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Abstract

We prove a Ramsey-style theorem for sequences of vectors in an
infinite-dimensional vector space over a finite field. As an application
of this theorem, we prove that there are countably infinite Abelian
groups whose Bohr topologies are not homeomorphic.

1 Introduction

This paper does two things. First, we prove a partition theorem for sequences
of vectors in a vector space. Second, we apply this theorem to study the Bohr
topologies for these vector spaces.

The partition theorem involves sequences, X = (x5 : s € [w]|"), in some
vector space, V, over a finite field. If V itself is finite, then Ramsey’s Theorem
says that for some infinite A C w, the sequence X1A = (x, : s € [A]") is
constant. Our theorem states that even for infinite V, one can get XA to
be in one of a finite number of possible normal forms. For n =1, X = (x, :
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a € w), and our theorem obtains A such that the sequence (z, : o € A)
is either linearly independent or constant. The proof for the n = 1 case is
an easy exercise. The statement and proof of the results for n > 1 are in
Section 3, which may be read without reading either Section 2 or the rest of
this Introduction.

These partition results have the following application for Bohr topolo-
gies. Let ¢ be an Abelian group. Then, G# denotes the set G with the Bohr
topology; this is the coarsest topology which makes all characters (homo-
morphisms into the circle group) continuous. See van Douwen [4] for basic
properties of G# and references to the earlier literature. It has been an open
question, originally asked by van Douwen [3], and stated in Comfort [2],
whether G#* and H# must be homeomorphic topological spaces whenever (¢
and H are Abelian groups of the same cardinality. This is certainly true for
finite groups, since then the topology is discrete. We show that this is false
for infinite groups.

Specifically, for each prime p, let vV, be the vector space over Z, of di-
mension Ng. In computing V;’f, we just consider V, as an (additive) Abelian
group, and ignore the vector space structure. We show (Corollary 4.2) that
for distinct primes, p and ¢, the spaces Vf and Vf are not homeomorphic;
in fact, there is no 1-1 continuous map from Vv, into V,. Section 2 gives a
more detailed description of the topology of V;’f, and of some sequences which
occur in V;’f. Then, in Section 4, we apply the results of Section 3 to show
that these sequences cannot occur in Vf if ¢ is a different prime. Section 2
might provide one possible motivation for studying the partition results in
Section 3.

Our description of sequences in the Bohr topology is similar in spirit to
the work of K. P. Hart and J. van Mill [6]. In fact, it is clear from [6] that
one should try to distinguish the topologies of various G# by studying the
convergence properties of sequences in G#. Independently of us, S. Watson
[8] discovered a related non-homeomorphism result, also by following the
Hart — van Mill paradigm. Let V7 be the vector space over Z, of dimension
k. Watson, using an Erdos — Rado argument, showed that for « a suitably
large cardinal, V7 and v} are not homeomorphic for distinct primes, p and g.

The partition results of Section 3 might be of interest for vector spaces
over various finite fields. However, for applications to Bohr topologies, one
only needs to consider the fields Z,, since the vector space over GF'(p*) of
dimension Ny, viewed as a group, is isomorphic to V,. Section 5 contains
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some remarks on extending our Bohr topology results to groups other than
the v,,.

2 The Bohr Topology

In this section, we give a more detailed characterization of the topology of
G# for the particular G we plan to study. The reader unfamiliar with Bohr
topologies can simply take Definition 2.2 and Lemma 2.1 as a definition of
the topology.

Definition 2.1 For a primep, let V, be the vector space over Z, of dimension
Ng. Let e, for o < w be a basis for V,.

By definition, the Bohr topology, V;’f, is generated by all the group ho-
momorphisms, ¢, from V, into the unit circle group in the complex plane.
However, each ¢(v) must be a p™ root of unity, so we might just as well gen-
erate the topology by homomorphisms into Z, (the additive group of integers
modulo p).

Definition 2.2 For each ¢ € Hom(V,,7Z,) and each k € 7Z,, let N£ =
{vev,:pv)=k}.

Lerr;&rna 2.1 The N£ are all clopen sets, and form a sub-base for the topology
of VI,

Corollary 2.2 In V;’f, the sets of the form Ngl N---N Ngn form a clopen
base at 0.

It is sometimes useful to represent vectors in terms of the basis vectors,
€s, and then to compute the topology in terms of the co-ordinates. Write
elements of V, as ¢ = 3 ¢q€,, where ¢, € Z, (for a € w), and ¢, = 0 for all
but finitely many a.

