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Abstract

We construct, assuming Jensen’s principle ♦, a one-dimensional locally
connected hereditarily separable continuum without convergent sequences.

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. A continuum
is any compact connected space. A nontrivial convergent sequence is a convergent
ω–sequence of distinct points. As usual, dim(X) is the covering dimension of X;
for details, see Engelking [7]. “HS” abbreviates “hereditarily separable”. We shall
prove:

Theorem 1.1 Assuming ♦, there is a locally connected HS continuum Z such that
dim(Z) = 1 and Z has no nontrivial convergent sequences.

Note that points in Z must have uncountable character, so that Z is not heredi-
tarily Lindelöf; thus, Z is an S-space.

Spaces with some of these features are well-known from the literature. A compact
F-space has no nontrivial convergent sequences. Such a space can be a continuum;
for example, the Čech remainder β[0, 1)\[0, 1) is connected, although not locally con-
nected; more generally, no infinite compact F-space can be either locally connected
or HS. In [15], van Mill constructs, under the Continuum Hypothesis, a locally con-
nected continuum with no nontrivial convergent sequences. Van Mill’s example,
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constructed as an inverse limit of Hilbert cubes, is infinite dimensional. Here, we
shall replace the Hilbert cubes by one-dimensional Peano continua (i.e., connected,
locally connected, compact metric spaces) to obtain a one-dimensional limit space.
Our Z = Zω1 will be the limit of an inverse system 〈Zα : α < ω1〉. Each Zα will
be a copy of the Menger sponge [13] (or Menger curve) MS; this one-dimensional
Peano continuum has homogeneity properties similar to those of the Hilbert cube.
The basic properties of MS are summarized in Section 2, and Theorem 1.1 is proved
in Section 3.

The Menger Sponge
thanx to
http://www.joachim-reichel.de/

In [15], as well as in earlier work by Fedorchuk [9] and van Douwen and Fleiss-
ner [4], one kills all possible nontrivial convergent sequences in ω1 steps. Here, we
focus primarily on obtaining an S-space, modifying the construction of the original
Fedorchuk S-space [8]; we follow the exposition in [5], where the lack of convergent
sequences occurs only as an afterthought. This exposition can easily be modified to
make Z a strong S-space as well; see Section 5.

We do not know whether one can obtain Z so that it satisfies Theorem 1.1
with the stronger property ind(Z) = 1; that is, the open U ⊆ Z with ∂U zero-
dimensional form a base. In fact, we can easily modify our construction to ensure
that 1 = dim(Z) < ind(Z) = ∞; this will hold because (as in [5]) we can give Z the
additional property that all perfect subsets are Gδ sets; see Section 6 for details.

We can show that a Z satisfying Theorem 1.1 cannot have the property that the
open U ⊆ Z with ∂U scattered form a base; see Theorem 4.12 in Section 4. This
strengthening of ind(Z) = 1 is satisfied by some well-known Peano continua. It is
also satisfied by the space produced in [10] under ♦ by an inductive construction
related to the one we describe here, but the space of [10] was not locally connected,
and it had nontrivial convergent sequences (in fact, it was hereditarily Lindelöf).
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2 On Sponges

The Menger sponge MS [13] is obtained by drilling holes through the cube [0, 1]3,
analogously to the way that one obtains the middle-third Cantor set by removing
intervals from [0, 1]. The paper of Mayer, Oversteegen, and Tymchatyn [14] has a
precise definition of MS and discusses its basic properties. Many pictures of MS are
available on line, if you google “Menger sponge”.

In proving theorems about MS, one often refers not to its definition, but to the
following theorem of R. D. Anderson [1, 2] (or, see [14]), which characterizes MS.
This theorem will be used to verify inductively that Zα

∼= MS. The fact that MS
satisfies the stated conditions is easily seen from its definition, but it is not trivial to
prove that they characterize MS.

Theorem 2.1 MS is, up to homeomorphism, the only one-dimensional Peano con-
tinuum with no locally separating points and no non-empty planar open sets.

Here, C ⊆ X is locally separating iff, for some connected open U ⊆ X, the set
U \ C is not connected. A point x is locally separating iff {x} is. This notion
is applied in the Homeomorphism Extension Theorem of Mayer, Oversteegen, and
Tymchatyn [14]:

Theorem 2.2 Let K and L be closed, non-locally-separating subsets of MS and let
h : K � L be a homeomorphism. Then h extends to a homeomorphism of MS onto
itself.

The non-locally-separating sets have the following closure property of Kline [11]
(or, see Theorem 2.2 of [14]):

Theorem 2.3 Let X be compact and locally connected, and let K =
⋃{Ki : i ∈ ω},

where K and the Ki are closed subsets of X. If K is locally separating then some Ki

is locally separating.

For example, these results imply that in MS, all convergent sequences are equiv-
alent. More precisely, points in MS are not locally separating, so if 〈xi : i ∈ ω〉
converges to xω, then {xi : i ≤ ω} is not locally separating. Thus, if 〈si〉 and 〈ti〉
are nontrivial convergent sequences in MS, with limit points sω and tω, respectively,
then there is a homeomorphism of MS onto itself that maps si to ti for each i ≤ ω.

The following consequence of Theorem 2.1 was noted by Prajs [16] (see p. 657).

