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Abstract

We consider the Complex Stone-Weierstrass Property (CSWP), which is
the complex version of the Stone-Weierstrass Theorem. If X is a compact
subspace of a product of three linearly ordered spaces, then X has the
CSWP if and only if X has no subspace homeomorphic to the Cantor set.
In addition, every finite power of the double arrow space has the CSWP.
These results are proved using some results about those compact Hausdorff
spaces which have scattered-to-one maps onto compact metric spaces.

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. As usual,
a subset of a space is perfect iff it is closed and non-empty and has no isolated
points, so X is scattered iff X has no perfect subsets.

The usual version of the Stone-Weierstrass Theorem involves subalgebras of
C(X, R), and is true for all compact X. If one replaces the real numbers R by
the complex numbers C, the “theorem” is true for some X and false for others,
so it becomes a property of X:

Definition 1.1 If X is compact, then C(X) = C(X, C) is the algebra of contin-
uous complex-valued functions on X, with the usual supremum norm. A � C(X)
means that A is a subalgebra of C(X) which separates points and contains the
constant functions. A�c C(X) means that A � C(X) and A is closed in C(X).
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X has the Complex Stone-Weierstrass Property (CSWP) iff every A � C(X) is
dense in C(X); equivalently, iff every A�c C(X) equals C(X).

The CSWP is easily seen to be true for finite spaces. The complex analysis
developed in the 1800s shows that the CSWP is false for many compact subspaces
of the plane; for example, it is false for the unit circle T; the classic counter-
example being the algebra of complex polynomials P � C(T). These remarks are
subsumed by results of W. Rudin [14, 15] from the 1950s:

Theorem 1.2 Let X be any compact space.

1. If X contains a copy of the Cantor set, then X fails the CSWP.

2. If X is scattered, then X satisfies the CSWP.

If a compact space is metrizable (equivalently, second countable), then it con-
tains a Cantor subset iff it is not scattered, so as Rudin pointed out:

Corollary 1.3 If X is compact metric, then X satisfies the CSWP iff X does
not contain a copy of the Cantor set.

One might conjecture that this corollary holds for all compact X, but that
was refuted in 1960 by Hoffman and Singer [9] (see also [4, 8]); their results imply
that any compactum containing βN fails the CSWP.

However, the corollary does hold for some more “reasonable” classes of spaces.
Kunen [11] showed in 2004:

Theorem 1.4 If X is a compact LOTS, then X satisfies the CSWP iff X does
not contain a copy of the Cantor set.

As usual, a LOTS is a linearly ordered topological space. Of course, the → of
this result is clear from Theorem 1.2; only the ← was new. This theorem shows
that there are some non-scattered spaces with the CSWP, such as the double
arrow space of Alexandroff and Urysohn (see Definition 2.1, or [1], p. 76).

One can now ask whether there are further classes of “reasonable” spaces for
which results such as Corollary 1.3 and Theorem 1.4 hold. We do not know the
best possible result along this line, but we shall prove in Section 5:

Theorem 1.5 If X is compact and X ⊆ L0 × L1 × L2, where L0, L1, L2 are
LOTSes, then X has the CSWP iff X does not contain a copy of the Cantor set.
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Here, we may assume that L0, L1, L2 are compact (otherwise, replace them by
the projections of X). It is unknown whether the product of two spaces with the
CSWP must also have the CSWP. Even if this turns out to be true, Theorem 1.5
is not immediate from Theorem 1.4, since X is an arbitrary compact subset of
the product, and L0, L1, L2 may fail the CSWP (i.e., have Cantor subsets).

By a slightly different argument, we shall show in Section 7:

Theorem 1.6 If L is the double arrow space, then Ln has the CSWP for every
finite n.

Theorems 1.5 and 1.6 are proved using some results from Section 3 about
spaces which have scattered-to-one maps onto metric spaces. In Theorem 1.6,
there is a natural f : Ln � [0, 1]n for which the inverse of each point is scattered
(and of size 2n). In Theorem 1.5, the Lj need not have any scattered-to-one maps
onto metric spaces, but a standard argument using measures reduces the proof
of Theorem 1.5 to the case where the Lj are separable (see Section 4), in which
case X must have an eight-to-one map onto a compact metric space.

If L0, L1, L2 are separable in Theorem 1.5, then X must also be first countable,
and hence “small” in the cardinal functions sense (see Juhász [10]). However,
we do not believe that there is a notion of “reasonable” involving only cardinal
functions. In [6] it is shown that in some models of set theory, there is a compact
X which does not contain Cantor subsets and which fails the CSWP, such that
X is both hereditarily separable and hereditarily Lindelöf (and hence also first
countable). In these models, 2ℵ0 = ℵ1 and the standard cardinal functions of our
X (all either ℵ0 or ℵ1) are the least possible among non-metric compacta.

Section 2 reviews some elementary fact about LOTSes. Section 6 discusses the
notion of a removable space defined in [5]; this is a strengthening of the CSWP
used in Section 7.

Definition 1.7 Let K be a class of compact spaces. K is closed-hereditary iff
every closed subspace of a space in K is also in K. K is local iff K is closed-
hereditary and for every compact X: if X is covered by open sets whose closures
lie in K, then X ∈ K.

Classes of compacta which restrict cardinal functions (first countable, second
countable, countable tightness, etc.) are clearly local, whereas the class of com-
pacta which are homeomorphic to a LOTS is closed-hereditary, but not local.

It is easily seen that the CSWP is closed-hereditary; this is Lemma 1.3 of [11],
but the proof is implicit in Rudin [14]. Thus, to prove part (1) of Theorem 1.2 in
[14], it was sufficient to show that the Cantor set itself fails the CSWP.

The removable spaces form a local class (see Section 6). It is unknown whether
the CSWP is a local property. A proof that it is local cannot be completely trivial.
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For example, locality would imply that the failure of the CSWP for T yields the
failure of the CSWP for an arc A ⊆ T. Now, A does in fact fail the CSWP, since
it contains a Cantor set, but we do not know how to construct a counter-example
on A directly from the polynomial algebra P � C(T); note that the restriction
P�A � C(A) is dense in C(A) by Mergelyan’s Theorem.

2 Ordered Spaces

We begin by defining the double arrow space and some variants thereof:

Definition 2.1 I = [0, 1]. If Λ : I → ω, then IΛ =
⋃

x∈I{x} × {0, 1, . . . , Λ(x)},
which is given the lexicographic order and the usual order topology. If S ⊆ (0, 1),
then IS = Iχ

S
, where χS is the characteristic function; then for x ∈ S, let

x− = (x, 0) and x+ = (x, 1); while if x /∈ S, let x− = x+ = (x, 0). The double
arrow space is I(0,1). For any Λ, the map (x, �) 	→ x is the standard map from IΛ

onto I.

So, we form IΛ by splitting each x ∈ S into Λ(x) + 1 neighboring points. For
IS, we split each x ∈ S into two neighboring points, x−, x+, and we don’t split the
points in I\S; it is convenient to have x± defined for all x ∈ I, so, for example,
we can say that for all a < b in I, (a+, b−) is an open interval in IS. IS has no
isolated points because 0, 1 /∈ S. The double arrow space is obtained by splitting
all points other than 0, 1. I∅ ∼= I, and IQ∩(0,1) is homeomorphic to the Cantor set.

Lemma 2.2 For each S ⊆ (0, 1), IS is a compact separable LOTS with no isolated
points. IS is second countable iff S is countable. Every IΛ is a compact first
countable LOTS.

IΛ will not be separable unless {x : Λ(x) > 1} is countable. The study of
compact separable LOTSes can be reduced to spaces of the form IS. First note,
by Lutzer and Bennett [13]:

Lemma 2.3 If X is a separable LOTS, then X is hereditarily separable and
hereditarily Lindelöf.

Also, it is easy to check:

Lemma 2.4 If X is a LOTS and H is a compact subset of X, then the relative
topology and the order topology agree on H.

Relating this to our IS:
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Lemma 2.5 Let X be a compact separable LOTS. Then

1. If X is perfect, then X is homeomorphic to IS for some S ⊆ (0, 1).

2. If X is not second countable, then X has a closed subspace which is home-
omorphic to IS for some uncountable S ⊆ (0, 1).

3. X is homeomorphic to a subset of IS for some S ⊆ (0, 1).

Proof. For (1): Let E ⊆ X be countable and dense in X and contain the first
and last elements of X. Let B be the set of all b ∈ E such that for some a ∈ E:
a < b and (a, b) = ∅. Let D = E\B. Since X has no isolated points, D is also
dense in X and contains the first and last elements of X, and is also densely
ordered. Let f be an order isomorphism from D onto Q ∩ [0, 1]. Then f extends
in a natural way to a continuous F : X � [0, 1], and 1 ≤ |F−1{r}| ≤ 2 for each
r ∈ [0, 1]. Let S = {r : |F−1{r}| = 2}.

For (2): Since X is hereditarily Lindelöf, the Cantor-Bendixson sequence of
X has countable length and removes countably many points. Thus, X is not
scattered, and, letting H be the perfect kernel of X, X\H is countable. Then H
is separable and not second countable, so H ∼= IS for some uncountable S.

For (3): Apply (1) to the space obtained from X by replacing each isolated

point by a copy of the double arrow space. K
Note that (IS)2 is separable, but it is not hereditarily separable when S is

uncountable; in fact, more general IΛ occur naturally in such products. Fixing an
uncountable S ⊆ (0, 1), let Ln = IΛn , where Λn(x) = n for n ∈ S, and Λn(x) = 0
for n /∈ S. Then Ln is not separable whenever n ≥ 2, and the diagonal of (IS)k is
homeomorphic to L2k−1.

3 Tight Maps and Dissipated Spaces

We recall some definitions and results from [12]. As usual, f : X → Y means that
f is a continuous map from X to Y , and f : X � Y means that f is a continuous
map from X onto Y .