Definition 2.3 For each I C w and each k € 7,, let UF = {2 € v, :
Yael Co =k (modp)}.

Lemma 2.3 The U¥ are all clopen sets, and form a sub-base for the topology
of V;’f.
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Proof. Each U} is clopen because Uf = N;“(I, where Xj(e,) is 1 for o € [
and 0 for a ¢ I. To prove they form a sub-base, fix ¢ € N;f. For j € Z,, let
I; = {a:ples) = g}, so that ¢ = 3{jXy, : J € Z,}. Let £; = X, (€). Then
FeN{U) :jez,} CNE »

Clearly, then, a clopen base at 0 is given by finite intersections of the U,
but it is useful to point out that the various I can always be taken from a
partition. A partition of w into n pieces is map 7 : w — n; n will always be
finite; the " piece, I;, is just Z=*{s}.

Definition 2.4 For each partition T of w into n pieces, let U(T) be the set
of all ¢ € V,, such that 3¢ co = 0(modp) for all i < n.

Lemma 2.4 The U(I), for partitions, I, form a clopen base at 0 in V;’f.

Proof. U(Z) is clopen because it is the intersection of the U?@,. Now, let
K = M{UYJ :i < n} be a basic clopen neighborhood of 0. The .J; need not
form a partition. But, let Z be the partition of w into 2" pieces obtained
by taking all possible intersections of the .J; or their complements. Then

0cU(I)CK.m

Next, we consider the special elements of V, corresponding to finite sub-
sets of w.

Definition 2.5 For each prime p: For s € [w]<¥, let e, =Y c, €0 € Vy; 50,
eg = 0. Let T, be the induced topology on [w]<* (so that the map s +— e, is a
homeomorphism onto its range). For each partition T of w into n pieces, let

Vo(Z) be the set of all s € [w]<¥ such that |s N I[;| = 0 (mod p) for all i < n.

Lemma 2.5 The V,(Z), for partitions, I, form a clopen base at @) in [w]<¥
under T,.

In the case p = 2, the map s — e, is a group isomorphism from the group
[w]<“ (under symmetric difference) onto Vy, so that 73 is just the topology
(1)

Note that for each s € [w]<¥, the set {t: s C ¢ € [wW]<¥} is clopen in each
7,. From this it is easy to see:

Lemma 2.6 For each prime p and each k > 0, [w]* is relatively discrete in
the topology T,. Furthermore, () is in the closure of [w]|* in T, iff p | k.
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This lemma is essentially due to Hart and van Mill [6], who showed that
if k = p, then, in V;’f, the only limit point of {e, : s € [w]?} is 0.

We shall show (Theorem 4.1) that if p | k and p < k, then {0} U[w]* in 7,
is not homeomorphic to any subset of any Vf, whenever ¢ is a prime other
than p. The proof seems to require a detailed study of all possible sequences
in v, indexed by various [w]*. We take this up in the next section.

We remark here that & cannot simply be taken to be p. For example,
{0} U[w]? in T3 is homeomorphic to {0} U {zo — 25 : o < § < w} in any V¥,
if the z, are all linearly independent. Also, {0} U[w]? in 73 is homeomorphic
to {0} U {&a + 25+ ys+yy:a < B <~y <w}in V¥ if the 2, and ys are all
independent.

3 Normal Forms.

Throughout this section, K is a fixed finite field. Let V be a vector space
over K. If n € w and B is an infinite subset of w, an n-ary sequence indexed
by B from Vis a map X : [B]" — V; n is the arity of X. We shall often
display X as a sequence, X = (x; : s € [B]"). Note that n could be 0, in
which case the sequence is just a singleton, X = (xg). A system of sequences
is of the form X = (X' : i < k), where k is finite and each X' an n'-ary
sequence indexed by the same B.

In vector spaces, we consider linear independence to be a property of
sequences, rather than sets of vectors; that is, an indexed sequence of vectors,
(w; 21 € 1), is independent iff there is no indexed sequence of scalars, (¢; : ¢ €
I) such that 0 < [{1: ¢; # 0} < Xy and > ;c; ciw; = 0 ; equivalently, the w;,
for ¢ € I, are all distinct, and {w; : ¢ € I} is independent in the usual sense
in linear algebra. An n-ary sequence X = (x,: s € [B]") is independent iff
the vectors x; are independent in this (sequence) sense. For the n = 0 case,
we just have one vector, 2y, and “independent” means “xy # 0”. The system
X is independent iff the indexed sequence of vectors (z% :1 < k,s € [B]") is
independent.