Lemma 2.4 Let J ⊆ MS be a non-locally-separating arc and obtain MS/J by col-
lapsing J to a point. Then MS/J ∼= MS and the natural map π : MS � MS/J is
monotone.
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Here, a map f : Y � X is called monotone iff each f−1{x} is connected; so,
the monotonicity in Lemma 2.4 is obvious. When X, Y are compact, monotonicity
implies that f−1(U) is connected whenever U is a connected open or closed subset
of X.

We shall use these results to show that the property of being a Menger sponge
will be preserved at the limit stages of our construction:

Lemma 2.5 Suppose that γ is a countable limit ordinal and Zγ is an inverse limit
of 〈Zα : α < γ〉, where all bonding maps σβ

α are monotone and each Zα
∼= MS. Then

Zγ
∼= MS.

Proof. We verify the conditions of Theorem 2.1. dim(Zγ) = 1, since this property
is preserved by inverse limits of compacta, and Zγ is locally connected because the
σβ

α are monotone. So, we need to verify that Zγ has no locally separating points and
no non-empty planar open sets.

Suppose that q ∈ Zγ is locally separating; so we have a connected neighborhood
U of q with U\{q} not connected. Shrinking U , we may assume that U = (σγ

α)−1(V ),
where α < γ and V is open and connected in Zα. Since Zα

∼= MS, σγ
α(q) is

not locally separating, so V \{σγ
α(q)} is connected. Then, since σγ

α is monotone,
(σγ

α)−1(V \{σγ
α(q)}) = U \ (σγ

α)−1{σγ
α(q)} is connected. The same argument shows

that U \ (σγ
β)−1{σγ

β(q)} is connected whenever α ≤ β < γ. But then U\{q} =⋃{U \ (σγ
β)−1{σγ

β(q)} : α ≤ β < γ} is connected also.
Suppose that U ⊆ Zγ is open and non-empty; we show that U is not planar.

Shrinking U , we may assume that U = (σγ
α)−1(V ), where α < γ and V is open in

Zα. Since Zα
∼= MS, there is a K5 set F ⊆ V ; that is, F consists of 5 distinct points

p0, p1, p2, p3, p4 together with arcs Ji,j with endpoints pi, pj for 0 ≤ i < j < 5, where
the sets Ji,j \ {pi, pj}, for 0 ≤ i < j < 5, are pairwise disjoint. Now F is not planar,
and, one can show that (σγ

α)−1(F ) is not planar either. To do this, use the fact that

σγ
α is monotone, so that the sets (σγ

α)−1{pi} and (σγ
α)−1(Ji,j) are all continua. ©

The following terminology was used also in the exposition in [5] of the Fedorchuk
S-space:

Definition 2.6 Let F be a family of subsets of X. Then x ∈ X is a strong limit
point of F iff for all neighborhoods U of x, there is an F ∈ F such that F ⊆ U and
x /∈ F .

In practice, we shall only use this notion when the elements of F are closed. If
all elements of F are singletons, this reduces to the usual notion of a point being a
limit point of a set of points.

The map σα+1
α : Zα+1 � Zα will always be obtained by collapsing a non-locally-

separating arc in Zα+1 to a point. We obtain it using:
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Lemma 2.7 Assume that X ∼= MS and that for n ∈ ω, Fn is a family of non-locally-
separating closed subsets of X. Fix t ∈ X such that t is a strong limit point of each
Fn. Then there is a Y ∼= MS and a monotone σ : Y � X such that

1. σ−1{t} is a non-locally-separating arc in Y ,

2. |σ−1{x}| = 1 for all x �= t, and

3. y is a strong limit point of {σ−1(F ) : F ∈ Fn}, for each y ∈ σ−1{t} and n ∈ ω.

Proof. First, let {An : n ∈ ω} partition ω into disjoint infinite sets. In X, choose
disjoint closed Fi �� t for i ∈ ω such that Fi ∈ Fn whenever i ∈ An, and such that
every neighborhood of t contains all but finitely many of the Fi. Let L = {t}∪⋃

i Fi.
Then L is closed and non-locally-separating by Theorem 2.3.

Now, in MS, let J be any non-locally-separating arc. Choose disjoint closed non-
locally separating sets Gi for i ∈ ω such that each Gi

∼= Fi, every neighborhood of J
contains all but finitely many Gi, each Gi ∩ J = ∅, and for each n and each y ∈ J :
y is a strong limit point of {Gi : i ∈ An}.

Let ρ : MS � MS/J be the usual projection, and let [J ] denote the point to
which ρ collapses the set J . Then MS/J ∼= MS by Lemma 2.4. In MS/J , let
K = {[J ]} ∪ ⋃{ρ(Gi) : i ∈ ω}. Let h : K � L be a homeomorphism such that
h([J ]) = t and each h(ρ(Gi)) = Fi. By Theorem 2.2, h extends to a homeomorphism

h̃ : MS/J � X.

Now, let Y = MS and let σ = h̃ ◦ ρ. ©
The next lemma will simplify somewhat the description of our inverse limit:

Lemma 2.8 In Lemma 2.7, we may obtain Y ⊆ X × [0, 1], with σ : Y � X the
natural projection.