Definition 3.1 Assume that X, Y are compact and f : X → Y .

☞ A loose family for f is a disjoint family P of closed subsets of X such that
for some non-scattered Q ⊆ Y , Q = f(P ) for all P ∈ P.

☞ f is κ–tight iff there are no loose families for f of size κ.

☞ f is tight iff f is 2–tight.
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This notion gets weaker as κ gets bigger. f is 1–tight iff f(X) is scattered, so
that “2–tight” is the first non-trivial case. f is trivially |X|+–tight. The usual
projection from [0, 1]2 onto [0, 1] is not 2ℵ0–tight.

Some easy equivalents to “κ–tight” are described in Lemma 2.2 of [12]:

Lemma 3.2 Assume that X, Y are compact and f : X → Y . Then (1) ↔ (2).
If κ is finite and Y is metric, then all four of the following are equivalent:

1. There is a loose family of size κ.

2. There is a disjoint family P of perfect subsets of X with |P| = κ and a
perfect Q ⊆ Y such that Q = f(P ) for all P ∈ P.

3. For some metric M and ϕ ∈ C(X, M), {y ∈ Y : |ϕ(f−1{y})| ≥ κ} is
uncountable.

4. Statement (3), with M = [0, 1].

If X, Y are both compact metric, then f : X → Y is κ–tight iff {y ∈ Y :
|f−1{y}| ≥ κ} is countable (see Theorem 2.7 of [12]). Of course, the ← direction
is trivial. The → direction for non-metric X and κ = 2 is refuted by the standard
map from the double arrow space onto [0, 1], which is tight by Lemma 2.3 of [12]:

Lemma 3.3 If X, Y are compact LOTSes and f : X → Y is order-preserving
(x1 < x2 → f(x1) ≤ f(x2)), then f is tight.

One can estimate the tightness of product maps using Lemma 2.14 of [12]:

Lemma 3.4 Assume that for i = 0, 1: Xi, Yi are compact, fi : Xi → Yi is
(mi + 1)–tight, mi ≤ ni < ω, and |f−1

i {y}| ≤ ni for all y ∈ Yi. Then f0 × f1 :
X0 × X1 → Y0 × Y1 is (max(m0n1, m1n0) + 1)– tight.

The notion of a dissipated compactum (Definition 3.11 below) involves tight
maps onto metric compacta, ordered by fineness, so we define:

Definition 3.5 Assume that X, Y, Z are compact, f : X → Y , and g : X → Z.
Then f ≤ g, or f is finer than g, iff there is a Γ ∈ C(f(X), g(X)) such that
g = Γ ◦ f .

Lemma 3.6 Assume that X, Y, Z are compact, f : X → Y , and g : X → Z.
Then f ≤ g iff ∀x1, x2 ∈ X [f(x1) = f(x2) → g(x1) = g(x2)].

Definition 3.7 Assume X is compact. Let M(X), the metric projections of X,
be the class of all maps π such that π : X → Y for some compact metric Y . Then
π ∈ MS(X) ⊆ M(X) iff in addition, each π−1{y} is scattered.
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Lemma 3.8 If π, σ ∈ M(X) and π ≤ σ ∈ MS(X), then π ∈ MS(X).

Observe that in the definition of f ≤ g, it is irrelevant whether f, g map X
onto Y, Z. Here, and in the definition of M(X), we should really regard f in
the set-theoretic sense as a set of ordered pairs, not as a triple (f, X, Y ), so that
f : X → Y and f : X � f(X) are exactly the same object. One could also define
M(X) and MS(X) as sets of closed equivalence relations on X.

Lemma 3.9 M(X) is countably directed. That is, if σn ∈ M(X) for n ∈ ω, then
there is a π ∈ M(X) with π ≤ σn for each n.

Lemma 3.10 If σ ∈ MS(X), then there is a π ∈ MS(X) with π ≤ σ and
π : X � Y , such that π−1{b} is a singleton for some b ∈ Y .

Proof. Say σ : X � Z. Fix any c ∈ Z, and then fix a ∈ σ−1{c} such that a is
isolated in σ−1{c}. Since Z is metric, {a} is a Gδ in X, so fix any f ∈ C(X, [0, 1])

with {a} = f−1{1}. Choose π ∈ MS(X) with π ≤ σ and π ≤ f . K
Only a scattered compactum X has the property that all maps in M(X) are

tight: If X is not scattered, then X maps onto [0, 1]2; if we follow that map by
the usual projection onto [0, 1], we get a map from X onto [0, 1] which is not even
c–tight. The dissipated compacta have the property that cofinally many of these
maps are tight:

Definition 3.11 X is κ–dissipated iff X is compact and whenever g ∈ M(X),
there is a finer κ–tight f ∈ M(X). X is dissipated iff X is 2–dissipated.

So, the 1–dissipated compacta are the scattered compacta. Metric compacta
are dissipated because we can let f be identity map. By Lemma 3.12 of [12]:

Lemma 3.12 For any κ, the class of κ–dissipated compacta is a local class.

An easy example of a dissipated space is given by:

Lemma 3.13 If X is a compact LOTS, then X is dissipated

The proof (see Lemma 3.4 of [12]) shows that given g ∈ M(X), there is a finer
f ∈ M(X) such that f(X) is a compact metric LOTS and f is order-preserving.

Note that just having one tight map g from X onto some metric compactum
Z is not sufficient to prove that X is dissipated, since the tightness of g says
nothing at all about the complexity of a particular g−1{z}. However, if all g−1{z}
are scattered, then just one tight g is enough by Lemma 3.5 of [12]:
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Lemma 3.14 Assume that some g ∈ MS(X) is κ–tight. Then all f ≤ g are also
κ–tight, so that X is κ–dissipated.

This suggests the following definition:

Definition 3.15 π ∈ M(X) is κ–supertight iff π is κ–tight and π ∈ MS(X).
Then X is κ–superdissipated iff some π ∈ MS(X) is κ–supertight.

Using Lemmas 3.14, 3.12, and 3.8 above:

Lemma 3.16 If π, σ ∈ MS(X), π ≤ σ, and σ is κ–supertight, then π is κ–
supertight.

Lemma 3.17 A compactum X is κ–superdissipated iff X is κ–dissipated and
MS(X) �= ∅.

Lemma 3.18 The class of κ–superdissipated compacta is a local class.

By Lemma 3.3:

Lemma 3.19 The standard map σ : IΛ � I is 2–supertight.

The situation for products is more complicated. By Lemma 3.4 and induction:

Lemma 3.20 For any n ≥ 1 and Si ⊆ I (for i < n): The standard map σ :∏
i<n ISi

� In is (2n−1 + 1)–supertight.

This result is best possible by Theorem 3.9 of [12]; a product
∏

i<n Xi is not
(2n−1)–dissipated if each Xi is a compact separable LOTS, none of the Xi is
scattered, and at most one of the Xi is second countable.

Definition 3.21 The perfect kernel, ker(X), is ∅ if X is scattered, and the largest
perfect subset of X otherwise.

By Lemma 3.2, the tightness of π : X → Y can be expressed using perfect
subsets of X, so that

Lemma 3.22 π : X → Y is κ– (super)tight iff π� ker(X) is κ– (super)tight, and
the space X is κ– (super)dissipated iff ker(X) is κ– (super)dissipated.

Lemma 3.23 Assume that π : X → Y is (n + 2)–supertight, where n ∈ ω, X
is compact and Y is compact metric, and {P0, . . . , Pn} is a loose family for π of
size n + 1, with each π(Pj) = Q. Then each π�Pj : Pj → Q is 2–supertight,
ker(π−1(Q)) ⊆ ⋃

j Pj, and π−1(Q) is 2–superdissipated.
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Proof. If tightness fails for π�Pj, then we could find uncountable closed Q′ ⊆ Q
and disjoint closed P 0

j , P 1
j ⊆ Pj with π(P 0

j ) = π(P 1
j ) = Q′. If P ′

k = Pk ∩ π−1(Q′),
then the sets P ′

0, . . . , P
′
j−1, P

0
j , P 1

j , P ′
j+1, . . . , P

′
n would be a loose family for π of

size n + 2. If ker(π−1(Q)) �⊆ ⋃
j Pj , we could find a perfect R ⊆ π−1(Q) \ ⋃

j Pj;

then π(R) is non-scattered (since all π−1{y} are scattered), and R plus the Pj

would contradict the (n+2)–tightness of π. Finally, by Lemma 3.22, it is sufficient
to prove that

⋃
j Pj is superdissipated, and this is done using the map into Y ×

{0, 1, . . . , n} which sends x ∈ Pj to (π(x), j). K
Finally, we mention two lemmas for the case that X does not contain a Cantor

subset. π : X → Y is trivially n–supertight when all |π−1{y}| < n, but also

Lemma 3.24 Assume that π : X → Y , X is compact, Y is compact metric, each
|π−1{y}| ≤ n, and X has no Cantor subsets. Then π is n–supertight.

Proof. If not, let P0, . . . , Pn−1 ⊆ X be a loose family, with each π(Pj) = Q.

Then Q has a Cantor subset, and each Pj is homeomorphic (via π) to Q. K
By the next lemma, the spaces X we consider are always totally disconnected:

Lemma 3.25 Assume that π : X → Y , where X is compact and Y is metric.
Assume that each π−1{y} is totally disconnected and X does not contain a copy
of the Cantor set. Then X is totally disconnected.

Proof. Assume that X is not totally disconnected. Fix a metric on Y for which
diam(Y ) ≤ 1. Obtain Ks for s ∈ 2<ω to satisfy:

1. Ks is an infinite closed connected subset of X.

2. diam(π(Ks)) ≤ 2−lh(s).