If X =(x5:s € [B]") is an n-ary sequence and A is an infinite subset of
B, then let XTA = (x, : s € [A]"). If X is the system, (X' : 7 < k), then
XIA = (XTA 4 < k).

The goal of this section is to prove (Theorem 3.4) that given any such
X, B,n, one may always find an A and an independent system W such that
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XTAis “derived from” W in one of a finite number of possible ways. This also
shows that there are finitely many possible “normal forms” for such XTA.
For example, if X = (x¢) is 0-ary, then XIA = X, and the two possible
forms for X are “zero” and “non-zero”. If X = (x, : a € B) is l-ary, then,
as remarked in the Introduction, we can always find an infinite A C B such
that XA is either independent or constant.

For 2-ary sequences, X = (1,5 : o < 8 ; a,8 € B), there are more
possible normal forms. For example, we could have z, 3 = y, + cyg, where
Y is an independent 1-ary sequence, and ¢ is a fixed scalar. This is not the
same as the form z, 3 = y, + 25, where the y,, 25 are all independent; that
is, W = (Y, Z) is an independent system.

For n > 1, we proceed by induction. However, the induction will be
simpler if we get B and A to be in some Ramsey ultrafilter, ¥, on w. That
way, we can easily prove the result for n + 1 by using the result for n in the
ultrapower of V. Although Ramsey ultrafilters exist under C'H, their exis-
tence is not provable in ZFC [5][7]. However, by general metamathematical
arguments (see the proof of Theorem 3.4), any combinatorial theorem about
countable objects which follows from C'H is provable without C'H. Also, by
doing somewhat more work, one can prove Theorem 3.4 directly, without
mentioning ultrafilters.

Recall that a Ramsey ultrafilter is a non-principal ultrafilter ¥ on w such
that each partition P : [w]® — k (for n,k finite) has a homogeneous set in
V. See Booth [1] for basic properties of Ramsey ultrafilters. In particular,
we use the following diagonalization property:

Lemma 3.1 IfV is Ramsey, and T' is a non-empty subtree of w<* such that
Vs € TH{B : sB € T} € U], then there is a set {o; 1 € w} € U such that
ag < ay < --- and such that (a; 11 <n) €T for each n.

An example of the use of this lemma is the following one, which is really
the n = 1 result again, but now phrased in terms of the ultrafilter:

Lemma 3.2 [f VU is Ramsey and X is a 1-ary sequence from V indexed by
B € U, then there is an A € U such that XA is either independent or
constant.

Proof. Say X = (2, : @ € B). Try to choose, inductively, ag, aq, ...
from B such that the z,, are all independent; then A will be {o; : ¢ € w}.
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By Lemma 3.1, to prove that we may get A € W, it is sufficient to assume
that we have chosen aq...«a,_1, and prove that there is a W-measure 1 set
of possible choices, 3, for o,. If this is not the case, then almost every zz is
a linear combination of (x,, : ¢+ < n). Since the field K is finite, this linear
combination is actually the same for almost every (3. That is, restricted to
some set A € WU, the sequence is constant. m

Actually, we shall never explicitly quote this lemma again, but we have
presented it as a simple introduction to the general method. To state the
general result, we first need to define “derived from”.

If W and X are sequences indexed by A, where W is m-ary and X is
n-ary, we say that X is a simple derived sequence from W iff n > m and for
some 19 < 17 < -+ < 1,,_1 < n, we have

Log,o1,mman_1 = Wayg a4 e,

for all {ag,ay,...,a,_1} € [A]". Then, if W = (W' :4 < k) is a system of
sequences, we say that X is a derived sequence from W iff X = ¥, ¢,Y*
for some L < w, scalars ¢, for { < L, and sequences Y* for / < L, where each
Y* is a simple derived sequence from some W* (where i can depend on /).
Note that if Y = (ys : s € [A]"), we are using ¢} for (cy, : s € [A]").

Y =(Vi:i<k)and W= (W' :i < () are two systems we use
Y UW for the concatenation of ¥V, W, which is a system of k 4 ¢ sequences.
We consider this to be an extension of V (and, also of W, since the order in
which the sequences are listed is never important).

Then the basic extension result is:

Lemma 3.3 Given an independent system V, an n-ary sequence X, and a
Ramsey ultrafilter U, there is an extension of V, of the form V' =V U W,
and an A € ¥, such that XA is a derived sequence from V'IA, and V'IA is

independent.