Proof. Start with any Y, σ, t satisfying Lemma 2.7, and let J := σ−1{t}. Apply
the Tietze Extension Theorem to fix f : Y � [0, 1] such that f�J : J � [0, 1] is

a homeomorphism. Then y �→ (σ(y), f(y)) is one-to-one on Y , and hence Ỹ :=

{(σ(y), f(y)) : y ∈ Y } ⊆ X × [0, 1] satisfies Lemma 2.8. ©
The following additional property of our σ will be useful:

Lemma 2.9 Let t and σ : Y � X be as in Lemma 2.7 or 2.8. Assume that H ⊆ X
is closed and nowhere dense and not locally separating. Then σ−1(H) ⊆ Y is closed
and nowhere dense and not locally separating.

Proof. σ−1(H) is closed and nowhere dense because σ is continuous and irreducible.
Also note that σ−1(H) is not locally separating if either H = {t} (trivially) or t /∈ H
(because σ is a homeomorphism in a neighborhood of σ−1(H)).

Next, note that every closed K ⊆ H is non-locally-separating in X: If not, let
U ⊆ X be connected and open with U\K not connected, so that U\K = W0 ∪ W1,
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where the Wi are open in X, non-empty, and disjoint. Then U\H = W0\H ∪ W1\H ,
but H is not locally separating, so one of the Wi\H = ∅, so Wi ⊆ H , contradicting
H being nowhere dense.

Now, let H =
⋃

n∈ω Kn, where each Kn is closed and either Kn = {t} or t /∈ Kn.

Then σ−1(H) =
⋃

n σ−1(Kn), which is not locally separating by Theorem 2.3. ©
3 The Inverse Limit

We shall obtain our space Z = Zω1 as an inverse limit of a sequence 〈Zα : α < ω1〉.
As with many such constructions, it is somewhat simpler to view the Zα concretely
as subsets of cubes, so that the bonding maps are just projections. Thus, we shall
have:

Conditions 3.1 We obtain Zα for α ≤ ω1 and πβ
α, σβ

α for α ≤ β ≤ ω1 such that:

C1. Each Zα is a closed subset of MS × [0, 1]α, and Z0 = MS.

C2. For α ≤ β ≤ ω1, πβ
α : MS × [0, 1]β � MS × [0, 1]α is the natural projection.

C3. πβ
α(Zβ) = Zα whenever α ≤ β ≤ ω1.

C4. Zα is homeomorphic to MS whenever α < ω1.

C5. The maps σβ
α := πβ

α�Zβ : Zβ � Zα, for α ≤ β ≤ ω1, are monotone.

Using (C1,C2,C3), the construction is determined at limit ordinals; (C4) is pre-
served by Lemma 2.5 and (C5). It remains to explain how, given Zα for α < ω1, we
obtain Zα+1 ⊆ Zα×[0, 1]; as usual, we identify MS×[0, 1]α+1 with MS×[0, 1]α×[0, 1].

We now add:

Conditions 3.2 We have qξ
α and tα for ξ < α < ω1 such that:

C6. Each 〈qξ
α : ξ < α〉 is a sequence of points in MS × [0, 1]α.

C7. Whenever 〈qξ : ξ < ω1〉 is any sequence of points in MS × [0, 1]ω1, {α < ω1 :
∀ξ < α [πω1

α (qξ) = qξ
α]} is stationary.

C8. Whenever α < β ≤ ω1 and z ∈ Zα: If qξ
α ∈ Zα for all ξ < α and z is a limit

point of {qξ
α : ξ < α & qξ

α �= z}, then all points of (σβ
α)−1{z} are strong limit

points of {(σβ
α)−1{qξ

α} : ξ < α}.
C9. tα ∈ Zα, and for all z ∈ Zα: (σα+1

α )−1{z} is a singleton if z �= tα and a
non-locally-separating arc if z = tα.

C10. tα = q0
α whenever α > 0 and q0

α ∈ Zα.
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Proof of Theorem 1.1. The fact that one may obtain (C1 – C10) has already
been outlined above. (C6,C7) are possible by ♦, and (C10) is just a definition.
(C8,C9) are obtained by induction on β. For the successor step, we must obtain
Zβ+1 from Zβ using Lemmas 2.7 and 2.8. Here, X = Zβ, Y = Zβ+1, and t = tβ; the
Fn list all sets of the form Fβ

α := {(σβ
α)−1{qξ

α} : ξ < α & qξ
α ∈ Zα} such that α ≤ β

and tβ is a strong limit point of Fβ
α . Observe that (C8) for (α, β + 1) is immediate

from (C8) for (α, β) except for the points of Zβ+1 in (σβ+1
β )−1{tβ}. Also observe

that in order to apply Lemmas 2.7 and 2.8, we must check by induction on β, using
Lemma 2.9, that the sets (σβ

α)−1{qξ
α} are non-locally-separating (and nowhere dense)

in Zβ.
Note that χ(z, Z) = ℵ1 for all z ∈ Z; this follows from (C9,C10) and the fact,

using (C7), that {α < ω1 : πω1
α (z) = tα} is unbounded in ω1.