3. Ks�0, Ks�1 ⊂ Ks and Ks�0 ∩ Ks�1 = ∅.
Assuming that this can be done, define Kf =

⋂
n∈ω Kf�n for f ∈ 2ω. By (2),

|π(Kf)| = 1; say π(Kf) = {yf}. But Kf is connected and π−1{yf} is totally
disconnected, so |Kf | = 1; say Kf = {xf}. Then f 	→ xf is a homeomorphism
from 2ω into X, contradicting our assumptions about X.

To build the Ks: For K( ), just use the assumption that X is not totally
disconnected. Now, say we are given Ks. Choose x0, x1 ∈ Ks with x0 �= x1. Then
find disjoint relatively open U0, U1 ⊆ Ks with each x� ∈ U� and diam(π(U�)) ≤
2−lh(s)−1. Then find relatively open V� ⊆ Ks with x� ∈ V� ⊆ V� ⊆ U�. Then, let
Ks�� be the connected component of the point x� in the space V�, and note that

Ks�� cannot be a singleton. K
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4 The CSWP: Two Reductions

These reductions were described in [11]: Using the standard theory of function
algebras (see [3, 4]), we can reduce the CSWP to the study of idempotents, and
we can reduce the study of the CSWP in LOTSes to the separable case.

If f ∈ C(X), then f is an idempotent iff f 2 = f ; equivalently iff f is the
characteristic function of some clopen set. An idempotent is called nontrivial iff
it is not the identically 0 or the identically 1 function. As with other proofs of
the CSWP [5, 11], we shall proceed by considering idempotents. Following [11],

Definition 4.1 The compact space X has the NTIP iff every A�c C(X) contains
a non-trivial idempotent.

So, the NTIP is trivially false of connected spaces. If X is not connected, then
the CSWP implies the NTIP. The following is Lemma 3.5 of [11]; it is also easy
to prove from the Bishop Antisymmetric Decomposition (see [2], or Theorem 13.1
in Chapter II of [3]).

Lemma 4.2 Assume that X is compact and every perfect subset of X has the
NTIP. Then X has the CSWP.

Among the totally disconnected spaces, the NTIP is strictly weaker than the
CSWP (see [11]). However, the lemma implies the following corollary, which is
used to reduce proofs of the CSWP to proofs of the weaker NTIP:

Corollary 4.3 If K is a closed-hereditary class of compact spaces and every per-
fect space in K has the NTIP, then every space in K has the CSWP.

In particular, if K is the class of compact scattered spaces, then this corollary
applies vacuously, so all spaces in K have the CSWP. If K contains some non-
scattered spaces, then, as in [11, 5], we produce idempotents using:

Lemma 4.4 Suppose that A�c C(X) and there is some h ∈ A such that either
�(h(X)) or �(h(X)) is not connected. Then A contains a non-trivial idempotent.

This is easy to prove using Runge’s Theorem; see Lemma 2.5 of [11], but the
method was also used in [14] and [9].

It remains to describe how to obtain such an h. If X is scattered, then �(h(X))
is scattered also, so any h for which �(h(X)) is not a singleton will do; this is
essentially the argument of [15]. In some other cases, we can obtain h using a
tight map of X onto a metric space; this is described in Section 5.

We now turn to the second reduction. As in §5 of [11],
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Definition 4.5 If μ is a regular complex Borel measure on the compact space X,
then |μ| denotes its total variation, and supt(μ) = supt(|μ|) denotes its (closed)
support; that is, supt(μ) = X \ ⋃{U ⊆ X : U is open & |μ|(U) = 0}.

Considering measure orthogonal to A, we get:

Lemma 4.6 Assume that X is compact and that supt(μ) has the CSWP for all
regular Borel measure μ. Then X has the CSWP.

By Corollary 5.4 of [12], every such supt(μ) is separable in the case that X is
ℵ0–dissipated; for a LOTS X, this was a much earlier folklore result.

Corollary 4.7 If X fails the CSWP and is ℵ0–dissipated, then some compact
separable subspace of X fails the CSWP.

Question 4.8 Is there a compact space X which fails the CSWP such that all
compact separable subspaces of X satisfy the CSWP?

This X cannot be one of the three examples already known to fail the CSWP —
namely, any space containing either the Cantor set [14] or βN [9] or the examples
of [6, 7] (obtained assuming ♦ or CH), since all these spaces are separable.

Now, considering products of LOTSes:

Lemma 4.9 Assume that X is a compact subset of
∏

α<κ Lα, where each Lα is
a LOTS, and assume that X does not have the CSWP. Then for some separable
closed compact Hα ⊆ Lα, the space X ∩ ∏

α<κ Hα also fails the CSWP.

Proof. Let πα : X → Lα be the usual coordinate projection. We may assume
that each Lα = πα(X), so that Lα is compact. Fix μ on X such that supt(μ) fails
the CSWP, let μπ−1

α be the induced measure on Lα, let Hα = supt(μπ−1
α ), which

is separable, and note that supt(μ) ⊆ X ∩ ∏
α<κ Hα. K

Lemma 4.10 For any κ ≤ ω: Suppose that there is a compact X ⊆ ∏
α<κ Lα,

where each Lα is a LOTS, X has no Cantor subset, and X does not have the
CSWP. Then there is such an X which is a subset of (IS)κ for some S ⊆ (0, 1).

Proof. By Lemma 4.9, we may assume that each Lα is separable and compact.
Now, let L be the compact separable LOTS obtained by placing the Lα end-to-
end, adding a point ∞ in the case that κ = ω. Then we may assume that X ⊆ Lκ.

Finally, replace L by an IS using Lemma 2.5(3). K
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5 The CSWP and Tightness

We show here how one can use the concepts from Section 3 to produce idempo-
tents, and thus to prove the CSWP.

Definition 5.1 Assume that π : X → Y , where X, Y are compact. Then, for
f ∈ C(X), define f̂ = (π × f)(X); that is,

f̂ = {(π(x), f(x)) : x ∈ X} ⊆ Y × C .

Lemma 5.2 Each f̂ is compact.

We plan to apply the next definition and lemma to sets of the form f̂ :

Definition 5.3 Fix E ⊆ Y × C and Φ : Cm → C. Then Ey = {z : (y, z) ∈ E}
and

Φ ∗ E =
⋃
y∈Y

Φ((Ey)
m) ⊆ C .

Lemma 5.4 Suppose that F ⊆ Y ×C is compact and Φ : Cm → C is continuous.
Let B be an open base for Y ×C which is closed under finite unions. Then Φ ∗F
is compact and Φ ∗ F =

⋂{Φ ∗ U : U ∈ B & F ⊆ U}.

Lemma 5.5 Assume that π : X → Y is n–supertight and f ∈ C(X). Fix a
continuous Φ : Cn → C such that Φ(z1, . . . , zn) = 0 unless all n of the z1, . . . , zn

are different. Then Φ ∗ f̂ is compact and countable, and hence scattered.

Proof. Compactness follows from the compactness of X, Y . By n–tightness,
|f̂y| < n, and hence Φ((f̂y)

n) = {0}, for all but countably many y (see Lemma

3.2). But for all y, π−1{y} is scattered, so that Φ((f̂y)
n) is also scattered, and

hence countable. Thus, the union of all these sets is also countable. K
Dissipation is a notion of smallness, which is balanced by a notion of bigness,

which is really a partition property:

Definition 5.6 Fix a real r > 0. The compact space X is n–big iff for all A �
C(X) and all partitions Υ : A → ω, there are f1, . . . , fn ∈ A and a point c ∈ X
such that the Υ(fj), for j = 1, . . . , n, are all equal, and such that |fi(c)−fj(c)| ≥ r
whenever 1 ≤ i < j ≤ n.

Since A is a linear subspace, it does not matter which r > 0 we use. The
notion of 1–big is trivial, and 2–big is easily characterized:
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Lemma 5.7 The compact space X is 2–big iff X is not second countable.

Proof. Note that ∃c
(|f1(c)−f2(c)| ≥ r

)
holds iff ‖f1−f2‖ ≥ r. Also, if X is not

second countable then C(X) is not separable, and hence any A � C(X) is not
separable, since the algebra generated by the functions in A and their complex

conjugates is dense in C(X) by the Stone-Weierstrass Theorem. K
We relate this to the NTIP with the aid of:

Definition 5.8 For each n ≥ 2, define Ξn : Cn → C by:

Ξn(z1, . . . , zn) = 2 ·
∏

1≤i<j≤n

(zj − zi) .

Lemma 5.9 Ξn is a polynomial in n variables. Ξ(z1, . . . , zn) = 0 unless all n
of the z1, . . . , zn are different. If |zi − zj | ≥ 1 for all i < j ≤ n, then either
|�(Ξn(z1, . . . , zn))| ≥ 1 or |�(Ξn(z1, . . . , zn))| ≥ 1.

Lemma 5.10 Assume that X is compact, A�c C(X), H ⊆ V ⊆ X, where H, V
are both clopen, and for some n ≥ 2, V is n–superdissipated and H is n–big.
Assume also that there is a ψ ∈ A such that |ψ(x)| ≤ 1/2 for all x ∈ X\V and
|ψ(x)| ≥ 1 for all x ∈ H. Then A has a non-trivial idempotent.

Proof. Fix π : V � Y which is n–supertight. Applying Lemmas 3.10 and
3.16, we assume also that we have b ∈ Y and a ∈ V such that π−1{b} = {a}.
Let r+(z1, . . . , zn) = −r−(z1, . . . , zn) = �(Ξn(z1, . . . , zn)) and i+(z1, . . . , zn) =
−i−(z1, . . . , zn) = �(Ξn(z1, . . . , zn)), so that r+,r−, i+, i− : Cn → R. Call
(E, ρ, τ) good iff:

1. ρ, τ ∈ Q and 1/2 < ρ < τ < 1.