Actually, we are primarily interested in the case where V is empty, but the
lemma as stated, for arbitrary V, is more suitable to a proof by induction on
n. When V is empty, we get the following theorem as an immediate corollary:

Theorem 3.4 If X is an n-ary sequence indexed by B from V, then there is
an infinite A C B and an independent system W such that XTA is a derived
sequence from WIA.
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Proof. This is trivial from Lemma 3.3 under C'H, since one may get A
in any Ramsey ultrafilter containing B. In general, quote Lemma 3.3 in the
forcing extension of the universe which makes C'H true by collapsing 2% with
countable conditions. Since the theorem involves only countable objects, its
truth in the forcing extension implies its truth in the real universe. =

We now proceed to prove Lemma 3.3. The proof will be by induction on
arity, and the arity 0 case is handled by the following lemma, which allows
one to split off 0-ary systems from non-0-ary systems.

Lemma 3.5 Suppose W = V U X is a system, where all the sequences in
X are 0-ary, and none of the sequences in V are 0-ary. Suppose that V
is independent and X is independent. Then WIA is independent for some
AeV.

Proof. It is sufficient to choose A so that whenever « € span(X) is a
non-zero vector, © ¢ span(VIA). Now, for each such x: if @ € span(V),
then (since V is independent) x is expressed in a unique way as a linear
combination of vectors from V, and we may simply choose A to omit one
of the indices used in this expression (since none of the sequences in V are
0-ary). Then, since all the sequences in X’ are 0-ary, there are only finitely
many such x, so we may in fact choose a co-finite A which works for each z.

The induction step will use the ultrapower to reduce the arity by one.
Let V be the ultrapower, V¥/W. If X is an (n + 1)-ary sequence, we let X
be the n-ary sequence in V such that &, is the equivalence class of 3+ z, 5.
Note that we’re using z, 5 as shorthand for z,,5,. If X is O-ary, then X is
not defined. If W is a system, then W is the system obtained by replacing
each n'-ary W* by the (n' — 1)-ary Wi (when n' > 0), and deleting all the
0-ary W1,

Since V C V, and these are both vector spaces over the same finite field,
we may also form the quotient vector space, V/V. The following two lemmas
relate independence of W in V to independence of W in V/v.

Lemma 3.6 [f W is independent in V, then W is independent in V/V.
Proof. If not, we would have, in the ultrapower, an equation of the form

s, -+ gy, =V EV
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Then, for almost every /3, we would have
ClWsy 6+ * "+ CpWsy g = U

But, now, by varying [ (over two distinct values), we contradict the inde-
pendence of W. u

Lemma 3.7 If W s independent in V/V, and W contains no 0-ary se-
quences, then WIA is independent in V for some A € V.

Proof. Inductively choose ag < oy < g < ---, making sure that each
WIA, is independent, where A, = {a,, : m < n}. Then, A will be {a,, :
m < w}. It is enough to check that given A, the set of possibilities, (3, for
oy, 1s in W, If this fails, then for ae 3, we have an identity of the form:

crwg, + -+ epwy, + dywy g+ dyw, g =0

where the s; and t; are subsets of A,; ¢ # 0 (since WIA,, is independent). At
first, the coeflicients and the s;, ¢; could depend on 3, but we may assume
they are fixed, since there are only finitely many possibilities. Let v =
ciwg, + -+ cpw,,. Then in the ultrapower we have

dluA)tl + -4 quA)tq = —v

contradicting independence of W in V/V. .

Proof of Lemma 3.3 We induct on the arity of X.

If X is O-ary: If X is in the span of the 0-ary sequences from V, we
may let V' = V. If not, we let V' = VU {X}; by Lemma 3.5, some V'[ A is
independent.

Now, assume the lemma holds for n-ary X, and assume X is n + l-ary.
Apply the lemma to the n-ary X to extend V to V' and get A € U such that
in V/v, VA is independent and X 1A is derived from VI A. We may assume
that V' is formed from V by only adding sequences of arity > 0, so that by
Lemmas 3.7 and 3.5, we may assume also that V'l A is independent. Since X
is derived in V/V, there is a Y which is derived from V' such that X and Y
are the same in V/V. Thus, there is an n-ary Z such that for each s € [w]",
we have z, 3 = y, 3 + 2, for almost every 3. Applying the lemma again for
the n-ary 7, we may extend V' to a V" so that for some B € ¥, V'IB is
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independent and ZIB is derived from V"I B. Diagonalizing (by Lemma 3.1),
we may also assume that x5 = y, 5 + 2, for every s U {3} € [B]"*!, so that
XIB is derived from V"I B. =