Z is HS by (C6,C7,C8,C1,C2,C3): If not, suppose that 〈qξ : ξ < ω1〉 is left-
separated in Z. As in [5], we get a club C ⊂ ω1 such that for all α ∈ C,

1. The σω1
α (qξ) for ξ < α are all distinct, and

2. For all η with α ≤ η < ω1, σω1
α (qη) is a limit point of {σω1

α (qξ) : ξ < α}.
Fix α ∈ C such that ∀ξ < α [σω1

α (qξ) = qξ
α]. Let z = σω1

α (qα). Applying (C8)
with β = ω1, we have in Z: all points of (σω1

α )−1{z} are strong limit points of
{(σω1

α )−1{qξ
α} : ξ < α}. In particular, qα is a limit point of 〈qξ : ξ < α〉, contradicting

“left-separated”.
Similarly, Z has no non-trivial convergent sequences: Suppose that qn → qω in

Z, where the qξ for ξ ≤ ω are distinct. Let qξ = qω when ω < ξ < ω1, and apply
(C7) to get α with ω < α < ω1 such that the σω1

α (qξ) for ξ ≤ ω are distinct points
and ∀ξ < α [σω1

α (qξ) = qξ
α]. Let z = σω1

α (qω). Then all points of (σω1
α )−1{z} are strong

limit points of {(σω1
α )−1{qξ

α} : ξ < α} and hence also of {(σω1
α )−1{qn

α} : n < ω}. So,
all points of (σω1

α )−1{z} are limit points of {qn : n ∈ ω}. Since {qω} � (σω1
α )−1{z}

(by χ(qω, Z) = ℵ1), we contradict qn → qω. ©
4 The Almost Clopen Algebra

We show here (Theorem 4.12) that a space Z satisfying Theorem 1.1 cannot have a
base of open sets with scattered boundaries; equivalently (because there are no non-
trivial convergent sequences) with finite boundaries. We first note that if there were
such a base, we could take the basic open sets U to be regular, since ∂(int(cl(U))) ⊆
∂U . To simplify notation, we define:

Definition 4.1 ro(X) denotes the algebra of regular open subsets of X, and acl(X)
(the almost clopen sets) denotes the family of regular open sets U such that ∂U is
finite. For U ∈ ro(X), let U � denote the boolean complement (X\U)◦.
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Note that acl(X) is a boolean subalgebra of ro(X): If U ∈ acl(X) and W = U �,
then ∂W = ∂U , so W ∈ acl(X). Also, if U, V ∈ acl(X) and W = U ∧ V = U ∩ V ∈
ro(X), then W ∈ acl(X) because ∂(W ) ⊆ ∂(U) ∪ ∂(V ).

In a locally connected space, the connected components of an open set U are
open; if V is any such component, then ∂V ⊆ ∂U (because V is relatively clopen in
U), so V ∈ acl(X) whenever U ∈ acl(X). Thus,

Lemma 4.2 If X is locally connected and acl(X) is a local base at p ∈ X, then
{U ∈ acl(X) : p ∈ U & U is connected } is also a local base at p.

Various LOTS sums have bases of almost clopen sets. This is true, for example,
for any compact hedgehog consisting of a central point plus arbitrarily many LOTS
spines. The assumption of no convergent sequences, however, puts some restrictions
on the space. In particular, the hedgehog fails the following lemma (taking U to be
X and letting s be the central point):

Lemma 4.3 Assume that X is compact and locally connected, and X has no non-
trivial convergent sequences. Fix an open U with ∂U finite, and fix a finite s ⊆ U .
Then U\s has finitely many components.

Proof. Assume that Vn, for n < ω, are different components of U\s. Choose
xn ∈ Vn. Then the limit points of {xn : n ∈ ω} must lie in ∂(U\s) ⊆ ∂U ∪ s.
Thus, {xn : n ∈ ω} has finitely many limit points, which is impossible if X has no

nontrivial convergent sequences. ©
We now look more closely at the locally separating points; that is, the points

p ∈ X such that U\{p} is not connected for some open connected U � p.

Definition 4.4 If p ∈ U ⊆ X, then c(p, U) is the number of components of U\{p}.
Lemma 4.5 Assume that X is compact and locally connected, and p ∈ X. If U and
V are open connected subsets of X with p ∈ V ⊆ U , then:

1. Every component of V \{p} is a subset of exactly one component of U\{p}.
2. c(p, V ) ≥ c(p, U).

3. If acl(X) is a local base at p and X has no nontrivial convergent sequences,
then c(p, U) is finite.

Proof. (1) is immediate from the fact that if W is a component of V \{p} then
W is connected and W ⊆ U\{p}. For (2), use the fact that every component of
U\{p} must meet V because U is connected, so that (1) provides a map from the
components of V \{p} onto the components of U\{p}. For (3), choose V ∈ acl(X)

with p ∈ V ⊆ U , and apply (2) and Lemma 4.3. ©
The next lemma is trivial, but useful when ∂U is finite.
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Lemma 4.6 Suppose that E ⊆ X is connected, U ⊆ X is open, and ∂U ∩ E = ∅.
Then E ⊆ U or E ∩ U = ∅.
Proof. U ∩ E = U ∩ E is relatively clopen in E, so U ∩ E is either E or ∅. ©
Lemma 4.7 Assume that X is compact and locally connected, acl(X) is a local base
at p ∈ X, and X has no nontrivial convergent sequences. Then there is an n ∈ ω
such that c(p, U) ≤ n for all open connected U � p.

Proof. If this fails, then applying Lemma 4.5, we may fix open connected Un � p
for n ∈ ω such that U0 ⊇ U 1 ⊇ U1 ⊇ U2 · · · and 2 ≤ c(p, U0) < c(p, U1) < · · · . Then,
we may define a subtree T ⊆ ω<ω and open connected Ws for s ∈ T and ks ∈ ω\{0}
for s ∈ T as follows:

1. W() is the component of p in X.

2. If lh(s) = n, then ks is the number of components of Un\{p} which are subsets
of Ws, and these components are listed as {Ws�i : i < ks}.