2. E ⊆ Y × C.

3. [ρ, τ ] is disjoint from each of r+ ∗ E, r− ∗ E, i+ ∗ E, i− ∗ E.

4. |Ξn(z1, . . . , zn)| < ρ whenever z1, . . . , zn ∈ Eb.

For f ∈ C(X), use f̂ for f̂�V . Observe that for each f ∈ C(X), we may choose

ρ, τ so that (f̂ , ρ, τ) is good: (4) is no problem since f̂b is a singleton. For the

rest, note that each of r+ ∗ f̂ , r− ∗ f̂ , i+ ∗ f̂ , i− ∗ f̂ is scattered by Lemma 5.5, so
we may choose ρ, τ to make (1)(3) true.

Let B be a countable open base for Y ×C which is closed under finite unions.
For each f ∈ A, choose s = sf ∈ ω so that |(ψ(x))s f(x)| ≤ 1/8 for all x ∈ X\V .

Then, choose ρf , τf so that (ψ̂sf f , ρf , τf) is good. Then, applying Lemma 5.4,

choose a Uf ∈ B such that that (Uf , ρf , τf ) is good and ψ̂sf f ⊆ Uf . Next,



5 THE CSWP AND TIGHTNESS 14

apply the definition of “n–big” using A�H : Fix c ∈ H and f1, f2, . . . , fn ∈ A
and (U, ρ, τ, s) such that (Ufj

, ρfj
, τfj

) = (U, ρ, τ) and sfj
= s for all j, and also

|fj(c) − fk(c)| ≥ 1, and hence |ψs(c)fj(c) − ψs(c)fk(c)| ≥ 1, whenever j �= k.
Let h(x) = Ξn((ψ(x))s f1(x), . . . , (ψ(x))s fn(x)); then h ∈ A. Then, choose

Φ ∈ {r+,r−, i+, i−} so that Φ((ψ(c))sf1(c), . . . , (ψ(c))sfn(c)) ≥ 1, and let k(x) =
Φ((ψ(x))s f1(x), . . . , (ψ(x))s fn(x)); so k(x) is either ±�(h(x)) or ±�(h(x)).

Note that when x ∈ X\V , each |(ψ(x))s fj(x) − (ψ(x))s fk(x))| ≤ 1/4 so
(referring to the definition of Ξ), |h(x)| ≤ 1/2. Then k(X) = k(V ) ∪ k(X\V ) ⊆
Φ ∗ U ∪ [−1/2, 1/2] is disjoint from [ρ, τ ], but contains k(c) > τ and k(a) < ρ.
Thus, either �(h(X)) or �(h(X)) is not connected, so A contains a non-trivial

idempotent by Lemma 4.4. K
In this section, we use only the special case of this lemma where H = V = X,

in which case the hypotheses on ψ are trivial, and the above proof can be simplified
somewhat. The more general result will be needed in Section 6.

Setting H = V = X, we have:

Lemma 5.11 Suppose that n ≥ 2 and X is both n–big and n–superdissipated.
Then X has the NTIP.

Applying this and Lemma 5.7, we have:

Theorem 5.12 If X is 2–superdissipated and is not second countable, then X
has the NTIP.

This theorem yields the NTIP for some spaces not covered by [5, 11], but the
result on CSWP, obtained from Corollary 4.3, is contained in the results of [5]:

Corollary 5.13 If X is 2–superdissipated and does not contain a Cantor subset,
then X has the CSWP.

The examples of [6, 7] show (under ♦ or CH) that this need not hold if X
is merely 2–dissipated. To extend this corollary to 3–superdissipated spaces, we
need a mechanism (Lemma 5.15) for proving that a space is 3–big. This notion,
unlike 2–big (see Lemma 5.7), does not seem to have a simple equivalent in terms
of standard cardinal functions; see Section 8.

Lemma 5.14 Assume that n ≥ 1 and that X is (n + 2)–superdissipated but not
(n + 1)–superdissipated, and then fix σ : X � Z which is (n + 2)–supertight,
where Z is compact metric. Assume that X does not have a Cantor subset. Fix
A � C(X) and Υ : A → ω. Fix any disjoint open sets V0, V1, V2 ⊆ C and any
π ∈ M(X). Then there are f, g, a, d, c such that:
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1. f, g ∈ A and Υ(f) = Υ(g).

2. a, d ∈ X, c = σ(a) = σ(d) ∈ Z, and π(a) = π(d).

3. f(a) ∈ V0 and g(a) ∈ V1.

4. f(d) ∈ V2 and g(d) ∈ V2.

5. For all x ∈ σ−1{c}, (f(x), g(x)) ∈ V0 × V1 ∪ V2 × V2.

Proof. First, replacing π by a finer map, we may assume that π ≤ σ, so that
π ∈ MS(X) and π also is (n + 2)–supertight (see Lemmas 3.8, 3.9, and 3.16).
Say π : X � Y ; then fix Γ ∈ C(Y, Z) with σ = Γ ◦ π.

Since π is not (n + 1)–supertight, fix a loose family for π, {P0, . . . , Pn}, with
each π(Pj) = Q and each Pj perfect (see Lemma 3.2). Then {P0, . . . , Pn}
is also a loose family for σ, with each σ(Pj) = Γ(Q); note that Γ(Q) can-
not be scattered since Q is not scattered and each Γ−1{z} is scattered. Then
σ−1(Γ(Q)) = π−1(Γ−1(Γ(Q))) is superdissipated by Lemma 3.23, so it has the
CSWP by Corollary 5.13. Also, X is totally disconnected by Lemma 3.25. Fix
closed disjoint P̃j ⊆ σ−1(Γ(Q)) such that each P̃j ⊇ Pj and

⋃
j Pj = σ−1(Γ(Q)).

Note that each σ�P̃j is supertight by Lemma 3.23.
Choose yξ ∈ Q for ξ < ω1 such that the Γ(yξ) are all different and each

|π−1{yξ} ∩ P0| ≥ 2; this is possible because P0 does not have a Cantor subset.
Then, applying the CSWP for σ−1(Γ(Q)), choose hξ ∈ A for ξ < ω1 such that

hξ(P̃0) ⊆ V0 ∪ V1, hξ(P̃j) ⊆ V2 when j ≥ 1, and hξ(π
−1{yξ} ∩ P0) meets both V0

and V1. Since there are only countably many values for Υ, we may assume that
the Υ(hξ) are all the same. For each ξ, we have P0 partitioned into two relatively
clopen sets, h−1

ξ (V0) ∩ P0 and h−1
ξ (V1) ∩ P0, and both these sets meet π−1{yξ}. If

these clopen partition were the same for all ξ, we would contradict the tightness of
π�P0 (see Lemma 3.23), so that we may fix ξ �= η with H := h−1

ξ (V0)∩h−1
η (V1)∩P0

non-empty, and thus perfect. Let f = hξ and g = hη.
If we choose any a ∈ H , we may set c = σ(a), and choose any d ∈ P1 ∩

π−1{π(a)}. This will satisfy (1)(2)(3)(4), but (5) might fail, since there may be

an xc ∈ σ−1{c} such that xc ∈ P̃0 and either f(xc) ∈ V1 or g(xc) ∈ V0. But note

that we also have a ∈ σ−1{c} and a ∈ P̃0 and f(a) ∈ V0 and g(a) ∈ V1. Consider
the map (f, g) : X → C × C. If (5) fails for every choice of a ∈ H , then there
would be uncountably many c ∈ π(H) such that (f, g) takes more than one value

on P̃0 ∩ σ−1{c}, contradicting the tightness of σ�P̃0. Thus, we may choose a, b, d

so that (1)(2)(3)(4)(5) hold. K

Lemma 5.15 Assume that X is not dissipated, but that X is m–superdissipated
for some m ∈ ω, and that X does not have a Cantor subset. Then X is 3–big.
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Proof. Fix A � C(X) and Υ : A → ω. Fix any disjoint open sets V0, V1, V2 ⊆ C.
To verify that X is 3–big, it is sufficient to find h0, h1, h2 ∈ A and x ∈ X such
that each hj(x) ∈ Vj.

Fix n ≥ 1 such that X is (n + 2)–superdissipated but not (n + 1)–super-
dissipated, and then fix σ : X � Z which is (n + 2)–supertight Let B be
a countable open base for Z. For π ∈ M(X), call F = (f, g, a, d, c, s, U) =
(fF , gF , aF , dF , cF , sF , UF ) good for π iff (1–5) from Lemma 5.14 hold together
with:

6. s ∈ ω and Υ(f) = Υ(g) = s.

7. c ∈ U , U ∈ B, and for all x ∈ σ−1(U), (f(x), g(x)) ∈ V0 × V1 ∪ V2 × V2.

Such an F always exists. To see this, first get (f, g, a, d, c) by Lemma 5.14 to
satisfy (1–5). Then (6) is trivial, and we choose U to satisfy (7) using the fact
that {z ∈ Z : ∀x ∈ σ−1{z} [(f(x), g(x)) ∈ V0 × V1 ∪ V2 × V2]} is open.

Note that if F is good for π and π ≤ ϕ then F is good for ϕ.
Next, note that there are fixed s and U such that for all π ∈ M(X), there is

an F good for π with sF = s and UF = U : If not, then for each s, U , choose ϕs,U

such that no F good for ϕ satisfies sF = s and UF = U . Then fix π such that
π ≤ ϕs,U for each s, U . An F which is good for π yields a contradiction.

