N be two transitive models of ZFC� and we de	ne
# � #M�N � CTM � CTN as follows� If X � CTM � let #�X� be ���X�C�X� �M��N �
More verbosely� working within N � we have the same space X� and we use C�X� �M �
which is a subset of C�X�� to compute a compacti	cation of X� which we are calling
#�X�� This # is functorial in the following sense� Let h be a morphism of CTM 
 that is�
h�X� Y �M and� inM � h is a continuous map from X to Y � where X�Y � CTM � Then in
N � h � X � Y is still continuous� and we may extend it to #�h� � #�X� � #�Y � by letting
#�h� � ��h�C�X� �M�C�Y � �M�� It is now easy to check from the de	nitions that

Lemma ���� #M�N is a covariant functor from CTM to CTN �

Lemma ��� may be used to verify that� as claimed above� #�X� is the �obvious thing��
The point is� we often do not need the full C�X��M � but may get by with some sub
class�

��



Lemma ���� Suppose that inM � X is compact� T � C�X�� and c�T � � C�X�� Then
in N � #�X� � ��X�T ��

Proof� Observe that in N � c�T � � c�C�X� �M�� and apply Lemma ���� F

We mention two special cases of this� First� suppose inM that X is a compact subset
of Euclidean space� Rk� Let T be the set of the k co
ordinate projections� By the Stone
� Weierstrass Theorem �applied in M�� c�T � � C�X�� But then in N � #�X� � ��X�T ��
which is just the closure of X computed in the Rk of N � In particular� if X is� say� the
n
sphere of M �so� k � n ��� then #�X� is the n
sphere of N � Second� if X is a compact
zero dimensional space in M � we may let B be the clopen algebra of X� so that X is the
Stone space of B� In M � let T be the set of all continuous maps from X into f�� �g
 then
c�T � � C�X�� From this� it is easy to see that in N � #�X� is the Stone space of the same
B� computed within N �

It is also easy to see that # preserves subspaces and products� Also� if X is a LOTS�
then #�X� is the Dedekind completion of the same LOTS
 to see this� apply the above
method� with T the set of non
decreasing real
valued functions�

See Bandlow ��� for a somewhat di�erent treatment of #�

We turn now to measures� This is easiest to approach via the Riesz Representation
Theorem� viewing measures as linear functionals on C�X�� If h � C�X�M � and X � CTM �
then in M � h is a continuous map from X to an interval �a� b�� So� in N � we we have #�h��
which maps #�X� into #��a� b��� which is the �a� b� of N � So� #�h� � C�#�X��N �

Lemma ���� Let X be as above� a compact Hausdor� space in M � In N � # is an
isometric embedding of C�X� �M into C�#�X��� and C�#�X�� is the closed linear span
of #�C�X� �M��

In particular� suppose that in M � � is a Radon measure on the compact space X�
Then� via integration� � de	nes a positive linear functional on C�X�� and by Lemma ����
this linear functional extends uniquely to a positive linear functional on the C�#�X�� of N �
which� by the Riesz Representation Theorem� corresponds uniquely to a Radon measure
on #�X�� We call this measure #���� Suppose� now� that in M � � is non
separable� Then�
in M we may 	nd� for some 	xed � � �� functions h� � C�X� for � � �� such that the
L���� distance between the h� is at least �� Then� this same situation will persist in N
� that is� in N � L��#���� will be non
separable� and hence #��� will be non
separable�
assuming that �� has the same meaning in M and N � Thus�

Lemma ���� Suppose that M � N are two transitive models of ZFC� �M� � �N� �
and in M � X is compact and X ��MS� Then in N � #�X� ��MS�

Of course� �M� � �N� is necessary� For example� for any X� if the weight of X becomes
countable in N � then #�X� will be second countable in N and hence be in MSN �

The preservation of the property �X �MS� is more tricky� as we discuss in the next
section� It is quite possible that X �MSM � but N is some generic extension of M which
adds a new measure which happens to be non
separable� The forcing can even be ccc� in
which case �M� � �N� � It is not hard to see that �X � MS� is preserved by any forcing
which has �� as a precaliber�
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Note that for zero dimensional spaces� the results of this section all reduce to triviali

ties� If� inM � X is the Stone space of the Boolean algebra B� then #�X� will simply be the
Stone space of B as computed in N � Furthermore� if in M � � is a Radon measure on X�
then � is determined by its values on the clopen sets � i�e�� by a 	nitely additive measure
on B � and in N � that same 	nitely additive measure determines a Radon measure� #����
on #�X��

x�� Destroying Membership in MS� In this section we show that being in MS
can be destroyed by a ccc forcing � speci	cally� by forcing with a Suslin tree� Now� the
functor # of the previous section is from the CT of the ground model� V � to the CT of a
generic extension of V � In the generic extension� X will contain a copy of ��� � which� by
Lemma ���� will be su�cient to imply that X ��MS�

Theorem ���� If there is a Suslin tree� T � then there is a Corson compact space
X �MS such that T forces that X contains a homeomorphic copy of ��� �

Proof� Actually� our proof just uses the fact that T is Aronszajn
 except that forcing
with an Aronszajn tree does not in general preserve ��� In any case� T will force that X
contains a homeomorphic copy of ��� where � is the �� of the ground model� but this is
trivial if � becomes countable in the T extension�

As usual� Lev��T � denotes level � of the tree and T� �
S
��� Lev��T �� Let us use v

for the tree order�
We shall construct the space X from the chains of T � Identify P�T � �� with �T��

by identifying a set with its characteristic function� Giving �T�� its usual topology makes
P�T��� into a compact space� If x � P�T���� let $x � P�T � be its projection� $x � ft � T �
�i � ��ht� ii� � xg� Let X be the set of all x � P�T � �� such that $x is a downward
closed
chain in T 
 that is �s� t � $x�s v t� t v s� and �t � $x�s v t�s � $x�� Note that X is closed�
and hence compact� Since T is Aronszajn� each such $x is countable
 so� identifying sets
with characteristic functions� every x � X is eventually �� so X is a compact subspace of
a �
product of copies of f�� �g� and hence Corson compact �see x���

Now� it is easy to see that in any extension� V �G�� of V � #�X� is just the space
de	ned from the same tree� by the same de	nition� However� if in V �G�� there is an
uncountable maximal chain C � T � then fx � P�T � �� � $x � Cg will be a subspace of
#�X� homeomorphic to �C � which is homeomorphic to ��� �

So� we are done if we can prove �in V � that X �MS� Now� one cannot prove in ZFC
that every Corson compact is in MS ����� but this one is�

Let 
 be a Radon measure on X� For each t � T � let Xt � fx � X � t � $xg� This is
closed� and hence measurable� If � � �� let T � � ft � T � 
�Xt� � �g� Note that T � is a
sub
tree of T � If � � �� then each level of T � is 	nite �since the Xt are disjoint for t on a
given level of T �� Since T is Aronszajn� this implies that T � is countable for each � � ��
Letting �� �� we see that T � � ft � T � 
�Xt� � �g is countable�

So� we can 	x an � � �� such that for each s � Lev��T �� 
�Xs� � �� Let F �
S
fXs �

s � Lev��T �g
 then F is a null set� and XnF is homeomorphic to a subspace of P�T�����
and hence second countable� Since every 	nite Borel measure on a second countable space
is separable� 
 is separable� F
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