3. s	i ∈ T iff s ∈ T and i < ks.

Item (1) is a bit artificial, but it gives T a root node (). For the levels below the root,
note that |T ∩ ωn+1| = c(p, Un), and the Ws for s ∈ T ∩ ωn+1 list the components
of Un\{p}. Let P (T ) = {f ∈ ωω : ∀n [f�n ∈ T ]} be the set of paths through T .
Since every node in T has at least one child, |P (T )| is either ℵ0 or 2ℵ0 . Note that
cl(Ws�i) ⊆ Ws ∪ {p}, since if n = lh(s) > 0 and q ∈ cl(Ws�i)\{p}, then q and the
points of Ws�i must all lie in the same component of Un−1\{p}, which is Ws.

Let H =
⋂

n Un =
⋂

n Un. Then H is a connected closed Gδ containing p, and
H must be infinite, since p must have uncountable character. For each f ∈ P (T ),
let Kf =

⋂
n cl(Wf�n) = {p} ∪ ⋂

n Wf�n. Then the Kf are connected and infinite,
since {p} cannot be a decreasing intersection of ω infinite closed sets (or there would
be a convergent sequence). Observe that Kf ∩ Kg = {p} whenever f �= g. Thus,
if p ∈ V ∈ acl(X) then Kf ⊆ V for all but finitely many f ∈ P (T ), since Kf ⊆ V
whenever Kf ∩ ∂V = ∅ by Lemma 4.6. Now let fi, for i ∈ ω be distinct elements
of P (T ), and choose qi ∈ Kfi

\{p}. Then every neighborhood of p contains all but

finitely many qi, so the qi converge to p, a contradiction. ©
Definition 4.8 Assume that X is compact and locally connected, acl(X) is a base
for X, and X has no nontrivial convergent sequences. Then for each p ∈ X, define
c(p) ∈ ω to be the largest c(p, U) among all open connected U � p.

By a standard chaining argument:

Lemma 4.9 Assume that X is compact and locally connected and acl(X) is a base
for X. Fix a connected open U ⊆ X and a compact F ⊆ U . Then there is a connected
V ∈ acl(X) such that F ⊆ V ⊆ V ⊆ U .
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Proof. Let G = {W ∈ acl(X) : ∅ �= W ⊆ U & W is connected}. Then
⋃G = U .

View G as an undirected graph, by putting an edge between W1 and W2 iff W1∩W2 �=
∅. Then G is connected as a graph because U is connected and the components of G
yield topological components of U . Fix a finite G0 ⊆ G such that F ⊆ ⋃G0. Then

fix a finite connected G1 with G0 ⊆ G1 ⊆ G. Let V =
∨G1 = int(cl(

⋃G1)). ©
Lemma 4.10 Assume that X is compact and locally connected, acl(X) is a base for
X, and X has no nontrivial convergent sequences. Then there is no sequence of open
sets 〈Un : n ∈ ω〉 such that Un+1 � Un for all n and Un\Un+1 is connected for all
even n.

Proof. Given such a sequence, choose xn ∈ Un\Un+1, and let y be a limit point
of {x2m : m ∈ ω}. Since 〈x2m : m ∈ ω〉 cannot converge to y, fix a connected
W ∈ acl(X) and disjoint infinite A, B ⊆ {2m : m ∈ ω} such that xn ∈ W for all
n ∈ A and xn /∈ W for all n ∈ B. Since ∂W is finite, we may also assume (shrinking
A, B if necessary) that ∂W ∩ (Un\Un+1) = ∅ for all n ∈ A∪B. Then, by Lemma 4.6,
Un\Un+1 ⊆ W for all n ∈ A and (Un\Un+1) ∩ W = ∅ for all n ∈ B. But then, for
n ∈ B, the connected W is partitioned into the disjoint open sets W ∩Un+1, W \Un,

both of which are non-empty when n > min(A). ©
Lemma 4.11 Assume that X is compact and locally connected, acl(X) is a base for
X, and X has no nontrivial convergent sequences. Then every non-isolated point in
X is locally separating.

Proof. Suppose we have a non-isolated p which is not locally separating; so U\{p}
is connected whenever U is open and connected. Then inductively construct Un for
n ∈ ω such that

1. Each Un is open and p ∈ Un.

2. Each Un+1 � Un.

3. Un\Un+1 is connected whenever n is even.

4. Each Un ∈ acl(X).

5. Un is connected for all even n.

Then (1)(2)(3) contradict Lemma 4.10.
To construct the Un: Let U0 ∈ acl(X) be such that p ∈ U0 and U0 is connected

and not clopen. Given Un, where n is even, we construct Un+1 and Un+2 as follows:
Say ∂Un = {qj : j < r}; of course, r and the qj depend on n. For each j, choose

V j ∈ acl(X) be such that qj ∈ V j , p /∈ cl(V j), and V j is connected. Also make
sure that the V j are disjoint; then V j ∩ ∂Un = {qj}. Let {W j

i : i < cj} list the
components of V j\{qj}; so 2 ≤ cj < ω. Then W j

i is connected and ∂Un ∩ W j
i = ∅,
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so W j
i ⊆ Un or W j

i ∩ Un = ∅; say W j
i ⊆ Un for i < dj and W j

i ∩ Un = ∅ for
dj ≤ i < cj ; so 1 ≤ dj < cj. Choose yj

i ∈ W j
i . Now Un is connected and p is not

locally separating, so Un\{p} is connected. Applying Lemma 4.9, fix a connected
R ∈ acl(X) such that {yj

i : j < r & i < dj} ⊆ R ⊆ R ⊆ U\{p}. Let S be the finite
union R ∪⋃{W j

i : j < r & i < dj}. Then S is open and connected, p /∈ S, and each
qj ∈ S. Let Un+1 = Un\S = Un \ S. Then p ∈ Un+1 ∈ acl(X), and Un\Un+1 = S is
connected. Also, each qj /∈ Un+1 because Un+1 ∩ V j = ∅, so that Un+1 ⊆ Un.