For each π, choose F π good for π with sF π
= s and UF π

= U , and write
(fπ, gπ, aπ, dπ, cπ) for (fF π

, gF π
, aF π

, dF π
, cF π

).
Now, for each π, we have σ−1(U) partitioned into two relatively clopen sets,

Aπ = {x ∈ σ−1(U) : (fπ(x), gπ(x)) ∈ V0 × V1} and Dπ = {x ∈ σ−1(U) :
(fπ(x), gπ(x)) ∈ V2 × V2}. If these are all the same, say Aπ = A and Dπ = D for
all π; then we may fix π ∈ C(X, [0, 1]) which is 0 on A and 1 on D, so π(aπ) = 0
and π(dπ) = 1, contradicting (2). Thus, we can choose π, ϕ and an x ∈ Aπ ∩Dϕ;

then fπ(x) ∈ V0, gπ(x) ∈ V1, fϕ(x) ∈ V2, as required. K
The “obvious” generalization of this would say that if X does not have a

Cantor subset and is (n + 2)–superdissipated but not (n + 1)–superdissipated,
then X is (n+2)–big. For n = 1 this is Lemma 5.15, and for n = 0 this is Lemma
5.7. Unfortunately, this is not true in general; see Example 8.5. We do get:

Theorem 5.16 Assume that X is compact and is 3–superdissipated and does not
have a Cantor subset. Then X has the CSWP.

Proof. Since “3–superdissipated” is closed-hereditary, it is sufficient, by Corol-
lary 4.3, to assume that X is also perfect and prove that X has the NTIP.
X cannot be second countable, so X is 2–big by Lemma 5.7. If X is not 2–
superdissipated, then X is 3–big by Lemma 5.15. Thus, whether or not X is

2–superdissipated, it has the NTIP by Lemma 5.11. K
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Corollary 5.17 If X is compact and X ⊆ L0 ×L1, where L0, L1 are a LOTSes,
then X has the CSWP iff X does not contain a copy of the Cantor set.

Proof. By Lemma 4.10, we may assume that X ⊆ (IS)2. Then X is 3–

superdissipated by Lemma 3.20, so X has the CSWP by Theorem 5.16. K
We now can extend this to products of three LOTSes, using an argument

which is much more specific to ordered spaces. First, we introduce a notation for
lines, boxes, etc. in such products.

Definition 5.18 Let
∏

α<κ Lα be a product of LOTSes, and use < for the order
on each Lα. Then:

☞ If β < κ and c is a point in
∏

α�=β Lα, then line(β, c) = {x ∈ ∏
α<κ Lα :

∀α �= β [xα = cα]}. A line in
∏

α<κ Lα is any set of the form line(β, c).

☞ <+ is <; <− is >; ≤+ is ≤; ≤− is ≥ .

☞ D = {+,−}κ is the set of all directions. For Δ ∈ D and x, y ∈ ∏
α<κ Lα,

x <Δ y iff ∀α [xα <Δα yα] and x ≤Δ y iff ∀α [xα ≤Δα yα].

☞ If a, b ∈ ∏
α<κ Lα, then box[a, b] =

∏
α<κ[min(aα, bα), max(aα, bα)], and a

(closed) box is any set of this form.

☞ If a ∈ ∏
α<κ Lα and Δ ∈ D, then corn(a, Δ) = {x ∈ ∏

α<κ Lα : a ≤Δ x}.
☞ If a ∈ B ⊆ ∏

α<κ Lα and Δ ∈ D, then corn(a, B, Δ) = B ∩ corn(a, Δ).

For example, in R3: (2, 4, 6) <+−+ (3, 3, 7) ≤+−+ (4, 2, 7). Now, let B = [0, 9]3 =
box[(0, 0, 0), (9, 9, 9)] = box[(9, 0, 9), (0, 9, 0)]. Then corn((2, 4, 6), B, +−+) is the
box [2, 9]× [0, 4]× [6, 9]. The directions Δ ∈ D are also useful inside products of
the form (IS)κ. Continuing the notation of Definition 2.1,

Definition 5.19 If σ : (IS)κ � Iκ is the standard map, y ∈ Iκ, and Δ ∈ D, then
yΔ = 〈yΔα : α < κ〉.

For example, if b = (b0, b1, b2) ∈ I3, then σ−1{b} consists of the points, b±±± =
(b±0 , b±1 , b±2 ); e.g., b+−+ denotes the point (b+

0 , b−1 , b+
2 ) ∈ (IS)3. The size of σ−1{b}

will be 8, 4, 2 or 1 depending on whether 3, 2, 1 or 0 of the b0, b1, b2 lie in S.
The following lets us establish bigness for subsets of (IS)n by checking a simpler

geometric property:

Lemma 5.20 Fix S ⊆ (0, 1), a closed X ⊆ (IS)n, and m with 2n−1 < m ≤ 2n.
Assume that whenever Υ : Sn → ω, there are distinct Δ1, Δ2, . . . , Δm ∈ D, a
point x ∈ X, and d1, d2, . . . , dm ∈ Sn such that x ∈ corn(d

Δj

j , Δj) for each j, and
such that Υ(d1) = Υ(d2) = · · · = Υ(dm). Then X is m–big.



5 THE CSWP AND TIGHTNESS 18

Proof. Note that for d ∈ Sn, the points dΔ ∈ (IS)n, for Δ ∈ D, are all distinct,
and the corn(dΔ, Δ), for Δ ∈ D, partition (IS)n into 2n clopen subsets.

Fix A � C(X) and Υ : A → ω. Since finite spaces have the CSWP, we may
choose, for each d ∈ Sn, an fd ∈ C((IS)n) with fd�X ∈ A such that the fd(d

Δ),
for Δ ∈ D, are 2n distinct integers. We shall verify the definition of “m–big” just
by considering the functions fd�X; the r in Definition 5.6 will be 1/2.

Each fd is continuous, so choose p(d), q(d) ∈ Qn with ∀μ [p(d)μ < dμ < q(d)μ]
such that sup{|fd(x) − fd(d

Δ)| : x ∈ corn(dΔ, box[p(d)+, q(d)−], Δ)} ≤ 1/4
for each Δ ∈ D. Here, for y ∈ In, y+ abbreviates (y+

0 , . . . , y+
n−1) and y−

abbreviates (y−
0 , . . . , y−

n−1). Now, let Υ′(d) = (Υ(fd�X), p(d), q(d)). Since
ran(Υ′) is countable, we may apply the hypotheses of the lemma and fix dis-
tinct Δ1, Δ2, . . . , Δm ∈ D, along with x ∈ X and d1, d2, . . . , dm ∈ Sn, such that
x ∈ corn(d

Δj

j , Δj) for each j, Υ(fd1�X) = Υ(fd2�X) = · · · = Υ(fdm�X), and also
each p(dj) = p and q(dj) = q for some p, q ∈ Qn.

Note that all dΔ
j ∈ box[p+, q−]. Also, since m > 2n−1, {Δ1, Δ2, . . . , Δm}

contains both Δ and −Δ for some Δ, which implies (using x ∈ corn(d
Δj

j , Δj)) that

x ∈ box[p+, q−]. Thus, x ∈ corn(d
Δj

j , box[p+, q−], Δj), so |fdj
(x) − fdj

(d
Δj

j )| ≤
1/4 for each j, so that |fdj

(x) − fdk
(x)| ≥ 1/2 when j �= k. K

Note that the points d
Δj

j were not assumed to lie in X.

Lemma 5.21 Assume that S ⊆ (0, 1), X is a closed subspace of (IS)3, X is not
3–dissipated, and X does not contain a Cantor subset. Then X is 6–big.

Proof. We verify the hypotheses of Lemma 5.20, so fix Υ : S3 → ω; we must
find appropriate Δ1, Δ2, . . . , Δ6 ∈ D = {+,−}3, x ∈ X, and d1, d2, . . . , d6 ∈ S3.

Note that it is sufficient to find x along with points cE , cF , cG ∈ S×S, numbers
uE, wE, uG, wG, uF , vF , wF ∈ S, and Δ ∈ {+,−}2 such that:

1. cE <Δ cF <Δ cG.

2. uE, uF , uG < vF and vF < wE, wF , wG.

3. Υ has the same value on the 6 points: d1 = (cE , uE), d2 = (cE, wE),
d3 = (cF , uF ), d4 = (cF , wF ), d5 = (cG, uG), d6 = (cG, wG).

4. x ∈ X and x is one of the four points (cΓ
F , v±

F ), where Γ ∈ {+,−}2 and Γ is
different from Δ and −Δ.

Note that no ordering is assumed among uE, uF , uG or among wE, wF , wG. To
verify that (1–4) are sufficient, and to clarify our notation, assume WLOG that
Δ = ++, so cE <++ cF <++ cG. Then Γ is either +− or −+; WLOG Γ = +−, so
we are assuming X contains at least one of the two points (c+−

F , v±
F ), denoted by

x. But now we obtain the hypotheses of Lemma 5.20. Namely, x ∈ corn(d
Δj

j , Δj)
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for j = 1, 2, . . . , 6, setting Δ1 = +++ , Δ2 = ++− , Δ3 = +−+ , Δ4 = +−− ,
Δ5 = −−+ , Δ6 = −−−

Now, to obtain (1–4): If E ⊆ S, let σE : (IS)3 � (IE)3 be the natural map;
so σ∅ = σ. If also E ∈ [S]ω (i.e., |E| = ℵ0), then (IE)3 is a compact metric space,
and we shall use the fact that none of these σE are 3–tight.

If E1 ⊆ E2 ∈ [S]ω then σE2 ≤ σE1 (see Lemma 3.6). Observe that [S]ω is count-
ably directed upward. Call U ⊆ [S]ω cofinal iff ∀E1 ∈ [S]ω ∃E2 ∈ U (E1 ⊆ E2);
then U is also countably directed upward. We shall use this observation several
times to show that a number of quantities dependent on E can in fact be chosen
uniformly, independently of E, on a cofinal set.