In Section 4, we shall argue directly from Theorem 3.4, but we remark
that one may use this theorem to list, for each n, a finite number of normal
forms, such that every n-ary sequence is, restricted to some A, in one of
these normal forms. Note that the possibilities for the independent system V
simplify somewhat, since we may merge the components of V with the same
arity, if they are used similarly. More specifically, fix a Ramsey ultrafilter W.
If X and Y are two n-ary sequences, say X ~ Y iff there is an automorphism
F of vand an A € U such that x; = F(ys) for all s € [A]". Then, for each n,
there are only finitely many ~ equivalence classes. For n = 0, there are two
classes: “non-0” and “0”. For n = 1, there are three classes: “independent”,
“non-0 constant” and “constantly 0”. Now, suppose X is 2-ary. V could be
empty, in which case X is the constant 0. Or, V could be non-empty but
contain only 0O-ary sequences, in which case we could merge them to one, and
get X to be a non-zero constant. Continuing in this way, we get the following

possibilities:
1. 245 =0.
2. o5 =0v#0.
3. Top = Vq.
4. 245 = vg.
d. Top = Vo + wg.
6. x48 = vy + cvg.
7. Topg = Vapg.

Here, all the vectors on the right side of the “=” are independent, and ¢
is some non-zero scalar. Thus, if K is the base field, there are |K|+ 5
equivalence classes of 2-ary sequences.

4 A Non-Homeomorphism

Since Vf and Vf are topological groups, any map between them can be
translated to a map which takes 0 to 0. Thus, to prove that they are not
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homeomorphic, it is sufficient to prove:

Theorem 4.1 Suppose p and q are distinct primes, and suppose p | k and
p<k. Let F:[w]*U{0} — v, be continuous with respect to the topologies
T, and Vf, and suppose that F(0) = 0. Then for some infinite A C w, F

takes [A]* to 0.

Corollary 4.2 Ifp and q are distinct primes, then there is no 1-1 continuous
function from Vf into Vf.

We now turn to the proof of Theorem 4.1. Of course, since F' defines
a k-ary sequence in V,, our intent is to apply Theorem 3.4 here, getting F
restricted to some [A]* derived from some independent system W. We first
prove a preliminary lemma, which will allow us to handle the case where
W contains any sequence of arity greater than one. This lemma implies in
particular that in the statement of Ramsey’s Theorem, one cannot expect to
cover w by finitely many homogeneous sets. Probably, much stronger “anti-
Ramsey” lemmas can be proved, but this one is easy, and will suffice for our
purposes, and is accomplished by the standard (Sierpiniski) example.

Lemma 4.3 Fizr > 2, and an infinite A C w. Then there is a D C [w]" with
the following property: Whenever n > r, ) # 5 C [n]", and T is a partition
of w into finitely many pieces, some [; A contains elements ag < -+ < a1
such that exactly one s € S satisfies: {ay, 1 k € s} € D.

Proof. Of course, we may assume A = w, which simplifies the notation.
Let <« totally order w isomorphically to the rationals. Let D be the set of
all s € [w]” such that < and < agree on all pairs from D. Given S, let s be
the lexically last element of .S’ (where we compute lexical order by identifying
each s € S with an increasing sequence of » numbers). Given Z, choose i
so that [; is dense in some <-interval. Let j be the smallest element of s.
Choose oy € I;, for € s, so that <« agrees with < on these ay. Then choose
ay, for k ¢ s, so that « agrees with > on these ay; furthermore, if & > 7,
place ay below (in <) all the oy for £ € s, while if k& < j, place ay, above all
the oy for £ € 5.

To illustrate the lemma and its proof, suppose r = 2, n = 8, and S has
the pair (3,6) as its lexically last element. Then D C [w]? is the set of pairs
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on which < and < agree. Given any partition Z, we can always choose [;
to contain some ag < --- < a7 such that (as,a6) € D, and (a;,;) ¢ D
whenever ¢ < j and either 1 < 3 or 2 = 3 < 5 < 6. To do this, we choose
them in the order a7 < a5 < a4 < a3 9 ag < as < oy < ag.