Now, choose a connected Un+2 ∈ acl(X) so that p ∈ Un+2 ⊆ Un+2 � Un+1. ©
Theorem 4.12 If X is infinite, compact, locally connected, and acl(X) is a base for
X, then X has a nontrivial convergent sequence.

Proof. Suppose not. Fix any non-isolated p ∈ X; then p is locally separating by
Lemma 4.11, so c(p) ≥ 2 (see Definition 4.8). Fix a connected U ∈ acl(X) such that
p ∈ U and c(p, U) = c(p). Let Wi, for i < c(p) be the components of U\{p}. Then
c(p, V ) = c(p) whenever V ∈ acl(X) and p ∈ V ⊆ U ; furthermore, the components
of V \{p} are the sets Wi ∩ V for i < c(p).

Let Y = cl(W0). Then acl(Y ) is a base for Y , Y is locally connected, and Y
has no nontrivial convergent sequences. Furthermore, p ∈ Y and p is not locally
separating in Y , contradicting Lemma 4.11 applied to Y . ©
5 Strong S-spaces of Various Dimensions

Call Z a Fedorchuk space iff Z is compact HS and crowded, and has no nontrivial
convergent sequences. So, Theorem 1.1 produces, under ♦, a one-dimensional lo-
cally connected Fedorchuk space. Using the same method, one can modify the CH
construction of van Mill [15] to produce, under ♦, an infinite dimensional locally con-
nected Fedorchuk space; in this construction, the Hilbert cube replaces the Menger
sponge MS. The ♦ is necessary since by Eisworth [6], CH alone does not imply the
existence of any Fedorchuk space.

The referee of the original version of this paper asked whether one might also
produce a k-dimensional locally connected Fedorchuk space for each finite k ≥ 1. One
way of doing this (the referee’s suggestion) is to replace MS by Menger’s universal
k-dimensional compactum; these spaces are described in detail in Bestvina [3]. We
are not sure if this works, since the characterization of these compacta for k > 1 is
a bit more complex than that for MS. However, we can construct our Z so that the
product Zk provides a k-dimensional example.

Let Z be as constructed in our proof of Theorem 1.1. Then dim(Zk) = k because
Zk is an inverse limit of copies of MSk, which has dimension k. Also, Zk is certainly
crowded and locally connected, and has no non-trivial convergent sequences. We
need to do some extra work to ensure that Zk is HS for all k < ω; that is, Z
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is a strong S-space. Then Zω will also be HS, but Zω has non-trivial convergent
sequences.

The key to making our space HS was conditions (C6,C7,C8), where we used ♦
to capture all ω1-sequences from Z, ensuring that no such sequence is left-separated.
But we can also use ♦ to capture sequences from Zk, which in our construction is
a subspace of (MS × [0, 1]ω1)k. To avoid confusion in our subscripts, if y ∈ Y k, let

μy, for μ < k, denote coordinate μ of y. Call a point y ∈ Y k simple iff all the μy
are different, and call a γ-sequence 〈qξ : ξ < γ〉 from Y k simple iff μqξ �= νq

η unless
μ = ν and ξ = η. Observe that for Z to be strongly HS, it is sufficient that for each
k, there are no simple left-separated ω1-sequences in Zk.

To avoid confusion about which k is handled at each stage, partition ω1 into
disjoint stationary sets Sk for k < ω such that ♦(Sk) is true for each k. In (C7),
require that {α ∈ S1 : ∀ξ < α [πω1

α (qξ) = qξ
α]} be stationary; then Z is HS and has

no convergent ω-sequences. To make Zk HS, add the following when 2 ≤ k < ω:

C6k. For α ∈ Sk, 〈qξ
α : ξ < α〉 is a simple sequence of points in (MS × [0, 1]α)k.

C7k. Whenever 〈qξ : ξ < ω1〉 is any simple sequence of points in (MS × [0, 1]ω1)k,
{α ∈ Sk : ∀ξ < α [πω1

α (qξ) = qξ
α]} is stationary.

C8k. Whenever α ∈ Sk and α < β ≤ ω1 and z ∈ (Zα)k: If qξ
α ∈ (Zα)k for all ξ < α

and z is a limit point of {qξ
α : ξ < α & qξ

α �= z}, then all points of (σβ
α)−1{z}

are strong limit points of {(σβ
α)−1{qξ

α} : ξ < α}.

Here, πβ
α denotes the natural projection from (MS× [0, 1]β)k onto (MS× [0, 1]α)k,

and σβ
α denotes the natural projection from (Zβ)k onto (Zα)k.