Temporarily fix an E ∈ [S]ω. Then we have Pj = P E
j ⊆ X ⊆ (IS)3 for

j = 0, 1, 2 such that {P0, P1, P2} is a loose family. Then each σE(Pj) = Q, where
Q = QE ⊆ σE(X) ⊆ (IE)3 is uncountable. We can now get such a Q to be of a
very simple form:

First, note that Q must be a subset of finite union of lines. If not, then we
may choose y� = (y�

0, y
�
1, y

�
2) ∈ Q for � ∈ ω such that no two of the y� lie on the

same line; that is, whenever � < m < ω, the triples y� and ym differ on at least
two coordinates. Now, we may thin the sequence and permute the coordinates
and assume that each of the two sequences 〈y�

0 : � ∈ ω〉 and 〈y�
1 : � ∈ ω〉 is either

strictly increasing or strictly decreasing, while 〈y�
2 : � ∈ ω〉 is either constant or

strictly increasing or strictly decreasing. If H is the set of limit points of the
sequence of sets 〈σ−1{y�

i} : � ∈ ω〉, then |H| ≤ 2, but H must meet each of
P0, P1, P2, which is a contradiction.

Next, shrinking Q, along with P0, P1, P2, we may assume that Q = QE is a
subset of one line; say QE ⊆ line(βE, cE), where βE < 3.

βE depends on E, but since [S]ω is countably directed upward, there is a fixed
β such that βE = β on a cofinal set U ⊆ [S]ω. By permuting coordinates, we may
assume β = 2, so that QE ⊆ line(2, cE) ⊆ (IE)3, where cE = (aE , bE) ∈ (IE)2.
From now on, we shall delete the “2”; so line(cE) = {(aE , bE, u) : u ∈ IE}. Then

QE = {cE} × Q̃E , where Q̃E ⊆ IE .
Again, fix E, and temporarily delete some of the sub/super-script E. Now

σ−1
E (line(c)) ⊆ (IS)3 is a union of 1, 2, or 4 lines in (IS)3. However, the existence

of Q, P0, P1, P2 implies that σE : σ−1
E (line(c)) � line(c) is not 3–tight, so in fact

σ−1
E (line(c)) is a union of 4 lines, which means that a, b ∈ S\E; that is, we may

regard a, b as real numbers which are not split in IE, but which are split into
a±, b± in IS, and σ−1

E (Q) ⊆ line(c++) ∪ line(c+−) ∪ line(c−+) ∪ line(c−−) ⊆ (IS)3.
Now σ−1

E (Q) ∩ line(c++) ∩ X is some closed subset of σ−1
E (Q) ∩ line(c++), but

replacing Q by a smaller perfect set, we may assume that this closed subset is
either empty or all of σ−1

E (Q) ∩ line(c++). Repeating this argument three more
times, we may assume that each of the four sets σ−1

E (Q) ∩ line(c±±) is either
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contained in X or disjoint from X. Again, the existence of P0, P1, P2 implies
that σE : σ−1

E (Q) ∩ X � Q is not 3–tight, so at least three of the four sets
σ−1

E (Q)∩ line(c±±) are contained in X. Which three or four depends on E; there
is a cofinal set on which it is the same, although this is irrelevant now. More
importantly, since Q̃E ⊆ IE and E is countable, we may shrink QE and assume
that Q̃E ∩ E = ∅; that is, we may regard Q̃E as a perfect subset of I\E. Note

that S must meet every perfect subset of Q̃, since otherwise X would contain a
Cantor subset. In particular, S ∩ Q̃ is uncountable. Now cE = c = (a, b) is fixed,

and for each u ∈ S ∩ Q̃, we have the triple d = du = (a, b, u). We may now choose

t ∈ ω and u, v, w ∈ S ∩ Q̃ such that u < v < w and Υ(du) = Υ(dv) = Υ(dw) = t.
Also choose rational ρ, τ with u < ρ < v < τ < w.

Of course, t, ρ, τ, u, v, w depend on E, but there are only ℵ0 possibilities for
t, ρ, τ , so we may assume that for E in our cofinal set U , these are always the
same, whereas u, v, w are really uE, vE , wE.

Choose an increasing ω1 sequence 〈Eξ : ξ < ω1〉 of elements of U such that
ξ < η → cEξ

∈ (Eη)
2. Now cEξ

= (aEξ
bEξ

) and aEξ
, bEξ

/∈ Eξ, so aEη �= aEξ
and

bEη �= bEξ
whenever ξ �= η. It follows that we may find distinct ξn < ω1 for n ∈ ω

and a fixed Δ ∈ {+,−}2 such that m < n → cEξm
<Δ cEξn

. But, we only need
three of these, so let E, F, G denote Eξ0 , Eξ1 , Eξ2. Then we have cE <Δ cF <Δ cG

as in (1) above. uE, uF , uG < ρ < vF < τ < wE, wF , wG, so (2) holds. (3) holds
because Υ has the same value t on all (aEξ

, bEξ
, uEξ

), (aEξ
, bEξ

, vEξ
), (aEξ

, bEξ
, wEξ

).
Finally, we may choose x to make (4) hold because at least three of the four sets

σ−1
F (Q̃F ) ∩ line(cΓ

F ) (for Γ ∈ {+,−}2) are contained in X and vF ∈ S ∩ Q̃F , and

for these Γ, both points (cΓ
F , v±

F ) lie in X. K
Proof of Theorem 1.5. By Lemma 4.10, we may assume that X ⊆ (IS)3.

Since the properties assumed of X are closed-hereditary, it is sufficient, by Corol-
lary 4.3, to assume that X is also perfect and prove that X has the NTIP. Note
that “dissipated” is the same as “superdissipated” for these spaces. If X is 3–
dissipated, then X has the CSWP, and hence the NTIP, by Theorem 5.16. If X
is not 3–dissipated, then X is 5–big by Lemma 5.21, but it also is 5–dissipated

by Lemma 3.20, so X has the NTIP by Lemma 5.11. K
We do not know if the same theorem holds when X is contained in a product

of four LOTSes, but the analogue of Lemma 5.21 is false. That is, there is (see
Example 8.6) a closed X ⊆ (IS)4 such that X is not 8–dissipated and is not 7–big.
Of course, X must be 9–dissipated, but to prove the NTIP by our methods, X
would need to be 9–big.
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6 Removable Spaces

The property of a compact space being removable, defined in [5], is a strengthening
of the CSWP. Many of the spaces proved in Section 5 to have the CSWP are in
fact removable. We recall the definition, which is in terms of the Šilov boundary:

Definition 6.1 If A�c C(X), then X(A) denotes the Šilov boundary; this is the
smallest non-empty closed H ⊆ X such that ‖f‖ = sup{|f(x)| : x ∈ H} for all
f ∈ A.

This is discussed in texts on function algebras; see [3, 4]. Note that X(A)
cannot be finite unless X is finite, in which case X(A) = X.

Definition 6.2 A compact space K is removable iff for all X, U,A, if:

☞ X is compact, U � X, and U is open,

☞ U is homeomorphic to a subspace of K, and

☞ A�c C(X) and all idempotents of A are trivial,

then X(A) ⊆ X\U .

The next four lemmas are clear from [5]:

Lemma 6.3 If X is removable, then X is totally disconnected and has the CSWP.

It is unknown whether the converse to this lemma is true. The removable
spaces are of interest because one can prove some theorems about them which
are currently unknown for the CSWP spaces. In particular, the removable spaces
form a local class (see Definition 1.7); this follows from:

Lemma 6.4 If the compact X is a finite union of closed sets, each of which is
removable, then X is removable.

More generally, one can do a type of Cantor-Bendixson analysis for a compact
X, iteratively deleting open sets with removable closures; if one gets to ∅, then X
itself is removable and hence has the CSWP (see [5], Lemma 2.15). This results
in the next definition and lemma.

Definition 6.5 A compact space P is nowhere removable iff W is not removable
for all non-empty open W ⊆ P .

Lemma 6.6 If X is compact and not removable, then there is a non-empty closed
P ⊆ X such that P is nowhere removable.
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In particular, since the one-point space is removable,

Lemma 6.7 Every compact scattered space is removable.

Definition 6.8 R is the class of all compact spaces X such that for all perfect
H ⊆ X: There is non-empty relatively clopen U ⊆ H such that either U is
removable or for some finite n ≥ 2, U is both n–big and n–superdissipated.

If X is removable, then X ∈ R, and we shall soon prove the converse state-
ment. No space in R can contain a Cantor subset (since the Cantor set is neither
2–big nor removable). All spaces in R are totally disconnected by Lemma 3.25.

Our proof will use the following restatement of Definition 6.2:

Lemma 6.9 Assume that K is a closed-hereditary class of totally disconnected
compact spaces, and assume that whenever Z, V,A satisfy:

☞ Z is compact and infinite, A�c C(Z), and X(A) = Z.

☞ V ⊆ Z, V is clopen and non-empty, and V ∈ K.

then A contains a non-trivial idempotent. Then, all spaces in K are removable.

Proof. Fix K ∈ K. Then fix X, U,A satisfying the hypotheses of Definition
6.2. Let Z = X(A). Assume that Z �⊆ X\U . We shall derive a contradiction.
Shrinking U , we may assume that U is clopen. Clearly U �= ∅, so |X| ≥ 2 (by
U � X), so X is infinite (by all idempotents trivial), so Z is infinite.

A�Z �c C(Z) and X(A�Z) = Z. Let V = Z ∩U ; then V �= ∅. V ∈ K because
K is closed-hereditary. So, A�Z contains a non-trivial idempotent, f�Z, where
f ∈ A. But then f 2 − f is 0 on Z and hence on X, so f is an idempotent,

contradicting the hypotheses of Definition 6.2. K

Theorem 6.10 R is the class of all removable spaces.