Proof of Theorem 4.1. By Theorem 3.4, let W be an independent
system and A an infinite set such that F'[A is a derived sequence from WIA.
If FTA is the identically 0 sequence, we are done. So, assume it is not
identically 0 , and we shall derive a contradiction. Say W is the system,
(W*:i < (). Then we can write I as 3_;.,Y", where each Y*IA is a derived
sequence from Wl A alone.

Now, fir any i such that Y*[A is not identically 0. Let 7 be a linear map
from Vv, onto span(Y") such that 7 is the identity on span(Y*) and 7 takes
span(Y?) for j # 1 to 0. Let G = m o F. Then G is continuous. From now
on, write Y for Y* and W for W*, so G(s) = Y(s) for s € [A]*. Let r be the
arity of W. Then 0 < r < k. Our contradiction will come in three cases,
depending on 7.

If r = 0, then W = (wy), and G(s) = cwy # 0 for all s € [A]*, which
contradicts continuity, since ) is a limit point of [A]* in 7.

If r =1, then W = (w, : a < w), and G(s) = ;4 cjw,, # 0 for all
s = {ag,...,ar_1} € [A]¥, where each ¢; € Z,. Let D be any subset of w
such that AN D and A\ D are both infinite. Let ¢ € Hom(V,,7Z,) be such
that ¢(w,) is 1 when o« € D and 0 when o ¢ D. By continuity and Lemma
2.5, there must be a partition Z such ¢(G/(s)) = 0 whenever s € V,(Z). Now,
fix mo < --- < myp_y <k with ¢y + -+ ¢p,_, # 0 (in Z,); this is possible
since ¢ # p and p < k and not all the ¢; are 0. Let [; and I, be two pieces of
the partition Z (possibly the same) such that [; N AN D and I, N A\ D are
both infinite. Then, fix ag < -+ < ap_y in A with ay,g, -+, p,_, € N D
and the other o; € I, \ D. Then s = {ag,..., a1} € V,(Z), but o(G(s)) =
Cmo ++* + €m,_, # 0, a contradiction.

Ifr > 2, then W = (w, : s € [w]"). If s € [k]"and ap < -+ < ag_1, let ay
abbreviate {ay : £ € s}. Then G({ag,...,ap_1}) = X 5 CsWa,, where () #
S C [k]", and each ¢ # 0. Fix D as in Lemma4.3, and let ¢ € Hom(V,, Z,) be
such that p(w;) is 1 when s € D and 0 when s ¢ D. By continuity, there must
be a partition Z such ¢(G({ao,...,ak-1})) = 0 whenever {ag,...,0p_1} €
V,(Z). Now, fix g < -+ < a1 in A, such that all of them are in the same
I;, and such that exactly one s € S satisfies oy € D. Then {ag,...,ar_1} €
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Vo(Z) but o(G({ao,...,ak-1})) = ¢s # 0, a contradiction. m

5 Additional Remarks

Say G, H are two countably infinite Abelian groups. When are G#, H#
homeomorphic? We are still very far from answering this question, although
we have shown that the answer isn’t “always”.

Perhaps the answer is “almost never”. Specifically, define G ~ H iff
there are subgroups, G', H', of GG, H, respectively, such that G' and H' are
isomorphic, GG’ has finite index in G, and H' has finite index in H. It is easy
to see that ~ is an equivalence relation, and that G ~ H implies that G#
and H# are homeomorphic. We do not know if the converse holds.

This paper does not even settle what happens in the case of groups of finite
exponent (satisfying In € wVx € G(nx = 0)). For example, let V,, be the
direct sum of Ry copies of Z,,. We do not know whether Vf is homeomorphic
to (Vy x V4)#. However, each of V4 and V, x V4 is embeddable in the other,
so that the methods of Section 4, which establish non-homeomorphism by
establishing non-embeddability, do not seem to apply here.

As the referee has pointed out, our methods can be pushed slightly fur-
ther. For example, suppose G has finite exponent, p is prime, and G has
no subgroup homeomorphic to V,. Then there is no 1-1 continuous function
from Vf into (. To see this, construct a chain of sub-groups,

{0}=GoCc Gy C---CG, =G,

such that each G;/G,_1 is either finite or isomorphic to some V,, where g = ¢;
is a prime different from p. Suppose I : [w]* U {} — G is continuous with
respect to the topologies T, and G#, ['(0) = 0, p | k, and p < k. Inductively
construct infinite sets

w:ArDAr—lD"'DAO 5

such that F' takes each [A;]* to G;. At each stage, apply Theorem 4.1 to
Gi/Gi—1 (or, just use Ramsey’s Theorem if this group is finite).
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