Then, to achieve C8k, we need the following improvement on Lemma 2.7. Call a
nonempty F ⊆ Xk a nice closed k-box iff F =

∏
μ<k(μF ), where each μF is closed

and not locally separating in X, and the μF are pairwise disjoint; then write Sides(F )
for

⋃
μ<k(μF ). Call F a nice k-family iff |F| = ℵ0 and each F ∈ F is a nice closed

k-box and Sides(F ) ∩ Sides(F̃ ) = ∅ whenever F, F̃ are distinct elements of F . Call
F a nice family iff F is a nice k-family for some k with 0 < k < ω.

Lemma 5.1 Suppose that X ∼= MS and F is a countable set of nice families. Fix
any t ∈ X. Then there is a Y ∼= MS and a monotone σ : Y � X such that

1. σ−1{t} is a non-locally-separating arc in Y ,

2. |σ−1{x}| = 1 for all x �= t, and

3. For each k ∈ ω and y ∈ Y k, if σ(y) is a strong limit point of a k-family F ∈ F,
then y is a strong limit point of {σ−1(F ) : F ∈ F}. Here, σ is applied to each
coordinate of y; likewise, σ−1 operates coordinatewise.

When k = 1: The result is trivial when σ(y) �= t, and Lemma 2.7 handles those
y for which σ(y) = t. Lemma 2.7 did not require the sets in F to be disjoint, but
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they are disjoint when the lemma is applied to the proof that Z is HS, since our F
arises from an inverse limit of a simple sequence. When k > 1, we cannot assume
that y is simple, so we must consider the possibility that σ(μy) = t for some μ and
not for other μ.

Proof of Lemma 5.1. For each nice k-family F , we describe some related
families as follows: Fix r with 1 ≤ r ≤ k, fix Q = {μ0, . . . μr−1} with μ0 < · · · <

μr−1 < k, and fix a (k − r)–tuple �V = 〈μV : μ ∈ k\Q〉 of basic open subsets of X.

Let F�(Q, �V ) be the family of all nice closed r-boxes H such that for some F ∈ F :

νH = μνF for ν < r and μF ⊆ μV for μ ∈ k\Q . Note that F�(Q, �V ) is a nice

k-family unless it is finite. If r = k, then Q = k and �V is the empty sequence and
F�(Q, �V ) = F ; this will handle the special case where all σ(μy) = t.

Call t a sidewise strong limit of a nice k-family F iff for all open U � t, Sides(F ) ⊆
U for all but finitely many F ∈ F .

Observe that we may assume the following closure properties of F:

a. If F ∈ F and t is a sidewise strong limit of some infinite F̃ ⊆ F , then some
such F̃ is in F.

b. If F ∈ F and Q, �V are as above, then F�(Q, �V ) ∈ F unless F�(Q, �V ) is finite.

We next restate that part of the proof of Lemma 2.7 which remains unchanged here:
In X, we shall choose disjoint closed non-locally-separating Di �� t for i ∈ ω

such that every neighborhood of t contains all but finitely many of the Di. Let
L = {t} ∪ ⋃

i Di. Then L is closed and non-locally-separating.
In MS, let J be any non-locally-separating arc. We shall choose disjoint closed

non-locally separating sets Gi for i ∈ ω such that each Gi
∼= Di and every neighbor-

hood of J contains all but finitely many Gi.
ρ : MS � MS/J is the usual projection. Then MS/J ∼= MS. In MS/J , let K =

{[J ]} ∪ ⋃{ρ(Gi) : i ∈ ω}. Let h : K � L be a homeomorphism such that h([J ]) = t

and each h(ρ(Gi)) = Di; then h extends to a homeomorphism h̃ : MS/J � X. Let

Y = MS and let σ = h̃ ◦ ρ. This handles everything in Lemma 5.1 except for (3),
which requires more about the Di and Gi.

In addition to the preceding requirements, choose the Di and Gi so that for all
basic open 0U, . . . , k−1U ⊆ MS which meet J : whenever t is a sidewise strong limit
of a k-family F ∈ F, there are infinitely many n ∈ ω such that for some F ∈ F and
all μ < k: Dn+μ = μF and Gn+μ ⊆ μU\J .

To see that this proves Lemma 5.1: Fix any k-family F ∈ F. Fix any y ∈ Y k, let
x = σ(y) ∈ Xk, and assume that x is a strong limit point of F . We need to show
that y is a strong limit point of {σ−1(F ) : F ∈ F}. Assume that exactly r of the
coordinates of x equal t. Since the result is trivial if r = 0, assume that 1 ≤ r ≤ k.
Let Q = {μ0, . . . μr−1}, with μ0 < · · · < μr−1 < k, list the subscripts μ with μx = t.

Fix basic open neighborhoods μU � μy for μ < k; when μ /∈ Q, assume that

μU ∩ J = ∅ and μU = σ−1(μV ), where μV is a basic open neighborhood of μx in
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X. This defines �V . Since x is a strong limit point of F , F�(Q, �V ) is infinite, so

F�(Q, �V ) ∈ F and hence t is a sidewise strong limit of some infinite F̃ ⊆ F�(Q, �V )
which, by closure property (a), is in F. Then there are infinitely many n such that

for some H ∈ F̃ and all ν < r: Dn+ν = νH and Gn+ν ⊆ μνU . For these H , there is
an F ∈ F such that μF ⊆ μV for μ /∈ Q and each μνF = νH ; then σ−1(μF ) ⊆ μU

for all μ. There are thus infinitely many F ∈ F with σ−1(μF ) ⊆ μU for all μ. ©
6 Further Remarks

We note that in constructing a locally connected compactum, the monotone bonding
maps, as used also by van Mill [15], are inevitable:

Remark 6.1 Assume that X ⊆ [0, 1]ω1 is compact and locally connected. Define
Xα = πω1

α (X) ⊆ [0, 1]α. Then there is a club C ⊆ ω1 such that Xα is locally connected
for all α ∈ C, and such that σβ

α := πβ
α�Xβ is monotone whenever α < β and α, β ∈

C ∪ {ω1}.
Proof. Let B be the family of all connected open Fσ subsets of X. Then B is a base
for X. For α < ω1, let Bα be the family of all open U ⊆ Xα such that (σω1

α )−1(U) ∈ B.
Observe that each U ∈ Bα is connected. Put α ∈ C iff Bα is a base for Xα. Then C
is club.