Proof. Since R is clearly closed-hereditary, we may apply Lemma 6.9 to prove
that all spaces in R are removable. Thus, assume that X is compact and infinite,
A�c C(X), and X(A) = X, and V ⊆ X is clopen and non-empty, and V ∈ R.
We must show that A contains a non-trivial idempotent. We may assume that V
is nowhere removable, and in particular perfect, since otherwise the result is clear
from the definition of “removable”. Applying the definition of R, whenever U is
a non-empty clopen subset of V , there is an nU ≥ 2 and a non-empty clopen H
with H ⊆ U and H both nU–big and nU–superdissipated. Taking a minimal nU

and shrinking V , we may assume that V itself is n–superdissipated, where n ≥ 2,



7 POWERS OF THE DOUBLE ARROW SPACE 23

and that whenever U is a non-empty clopen subset of V , there is a non-empty
clopen H with H ⊆ U and H n–big.

Since X\V is not a boundary, we may fix ψ ∈ A such that ‖ψ‖ > 1 but
|ψ(x)| ≤ 1/2 for all x /∈ V . Then fix a non-empty clopen H ⊆ V such that
|ψ(x)| ≥ 1 for all x ∈ H . Shrinking H , we may assume that H is n–big. We now

get a non-trivial idempotent by Lemma 5.10. K

Corollary 6.11 If X ⊆ (IS)3 is closed and does not contain a copy of the Cantor
set, then X is removable.

Proof. X ∈ R by Lemmas 3.20, 5.21, 5.15, and 5.7. K

7 Powers of the Double Arrow Space

Here we show that arbitrary finite powers of the double arrow space I(0,1) are
removable, and hence have the CSWP. This argument works because there is a
certain uniformity in the standard map from (I(0,1))

k onto Ik, which is captured
by the next definition:

Definition 7.1 For n ≥ 1, π : X � Y is n–✯tight iff for y ∈ Y and 0 ≤ j < n,
there are Kj

y ⊆ X and U j
y ⊆ Y satisfying:

1. X, Y are compact, Y is metric, and the Cantor set does not embed into X.

2. For each y: The Kj
y , for j < n, form a clopen partition of X, and each

|Kj
y ∩ π−1{y}| ≤ 1.

3. For each j: {(y, z) : z ∈ U j
y} is open in Y 2.

4. For each y, j: π−1(U j
y ) ⊆ Kj

y .

5. For each y, j: Kj
y \ π−1(U j

y ) is removable.

X is n–✯dissipated iff π : X � Y is n–✯tight for some π and Y .

Some of the Kj
y and U j

y may be empty, so “n–✯dissipated” get weaker as n
gets bigger. Note that (2) implies that |π−1{y}| ≤ n for each y, so that π is
n–supertight by Lemma 3.24, and X is totally disconnected by Lemma 3.25. X is
1–✯dissipated iff X is compact and countable. The class of n–✯dissipated spaces
is closed-hereditary, since if we have (1 – 5) and X̃ is a closed subset of X, then

we also have (1 – 5) for X̃, using π�X̃ : X̃ � Ỹ = π(X̃), K̃j
y = Kj

y ∩ X̃, and

Ũ j
y = U j

y ∩ Ỹ .
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Lemma 7.2 If (I(0,1))
k−1 is removable, then the standard map π : (I(0,1))

k � Ik

is 2k–✯tight.

Proof. As in Definition 5.18, let D = {+,−}k. For y ∈ Ik and Δ ∈ D, let
UΔ

y = {z ∈ Ik : y <Δ z}, and let KΔ
y = {t ∈ (I(0,1))

k : yΔ ≤Δ t}. Then properties
(1 – 4) are easily verified, and (5) holds because Kj

y \π−1(U j
y ) is covered by finitely

many homeomorphic copies of (I(0,1))
k−1. K

We shall eventually prove:

Theorem 7.3 If n < ω and X is n–✯dissipated, then X is removable.

It follows that X is n–✯dissipated iff X is removable and there is a π : X � Y
such that Y is compact metric and each |π−1{y}| ≤ n. To prove the ← direction:
In Definition 7.1, take all U j

y = ∅; the Kj
y may simply be chosen arbitrarily

to satisfy condition (2). Thus, the notion of “n–✯dissipated” becomes of little
interest, but it was chosen to make the following proof work:

Proof of Theorem 1.6. Each (I(0,1))
k is in fact removable. This follows by

induction on k, using Lemma 7.2 and Theorem 7.3. K
We shall now prove Theorem 7.3 by showing that X ∈ R (see Definition 6.8).

Definition 7.4 A compact space P is nowhere n–✯dissipated iff W is not n–
✯dissipated for all non-empty open W ⊆ P .

Lemma 7.5 If X is perfect and n–✯dissipated, then there is a non-empty clopen
V ⊆ X and an m with 2 ≤ m ≤ n such that V is m–✯dissipated and nowhere
(m − 1)–✯dissipated.

Theorem 7.3 will follow easily from the next two lemmas, about spaces which
are n–✯dissipated and nowhere removable. Of course, the theorem implies that
there are no such spaces.

Lemma 7.6 Assume that X, Y , n ≥ 2, π and the Kj
y and U j

y are as in Definition
7.1, with X nowhere (n − 1)–✯dissipated and nowhere removable.

1. For a fixed j and non-empty open V ⊆ Y : U j
y ∩ V �= ∅ for some y ∈ V .

2. For any ε > 0, the sets:

Aj
ε := {z ∈ Y : ∃y[z ∈ U j

y & d(y, z) < ε]}
Bj

ε := {y ∈ Y : ∃z[z ∈ U j
y & d(y, z) < ε]}

are dense and open in Y .
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Proof. For (1): Assume that U j
y ∩ V = ∅ for all y ∈ V . Let W be a non-empty

clopen subset of π−1{V }, and consider the restriction π�W : W � Ỹ = π(W ).

Ũ j
y = U j

y ∩ Ỹ = ∅ for each y ∈ Ỹ and K̃j
y = Kj

y ∩ W = (Kj
y \ π−1(U j

y )) ∩ W is

empty for each y ∈ Ỹ because it is clopen in X and removable. But then, by
deleting index j, we see that W is (n− 1)–✯dissipated; in the special case n = 2,
W would be countable because X does not contain a Cantor subset.

For (2): They are open by (3) of Definition 7.1. If one of them fails to be
dense, then there is a non-empty open V ⊆ Y such that V is disjoint from either
Aj

ε or Bj
ε . In either case, we may assume that diam(V ) < ε which implies that

z /∈ U j
y whenever z, y ∈ V , contradicting (1). K

Lemma 7.7 If n ≥ 2 and X is n–✯dissipated and nowhere (n − 1)–✯dissipated
and nowhere removable, then X is n–big.

Proof. Fix A � C(X) and Υ : A → ω. We shall verify the conclusion of
Definition 5.6 with r = 1, so we shall find f0, . . . , fn−1 ∈ A and c ∈ X such that
the Υ(fj), for j = 0, . . . , n − 1, are all equal, and such that |fi(c) − fj(c)| ≥ 1
whenever 0 ≤ i < j < n. Let Y , π and the Kj

y and U j
y be as in Definition 7.1.

Let G =
⋂{Aj

ε ∩ Bj
ε : ε > 0 & j < n}; by Lemma 7.6, Y \G is of first category in

Y because the intersection may be taken just over rational ε.
If y ∈ G, then y is in the closure of each U j

y , so that π−1{y} meets each Kj
y ;

let xj
y be the element of π−1{y}∩Kj

y. Since finite spaces have the CSWP, we may
choose, for each y ∈ G, a gy ∈ A such that gy(x

j
y) = 2j for each j < n. Then,

chose a rational εy > 0 such that |gy(x)− 2j| < 1/2 whenever j < n, x ∈ Kj
y , and

d(π(x), y) < εy.
Now, fix N ⊆ G, ε > 0, and � ∈ ω such that N is not of first category in

Y and εy = ε and Υ(gy) = � for all y ∈ N . Then, fix a point d ∈ N and a δ
with 0 < δ < ε such that N ∩ B(d, δ) is dense in B(d, δ). Let c be any point in
π−1{d}. For each j < n, {y : d ∈ U j

y} is open, and this set meets B(d, δ) (since

d ∈ N ⊆ Aj
δ), so choose yj ∈ N ∩ B(d, δ) such that d ∈ U j

yj , and we can let

fj = gyj
; note that d ∈ U j

yj → c ∈ Kj
yj → |fj(c) − 2j| < 1/2. K

Proof of Theorem 7.3. Apply Theorem 6.10; every n–✯dissipated space X

is in R by Lemmas 7.5 and 7.7. K

8 Remarks and Questions

Regarding our notion of bigness: From the point of view of general topology, the
use of the “A � C(X)” in Definition 5.6 seems a bit artificial, although it was
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needed for the CSWP proofs. It would be more natural to restrict A to be only
C(X), which would result in a weaker property; but we do not know if it would
really be strictly weaker. Of course, we can always replace A by cl(A), so the two
properties are equivalent when X has the CSWP.

The degree of bigness of some LOTSes is easily calculated. Doing so lets us
show (Example 8.5) that the “obvious” generalization of Lemma 5.15 is false. It
is easy to see that ω1 + 1 is n–big for all n. But there is a class of LOTSes for
which the bigness is bounded. We do not state the most general possible result,
but just say enough to verify Example 8.5, which uses the IΛ from Definition 2.1.

Lemma 8.1 Let L = IΛ, where Λ : I → ω, and let K be any compact space which
is not (n + 1)–big. Let X = L × K. Then X is not (3n + 1)–big.

Proof. Let σ : L � I be the standard map. Also, applying the definition of “not
(n + 1)–big”, fix A � C(K) and Υ : A → ω such that for each c ∈ K and each
f0, f1, . . . , fn ∈ A with Υ(f0) = Υ(f1) = · · · = Υ(fn), there are j < k ≤ n such
that |fj(c) − fk(c)| < 1/4.

