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How much set theory do you need to know? Should you read this book? To help you
answer these questions, we partition, rather arbitrarily, basic set theory into “elementary”,
“intermediate”, and “advanced”, and we touch on the relevance of set theory to philosophy
and computer science. Then we comment on what Moschovakis includes, and we conclude
with some additional remarks on the exposition.

Elementary: Children learn rather quickly how to count the cookies in a jar:

0,1,2,3,...

By high school, students know that they could call the jar a “set”, and they know some
basic facts about unions and intersections, and how these relate to the sizes (cardinalities)
of sets. Related to this are some facts from discrete math, such as what a function is, and
what it means for a relation on a set to be a total ordering, reflexive, etc. This much set
theory will take students through the basic college courses in calculus and abstract algebra,
which, after all, cover material primarily discovered before Cantor. It will also take them
through elementary courses in computer programming, where they learn how to represent
functions, relations, and finite sets in Basic or C.

Intermediate: Eventually, it becomes important to know something about post-Can-
torian set theory. Every math major should learn that the set of reals, R, cannot be
covered by a countable sequence of points (Cantor), or even by a countable sequence of
nowhere dense sets (Baire). Undergraduates often learn, in addition, how to recite Zorn’s
lemma and how to use it to prove, for example, that every vector space has a basis. This
material is often covered in introductory courses in real analysis, topology, or algebra, and
is all the set theory that most research mathematicians ever need to know.

Advanced: In some areas of mathematics, one needs to know about well-orderings and
ordinals, and how to count the cookies in an infinite jar:

0,1,23,...,0w,w+ 1, ... wtw, ..., Wy W

If the jar is R, it has size w, (or R,) for some o > 0; the Continuum Hypothesis says
that @ = 1. These topics are covered in detail in an undergraduate course in set theory.
Unfortunately, most math majors never take such a course. As a result, even graduate
level texts avoid using these notions, although a number of topics would be made somewhat
less obscure by a knowledge of ordinals. For example, Zorn’s lemma seems rather mystical
unless you understand how to prove it using ordinals; and, if you understand that proof,
you no longer need Zorn’s lemma; you just pick a basis for an infinite dimensional vector
space inductively, exactly the same way you pick a basis for a finite dimensional one. Or,
every book on measure theory states that the Borel sets form the least o-algebra containing
the open sets, but constructing the Borel sets inductively in wy steps (open sets, G5 sets,
Gso sets, ...) gives you a much a clearer picture of what they are than does producing
them by intersecting a family of o-algebras.



Philosophy: Mathematicians should have some understanding of the foundational
underpinnings of their art. Although the axiomatic method in geometry goes back to
Euclid, the modern view is that all of mathematics can be developed within the unified
framework of axiomatic set theory. One does not introduce a whole new collection of axioms
for each mathematics course. One starts with something like the Zermelo-Fraenkel axioms
(ZF), and proceeds both to develop general abstract facts about sets and functions, as well
as to define important specific sets, such as the natural numbers, the rational numbers,
and the real numbers, and then the Euclidean plane (R x R). So, geometry, like everything
else, is a branch of set theory. This axiomatization also reveals the role of the Axiom of
Choice (AC). Whether or not one admits AC as a basic principle, one should understand
which results from elementary mathematics require AC'.

Computer Science: Of course, anything that is done on the computer is finite, and
can be understood using just elementary set theory, but more advanced methods come in
when trying to understand the theory behind what the computer is doing. Thus, books
on denotational semantics for programming languages ([5]) use the kind of set-theoretic
techniques usually associated with general topology. Ordinals crop up in books on logic
programming semantics ([8]) and implementations of constructive mathematics ([2]).

This book starts off in the beginning of the intermediate level, which is ideal for an
undergraduate text. The first chapter quickly reviews elementary facts about sets and
functions, primarily to establish the notation to be used. The second chapter explains
Cantor’s basic ideas, covering countable and uncountable sets, and Cantor’s diagonal ar-
gument. The explanatory remarks and accompanying figures should be very helpful for
readers who haven’t seen these things before.

The third chapter points out that naive manipulation with sets can lead to contra-
dictions, such as Russell’s paradox with {z : @ ¢ x}, hence the need for some axiomatic
framework. Moschovakis explains what is meant in general by an axiomatic system, and
then describes Zermelo’s axioms for set theory.