Now, it is sufficient to show that (σω1
α )−1{x} is connected whenever α ∈ C and x ∈

Xα. Choose Un ∈ Bα with x ∈ Un ⊇ Un+1 for all n ∈ ω and {x} =
⋂

n Un =
⋂

n Un.
Each (σω1

α )−1(Un) is in B, so it and its closure are connected, and cl((σω1
α )−1(Un+1)) ⊆

(σω1
α )−1(Un+1) ⊆ (σω1

α )−1(Un), so that (σω1
α )−1{x} is the decreasing intersection of the

connected closed sets cl((σω1
α )−1(Un)), and is hence connected. ©

We do not know if conditions (C1 – C10) in Section 3 determine ind(Z), but a
minor addition to the construction will ensure that Z does not have small transfinite
inductive dimension; that is, trind(Z) = ∞ (and hence ind(Z) = ∞). The transfinite
inductive dimension trind is the natural generalization of ind; see [7].

Theorem 6.2 Assuming ♦, there is a locally connected HS continuum Z such that
dim(Z) = 1, trind(Z) = ∞, and Z has no nontrivial convergent sequences.

To do this, we make sure that all perfect subsets are Gδ sets. Observe that by local
connectedness, every non-empty closed Gδ contains a non-empty connected closed
Gδ subset, which in our Z cannot be a singleton. So, no non-empty closed Gδ can
have dimension 0.

Lemma 6.3 Assume that X is compact, connected, and infinite, and all perfect
subsets of X are Gδ sets. Assume also that χ(x, X) > ℵ0 for all x ∈ X, and that in
X, every non-empty closed Gδ set contains a non-empty closed connected Gδ subset.
Then trind(X) = ∞.



REFERENCES 15

Proof. We prove by induction on ordinals α that ¬[trind(X) ≤ α] for all such
X. This is obvious for α = 0. Assume α > 0 and the inductive hypothesis holds for
all ordinals ξ < α. Suppose that trind(X) ≤ α. Then there is a regular open set U
such that U �= ∅, U �= X, and trind(∂U) = ξ < α. Let V = X\U ; then U and V are
perfect, so ∂U = U ∩ V is a Gδ, and hence contains a non-empty closed connected
Gδ subset Y . Then trind(Y ) ≤ trind(∂U) ≤ ξ. Since Y satisfies the conditions of

the lemma, this is a contradiction. ©
By the same argument, this space is weird in the sense of [10]; that is, no perfect

subset is totally disconnected.
To construct our Z so that perfect sets are Gδ, we observe first that if Q ⊆

MS× [0, 1]ω1 is perfect, then C := {α < ω1 : πω1
α (Q) is perfect} is a club. One might

then use ♦, as in [5], to capture perfect subsets of Z, but this is not necessary, since
we already know that Z is HS, and we are already capturing countable sequences.
Thus, we get:

Conditions 6.4 We have Pα and Pα for α < ω1 such that:

C11. Pα = cl(Zα ∩ {qn
α : n ∈ ω}) whenever α ≥ ω and this set is perfect; otherwise,

Pα = Zα.

C12. Pα = {(σα
δ )−1(Pδ) : δ ≤ α}.

C13. σα+1
α � ((σα+1

α )−1(P )) : (σα+1
α )−1(P ) � P is irreducible for each P ∈ Pα.

Proof of Theorem 6.2. To obtain these conditions, note that (C13) is trivial
for P unless tα ∈ P . If tα ∈ P , then, since P is perfect, we may choose a sequence
of distinct points 〈pn : n ∈ ω〉 from P\{tα} converging to tα. Then, while we are
accomplishing (C8), we make sure that all points of (σα+1

α )−1{tα} are (strong) limit
points of the set of singletons, {(σα+1

α )−1{pn} : n ∈ ω}; this implies irreducibility.
Now, we prove by induction on β ≥ α that σβ

α � ((σβ
α)−1(P )) : (σβ

α)−1(P ) � P
is irreducible for each P ∈ Pα. Then, if Q ⊆ Z is perfect, we use HS and (C7) to fix
some α < ω1 such that Pα = σω1

α (Q) and Pα is perfect. Irreducibility then implies

that Q = (σω1
α )−1(Pα), which is a Gδ. ©

Finally, we remark that our space Z is dissipated in the sense of [12], since in
the inverse limit, only one point tα gets expanded in passing from Zα to Zα+1; the
inverse projection of every other point is a singleton. As pointed out in [12], this is
also true of the original Fedorchuk S-space [8], where one point tα got expanded to
a pair of points; here, and in [10] and van Mill [15], tα gets expanded to an interval.
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