Let M = C(K), with the usual sup norm. For f ∈ C(X), define f̃ ∈ C(L, M)

by (f̃(u))(z) = f(u, z). Let B be the set of all f ∈ C(X) such that f̃(u) ∈ A
for all u ∈ L. Then B � C(X), and we shall define a partition Φ of B into ℵ0

pieces demonstrating that X is not (3n + 1)–big. As a first approximation, for
each f ∈ B, choose Ψ(f) = (mf , �yf , �rf , �sf ,�tf) so that:

1. 1 ≤ mf ∈ ω.

2. �yf = 〈yf
i : 0 ≤ i ≤ 2mf 〉, each yf

i ∈ I, and yf
i ∈ Q when i is even.

3. 0 = yf
0 < yf

1 < · · · < yf
2mf = 1.

4. �rf = 〈rf
i : 0 ≤ i ≤ 2mf 〉, where each rf

i = |σ−1{yf
i }| − 1 = Λ(yf

i ).

5. ‖f̃(u) − f̃(v)‖ ≤ 1/4 whenever max(σ−1{yf
i }) ≤ u ≤ v ≤ min(σ−1{yf

i+1}).
6. �sf = 〈sf

i,μ : 0 ≤ i ≤ 2mf & 0 ≤ μ ≤ rf
i 〉, where {sf

i,μ : 0 ≤ μ ≤ rf
i } ⊂ L lists

σ−1{yf
i } in increasing order; so sf

i,μ = (yf
i , μ).

7. �tf = 〈tfi,μ : 0 ≤ i ≤ 2mf & 0 ≤ μ ≤ rf
i 〉, where tfi,μ = Υ(f̃(sf

i,μ)).

Such a Ψ(f) may be chosen using compactness, plus continuity of f̃ . Of course,
there are 2ℵ0 possible values of Ψ(f) because of the yf

i and sf
i,μ for odd i, so we

delete these and define Φ(f) = (mf ,��f , �rf ,��f ,�tf ), where

8. ��f = 〈yf
i : 0 ≤ i ≤ 2mf & i is even〉.

9. ��f = 〈sf
i,μ : 0 ≤ i ≤ 2mf & i is even & 1 ≤ μ ≤ rf

i 〉.
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There are only countably many possible values for Φ(f), so if X were (3n+1)–big,
we could fix a (b, c) ∈ X = L × K and f0, . . . , f3n ∈ A such that the Φ(fj) are
all the same, and such that |fj(b, c)− fk(b, c)| ≥ 1 whenever j < k ≤ n. We shall
now derive a contradiction. Write Φ(fj) = (m,��, �r,��,�t).

If b = sf
i,μ for some even i, then the Υ(f̃j(b)) = tfi,μ are all the same, and

we contradict our assumptions on Υ just using f̃0(b), . . . , f̃n(b). So, we may fix
an even i < 2m so that max(σ−1{yi}) < b < min(σ−1{yi+2}). Now, for each
j ∈ {0, 1, . . . , 3n}, there are three cases:

I. max(σ−1{yi}) < b < min(σ−1{yfj

i+1}).
II. b ∈ σ−1{yfj

i+1}.
III. max(σ−1{yfj

i+1}) < b < min(σ−1{yi+2}).
So, one of these cases must happen for n + 1 values of j. We shall assume
that this is Case I, since the argument is essentially the same in the other two
cases. Permuting the fj , we may assume that Case I holds for 0 ≤ j ≤ n. Fix

μ = ri, so that max(σ−1{yi}) = si,μ, so Υ(f̃j(si,μ)) = tfi,μ for each j ≤ n. By our
assumptions on Υ, we may fix j < k ≤ n such that |fj(si,μ, c)− fk(si,μ, c)| < 1/4.
Applying Condition (5) above, we have |fj(b, c) − fk(b, c)| < 3/4, contradicting

|fj(b, c) − fk(b, c)| ≥ 1. K
In particular, letting K be the 1–point space, we see that an IΛ is not 4–big.

Then, proceeding by induction,

Lemma 8.2
∏

j<m LΛj
is not (3m + 1)–big.

We remark that in the proof of Lemma 8.1, we could have replaced the “<”
by “≤” in Cases I and III, although then they would not be disjoint from Case
II. However, in the special case of L = IS, Case II can now be eliminated, so that
we can replace the “(3n + 1)–big” by “(2n + 1)–big”, obtaining:

Lemma 8.3 Let L = IS, where S ⊆ I, and let K be any compact space which is
not (n + 1)–big. Let X = L × K. Then X is not (2n + 1)–big.

Lemma 8.4
∏

j<m ISj
is not (2m + 1)–big.

Example 8.5 For any n > 3, there is an X which does not have a Cantor subset
and which is not 7–big, such that X is (n + 2)–superdissipated and not (n + 1)–
superdissipated.
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Proof. For n ≥ 1, let Ln = IΛn , where Λn(x) = n for n ∈ (0, 1), and Λn(0) =
Λn(1) = 0. Then L1 is the double arrow space. Let X = Ln ×L1. Then X is not
7–big by Lemmas 8.2 and 8.3. X is (n + 2)–dissipated by Lemma 3.4. To prove
that X is not (n+1)–dissipated, it is sufficient (by Lemma 3.6 of [12]) to observe

that for each ϕ ∈ C(Ln, [0, 1]ω) there is a z ∈ [0, 1]ω with |ϕ−1{z}| ≥ n + 1. K
It is easily seen using Lemma 5.20 that (IS)n is 2n–big when S is uncountable,

so it has the NTIP, since it is also (2n−1 + 1)–superdissipated. However, it is not
clear whether it has the CSWP in the case that S meets all Cantor sets, since the
natural proof requires looking at arbitrary perfect subspaces of (IS)n.

Example 8.6 If S ⊆ (0, 1) meets all Cantor sets, then there is a perfect X ⊆
(IS)4 such that X is not 8–dissipated, is not 7–big, and has no Cantor subsets.

Proof. Let D ⊂ (IS)3 be the diagonal, and let X = D × IS. Then D is the same
as the LOTS obtained from I by replacing each point in S by eight points. Since
7 = 2 ·3+1, Lemmas 8.2 and 8.3 show that X is not 7–big. The proof of Example

8.5 shows that X is not 8–dissipated. K
This particular X has the CSWP, and in fact is removable (see Section 6),

since IS is removable, and after removing the clopen copies of IS from X, we are
left with a copy of (IS)2, which is also removable. We do not know whether (IS)4

itself must have the CSWP.
A simple example of n–big spaces is given by:

Proposition 8.7 If X is compact and |X| > 2ℵ0, then X is n–big for all n ∈ ω.

Proof. Fix A � C(X), fix n ∈ ω, and fix Υ : A → ω. We shall verify the
conclusion of Definition 5.6 with r = 1.

Let P be the set of all finite partial functions from X to ω; so each p ∈ P is a
function with dom(p) a finite subset of X and ran(p) ⊆ ω. For p ∈ P, choose an
fp ∈ A with p ⊂ fp.

For each c ∈ X and s ∈ ω, let Ec,s = {p(c) : p ∈ P & c ∈ dom(p) & Υ(fp) = s}
⊆ ω. If some |Ec,s| ≥ n then we are done, so assume that |Ec,s| ≤ n − 1 for all
c, s. There are only 2ℵ0 possibilities for 〈Ec,s : s ∈ ω〉, so we can fix an infinite
A ⊆ X and sets Es ∈ [ω]<n for s ∈ ω such that Ec,s = Es for all c ∈ A and all
s ∈ ω. But then ran(p) ⊆ Es whenever p ∈ P and Υ(fp) = s and dom(p) ⊆ A.

Now choosing p with dom(p) ⊆ A and |ran(p)| = n yields a contradiction. K
Finally, the following Ramsey-type lemma might be of interest for studying

products of LOTSes, although we never needed it in this paper. The proof uses
the terminology from Definition 5.18.
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Proposition 8.8 Fix an uncountable J ⊆ Rn, and assume that

∀x, y ∈ J [x �= y → ∀i < n[xi �= yi]] . (∗)
Then there is a 1-1 function ϕ : Q → J such that for all i < n:

∀p, q [p < q → ϕ(p)i < ϕ(q)i] or ∀p, q [p < q → ϕ(p)i > ϕ(q)i] . (†)
Proof. Call a box B = box[a, b] big iff B ∩ J is uncountable; By (∗), this implies
that B◦ ∩ J is uncountable, where B◦ denotes the interior of B. For Δ ∈ D, let
−Δ result from interchanging the signs + and − in Δ. Call the box B Δ–bad iff
B is big and there is no d ∈ B◦ ∩ J such that corn(d, B, Δ) and corn(d, B,−Δ)
are both big. Observe, for any big box B:

1. B is Δ–bad iff B is (−Δ)–bad.

2. If B is Δ–bad and A ⊆ B is a big box, then A is Δ–bad.

3. There is some Δ ∈ D such that B is not Δ–bad.

(1) and (2) are obvious. To prove (3), we note first that if we replaced Q by ω
or a finite set in the statement of the lemma, then the result would be obvious
by Ramsey’s Theorem. Now, let Z be the set of points of B◦ ∩ J which are
condensation points of J . Obtain ϕ : {0, 1, 2} → Z so that (†) holds replacing Q
by {0, 1, 2}. Let a = ϕ(0), b = ϕ(2), and d = ϕ(1). By (†), there is some Δ ∈ D
such that a ∈ corn(d, B, Δ) and b ∈ corn(d, B,−Δ), and then corn(d, B, Δ) and
corn(d, B,−Δ) are both big.

Using (2) (sub-boxes go from bad to worse) and (3), we can fix a Δ ∈ D and
a big box B such that for all big boxes A ⊆ B, A is not Δ–bad. We may now list
Q in type ω and obtain ϕ in ω steps. When p < q, we shall have ϕ(p)i < ϕ(q)i

when Δi = +1 and ϕ(p)i > ϕ(q)i when Δi = −1. K
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