By the end of Chapter 5, the reader sees how, based on Zermelo’s axioms, one can
develop elementary discrete math (sets, functions, relations), as well as the natural num-
bers, N. In particular, Moschovakis stresses that the existence of N, along with the basic
facts about N (such as induction and recursion), are all theorems within the framework
of axiomatic set theory. At this point, one has the machinery to go on and develop the
rational numbers and the real numbers, but this requires some knowledge of algebra, and is
put off until Appendix A, where it is done in detail, using both Dedekind cuts and Cauchy
sequences.

Of course, every book on set theory would have to tell you this much; the only serious
design decision is whether to develop N first and then cover the transfinite ordinals later,
as a more advanced topic, or whether to plunge right in to the general theory of ordinals,
obtaining N as the set of the first w ordinals. Moschovakis chooses the first option, which
is slightly redundant, but which makes the material more accessible for undergraduates
approaching this abstract subject for the first time.

Chapter 6 is an important departure from tradition. It is centered around the notion
of an inductive poset; this is a partially ordered set, P, such that every chain (totally
ordered subset) has a least upper bound. The basic result here is that every monotonic
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mapping on an inductive poset has a least fixed point. It is rather unusual to see this in an
undergraduate mathematics text, since the most well-known applications are in computer
science. The exercises give a hint of how this is applied in programming language semantics.
The text gives the following very concrete application: In most programming languages,
you can define a function f recursively, defining f(x) by any expression which involves f
itself. In general, such a computation might fail to terminate for some (maybe all) values
of x; the fixed point theorem shows that every such definition uniquely determines f as a
partial function. If the input and output to f are natural numbers, then the relevant P is
the set of all partial functions on N, ordered by subset (if we identify each partial function
with its graph).

Besides its interest in computer science, fixed points and inductive posets are a nice
way of introducing the mathematics topics which follow. Chapter 7 introduces well-
orderings. Fixed point theory yields a motivation for the study of well-orderings, since
you actually need well-orderings to prove the fixed-point theorem (Chapter 6 only proves
a weakened version of the theorem). Then, Chapter 8 introduces AC. It proves the stan-
dard equivalents to AC (such as the well-ordering principle and Zorn’s lemma), but the
proofs, using the poset and fixed point terminology, are a good deal more elegant than the
standard ones.

Chapter 9 uses AC' to develop some further material, such as the theory of cofinalities,
and Konig’s Theorem. For example, although Godel and Cohen tell us that the continuum,
2% could be Xy or N5 or Ny+1, 1t cannot be R, or N, 4, by Konig’s Theorem.

Chapter 10 covers basic descriptive set theory. It is another important departure from
tradition to do this in an undergraduate text. This material is definitely learnable on an
undergraduate level, and is something which every mathematician should know, but often
doesn’t. A typical result here is that the Continuum Hypothesis is simply a theorem for
Borel sets. That is, every Borel subset of R is either countable or contains a perfect subset,
and hence has size 2%°. Chapter 10 also presents the construction of a Bernstein set (an
uncountable X C R such that neither X nor R\X contains a perfect subset); this is not
descriptive set theory, but is a nice application of well-ordering and transfinite induction
to elementary real analysis.

Chapter 11 introduces the Axioms of Replacement and Foundation, which are part of
ZF, but not part of Zermelo’s original axioms. Chapter 12, finally, tells you about von
Neumann ordinals and cardinals. Here, you learn what the ordinals really are; for example,
0=10;3=1{0,1,2}, and w = N. Appendix B is an introduction to models of set theory
and consistency proofs; in particular, it describes models where Foundation is true, and
other models where Foundation is false.

In general, the text’s conversational style makes it easy to read, and its content is
instructive. Moschovakis often introduces results with remarks on their importance, then
guides the reader through the proofs, helping students not only to follow the steps, but
also to learn common proof techniques. For example, in Chapter 5, Moschovakis talks the
reader through a proof of the Recursion Theorem, showing the reader how to obtain a
function from the finite partial functions which approximate it; this material forms a good
introduction to the more sophisticated kinds of recursion covered in Chapters 6 and 7. In
addition, he is careful to point out key ingredients to various proofs. For example, after
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proving the uncountability of the set of real numbers, he stresses the role the completeness
property of the reals plays in the proof, noting “the rest of Cantor’s construction relies
solely on arithmetical properties of numbers which are also true of the rationals”.

