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ABSTRACT

Each of the Moufang identities in a quasigroup implies that the
quasigroup is a loop.

§1. Introduction. A quasigroup is a system (G, -) such that G is a non-empty set
and - is a binary function on G satisfying Vaz3ly(zy = z) and Vyz3la(zy = 2z). A loop is a
quasigroup which has an identity element, 1, satisfying Ve (21 = 1oz = ). Quasigroups are
studied not only in algebra, but also in combinatorics, where they are identified with Latin
squares, and in projective geometry, where they are identified with 3-webs. For details and
references to earlier literature, see the books [1, 2].

By results of Bol and Bruck (see [1], p. 115), the following four identities:

L: Vayz[(z(yz))e = (zy)(z2) ] M2 : Vayz[(22)(yx) = (( ) )]
L: Yaeyz[((zy)2)y = x(y(zy))] N2: Yayz[((yz)y)x z

are equivalent in loops; a loop satisfying these identities is called a Moufang loop. The
purpose of this note is to show that every quasigroup satisfying any one of these identities
is a loop (Theorems 2.2, 2.3), so that in fact these are equivalent in quasigroups. Observe
that equations M1, M2 are mirrors of each other; that is, M2 is obtained by writing M1
backwards. Likewise, N1, N2 are mirrors of each other. Actually, [1] does not mention
M?2 explicitly, and just proves that M1, N1, N2 are equivalent, but any proof of M1 < N1
has a mirror which proves that M2 << N2.

Of course, a loop identity need not always imply its mirror. For example, the right
and left Bol identities:

RBOL : Vayz[((xy)2)y = x((yz)y)] LBOL : Vayz[(y(zy))z = y(z(yx))]

are mirrors of each other, but, by an example of Zassenhaus (see [2], p. 46), there are 8-
element loops satisfying one of these but not the other. In a quasigroup, equation RBOL
implies that there is a left identity element ([3] and Theorem 2.1); so, taking the mirror,
LBOL implies that there is a right identity, so that every quasigroup satisfying both
RBOL and LBOL is a loop. However, by Robinson [6], there are non-loop quasigroups
(G, 0) satisfying RBOL but not LBOL; for example, let G be any field of characteristic
other than 2, and let zoy =y — .
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Our investigations have been aided by the automated deduction tool, OTTER, devel-
oped by McCune [5]. OTTER can prove theorems in full first-order logic, but it has been
particularly useful in equational reasoning, where it can investigate substitutions much
faster than a person can. Its proofs are long sequences of equations, and at first sight seem
a bit inscrutable. However, as we showed in [4], by examining these proofs and trying
different formulations of the input, one can often produce proofs which a person can easily
verify by hand; we have done this in obtaining our proofs in §2.

§2. Proofs. We provide proofs for the three implications mentioned in §1. The first
two are quite short. The first was given by Choudhury [3] in 1948, and we suspect that
the second was also noticed before. We have not succeeded in finding a short proof of the

third.

2.1. Theorem.([3]) Every quasigroup satisfying RBOL has a left identity.

Proof. Fix any element a; then fix an e such that ea = a. Applying RBOL, we have
(az)a = ((ea)z)a = e((az)a) for every z. Now, for every y in a quasigroup, there is a z
such that (az)a =y, so y = ey for every y. []

2.2. Theorem. Every quasigroup satisfying either M1 or M2 has a two-sided
identity.

Proof. We assume M1; the proof from M2 is the mirror of this one. Fix any element
a; then fix an e such that ae = a. Applying M1, we have (va)xr = (x(ae))r = (za)(ex),
and hence r = ex, for every z. So, e is a left identity. Now, fix b such that be = e.
Applying M1 again, we have (yb)e = (e(yb))e = (ey)(be) = ye, and hence yb = y for every
y. So, b is a right identity, and b = eb =e. []

2.3. Theorem. Every quasigroup satisfying either N1 or N2 has a two-sided
identity.

Proof. We assume N1. For each x, define j(x) and k(z) by: = - j(z) = k(z) - 2 = 2.
In a loop, we would have j(x) = k(x) =1 for all x.

First, we show that j(x) = k() for all z. To see this, fix a, let b = j(a) and ¢ = k(a),
so ab = ca = a, and we want to show ¢ = b. Now fix d such that da = b. Applying N1, we
have:

(ad)a = ((ca)d)a = ¢(a(da)) = c(ab) = ca =a (o)

but we can also cancel the a to get:

ad = ¢ (B)
Applying N1, (@), and (3):

ad = ((ad)a)d = a(d(ad)) = a(de)

and we cancel to get:

dc=d (7)



Applying N1, (3), and (v):
((zd)a)d = x(d(ad)) = x(dc) = «d
Since YyJux(xd = y), we have, for every y:

(ya)d =y ()
Applying N1, (§), and the definition of ¢:
(aa)e = [((aa)e)a] - d = [afa(ca))] - d = (a(aa))d (©
Applying N1, (§) (with y = a), and the definition of d:

(a(aa))d = (((aa) d) (aa)) d = (aa)(d((aa) d)) = (aa)(da) = (aa)b (€)

By (¢) and (¢), we have (aa)e = (aa)b, so ¢ = b, as claimed.

So, we have, for all z:
We now show:

To see this, apply N1 and (1) to get

r=(00)-3()-2)-j(e) = 30 (@)) - (G(2) - (2 - j(2))) = 5 (5(2)) - @
(

Then j(j(x)) = j(x) follows from j(j(x)) -2 =« = j(x) - x, and then j(x) - j(x) = j(x)
follows, since j(j(x)) - j(x) = j(x) by (1).

Next, we show:
(z-5(y) - gy) == (3)
To see this, apply N1 and (2):

((z-g()-g)-g(y) == (3(y) - (G(y) - J(y) =z - j(y)

and now cancel the j(y).
Finally, we show that j(«) is a constant, which must then be a two-sided identity by

(1). To see this, we fix elements a, b, and show j(a) = j(b). Let p = j(a)j(b). Note that
pj(b) = j(a) by (3). Applying N1 and (2),

p=jla)-j(b) = (j(a)-j(a))-j(b) = ((p-5(b))-j(a))-j(b) = p-(j(b)-(j(a)-5 (b)) = p-(5(b)-p)
Using this with N1 and (3), we have for any x:

((x-p)-3(0) - p=a-(p-(G(b)-p)) =2-p=((x-3(0)-5(b)) - p
Cancelling, 7(b) = p = j(a)j(b). Since also j(b) = j7(b)7(b) by (2), we have j(a) = j(b). []
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