In relating some of the history of set theory, Moschovakis gives the reader insight
into the roots of the subject. He points out that Cantor’s approach was rather vague and
intuitive, so that mathematicians of the day were naturally suspicious of his methods. His
discussion helps the student understand how the paradoxes led to Zermelo’s formulation in
1908 of a precise set of axioms. These axioms spelled out exactly what is being assumed,
and seemed to be free of contradictions. To be fair to Cantor though, Moschovakis should
have noted how close Russell’s Paradox is to what Cantor already knew. Chapter 2 presents
Cantor’s diagonal argument that there is no map = from a set A onto its power set, P(A):
the assumption that B = {& € A: x ¢ ©(x)} is in the range of 7 leads to a contradiction.
Cantor knew that there was a problem if A is the universal set, V, since then P(V) is a
subset of V', not bigger than V. More succinctly, if 7 is the identity map and A =V, we
get an outright contradiction from B ={x € V : ¢ ¢ n(x)} = {a : 2 ¢ x}. Of course,
Cantor left it to Russell to put the paradox this succinctly, and then to popularize it. But,
it 1s misleading to state in Chapter 3 that the paradoxes before Russell were “technical and
affected only the most advanced parts of Cantor’s theory”. It would be more accurate to
say that Cantor’s methods were informal and intuitive, and that he just intuitively avoided
what he called “inkonsistenten Mengen” (see [1] for further discussion).

The descriptive set theory in Chapter 10 focuses on Baire space, N' = N'', a countable
product of countable discrete spaces. It will be a little difficult for most readers to see that
the results also apply to more familiar spaces, such as R. Moschovakis does mention that
“there is such a tight connection between A, C [the Cantor set], and R that practically every
interesting property of one of these spaces translates immediately to a related, interesting
property of the others.” But, the details are a bit patchy, and must be ferreted out of the
problems (x10.11,x10.12) and Appendix A. Neither in the problems nor in Appendix A
does he point out that A is homeomorphic to the space of irrational numbers, although the
classical proof of this result maps N to the irrationals by a simple use of continued fractions,
a topic of numerous Monthly articles and one definitely accessible at the undergraduate
level.

Moschovakis does not introduce ordinal notation until the last chapter (12), which
means that we can’t really count our cookies in the standard way until the end of the
book, where we finally see w, w+1, w+2,.... As he says in the Preface, most courses will
not get this far. This is unfortunate, since this method of counting is frequently used when
a transfinite sequence is listed. Its roots go back to Cantor’s original theory; even in his
paper of 1880, Cantor employed such “infinite symbols” to advance the theory of derived
sets, three years before his Grundlagen einer allgemeinen Mannigfaltigkeitslehre presented
the transfinite numbers as “the simplest, most appropriate and natural extension [of the
concept of number|” ([3]). There is a formal justification for Moschovakis’ order of presen-
tation: to develop the modern (von Neumann) theory of ordinals (as opposed to Cantor’s
intuitive presentation), one needs the Replacement Axiom, which is not introduced until
Chapter 11, and it is of some formal interest (to specialists) to see how much set theory can
be developed without Replacement. However, in a number of places in the text, especially
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in Chapters 7 and 9, the explanations would have been much simpler and more natural if
ordinal notation were available. For example, without ordinals, the discussion of cofinal-
ities in Chapter 9 is a bit awkward, and the motivation for studying Konig’s Theorem is
a bit obscure; since the notation N, could not be defined yet, he was actually not able to
state simply that 2% #£ X, . as we did above.

Finally, the book is only 272 pages long, and cannot cover everything. Overall, the
author has made an excellent choice of what to include, and he says just enough about
omitted topics to whet the reader’s appetite for more. So, the reader may be disappointed
to find no references to the literature beyond the two historical sources cited in the Preface.
For example, the author mentions logic, including the fact that the Godel incompleteness
theorems apply to systems such as ZF'; why not suggest an undergraduate logic text (e.g.
[4]) where the reader might pursue the subject further? Or, the book tells us that by results
of Godel and Cohen, C'H is true in some models of ZFC and false in others, but there
are no references to texts such as [6] or [7], where these models are constructed. Given
the relevance of Chapter 6 to programming language semantics, it seems strange not to
refer the reader to a basic text ([5]) on the subject. Stranger still, many of the missing
references were written by the author himself, who is one of the leading contributors to
many of the topics highlighted in the book, such as fixed point theory ([9]), descriptive set
theory ([10]), and applications of logic to computer science ([11]).
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