Non-Constructive Computational Mathematics
Kenneth Kunen !

University of Wisconsin, Madison, WI 53706, U.S.A.
kunen@cs.wisc.edu

August 28, 1995

ABSTRACT

We describe a non-constructive extension to Primitive Recursive Arithmetic, both
abstractly, and as implemented on the Boyer-Moore prover. Abstractly, this
extension is obtained by adding the unbounded p operator applied to primitive
recursive functions; doing so, one can define the Ackermann function and prove
the consistency of Primitive Recursive Arithmetic. The implementation does not
mention the y operator explicitly, but has the strength to define the p operator
through the built-in functions EVAL$ and V&C$.

1. INTRODUCTION

This paper is a mixture of theory and practice.

The theory begins with the notions of constructivism and finitism in the philosophy
of mathematics. As with all philosophical notions, these cannot appear directly in a
mathematical theorem or a computer program, but they have been useful guides over the
past hundred years to discovering mathematical results, and more recently, to designing
computer implementations.

Informally, a constructivist only believes in objects for which there is an explicit con-
struction; in particular, a function definition is meaningful only if it is accompanied by
a procedure for computing values of the function. Axiom systems such as ZF (Zermelo-
Fraenkel set theory) are obviously non-constructive, but even the system PA (Peano Arith-
metic), which deals only with natural numbers, is non-constructive. For example, if ¢(z, y)
is some property of x,y, constructivists would not assert that they could prove

Vo (yd(z,y) V Vy=o(z,y)) (1)

unless they could define a function f and prove that

Va(é(z, f(z)) V Vy(~o(z,y))) (2)

Note that (2) is equivalent to

Va,y(d(z,y) = é(x, f(2))) (2')

1 Author supported by NSF Grant CCR-9503445. The author is grateful to R. S. Boyer for his explanations

of the Boyer-Moore prover.

and this equivalence is constructive if ¢ is decidable, so we may view f as a Skolem function
for ¢.

Now, for a constructivist, “function” presumably means “recursive function” (by
Church’s Thesis). However, it is easy to find even primitive recursive ¢ such that no
total recursive f satisfies (2'); for these ¢, (1) would be false to a constructivist. However,
(1) is immediate from the law of the excluded middle in classical logic, so it is trivially
provable in PA. Furthermore, within PA, it is easy to define a function f and prove (2');
just let f(x) be py ¢(x,y) if Jyo(x,y) and 0 otherwise (uy ¢(x,y) denotes the least y such
that ¢(x,y)). A constructivist would simply not accept such a definition of a function. For
further discussion of constructivism, see Beeson [2] or Troelstra [17].

Kleene [12] turned the above philosophical argument into a mathematical theorem.
The system HA (Heyting Arithmetic) is an attempt to formalize constructive number
theory. H A has exactly the same axioms as does PA, but allows only intuitionistic logic
in its proofs. By [12], (1) is not provable within HA unless one can produce a recursive f
and prove (2'); in particular, one can write down specific primitive recursive ¢ for which
(1) is not provable in H A.

Now, finitism is an extreme version of constructivism. HA and PA have the same
induction axiom:

P(0) AVe(P(e) = Pz +1)) = Vay(z) (3)

Here, v is an arbitrary logical formula. A true finitist would reject such an axiom, saying
that a formula which quantifies over the infinite set of natural numbers does not in general
have any meaning.

The logical system PRA (Primitive Recursive Arithmetic) is an attempt to formalize
finitistic mathematics. PRA has a name for every primitive recursive function, ¢, and in-
cludes the recursive definition of ¢ as an axiom. The logic of PRA does not explicitly write
quantifiers, but universal quantification is understood, so that the theorems of PRA are all
universally quantified validities about primitive recursive functions. Without quantifiers,
induction in PRA can be formalized as a proof rule; for each quantifier-free ¢

it F(0) and F(x) = (e +1) then F (x) (4)

The book by Goodstein [9] develops PRA in quite a bit of detail, proving basic facts
about number theory, through the uniqueness of prime factorization. Also, via Godel
numbering, one may prove within PRA most of the known mathematical theorems about
finite structures. For example, one may prove Ramsey’s Theorem, along with all the basic
theorems on the structure of finite groups and fields. The papers by Parsons [15] and Sieg
[16] say more about the proof-theoretic strength of PRA.

Still, PRA is weaker than HA. For example, the Ackermann function is a well-
known recursive function which is not primitive recursive. So, this function cannot even
be mentioned in PRA, whereas it is easy to define it and derive its basic properties in
HA. Furthermore, the statement CON(PRA) (that PRA is consistent) is easy to ezpress
within PRA, and is provable in HA but not in PRA. That PRA ¥ CON(PRA) follows by
Godel’s Second Incompleteness Theorem, which applies to any theory such as PRA, HA,
or PA. But HA+ CON(PRA), since within HA, one may define a recursive function

2

universal for primitive recursive functions, and then formalize the proof that all sentences
provable from PRA are true. Actually, this proof just uses a small piece of HA. If we
form PRA' by adding to PRA a name, A, for the Ackermann function, and the axioms
that A satisfies its usual definition, then PRA' - CON(PRA) (see Lemma 3.1.4).

To show that HA is weaker than PA, one must refer to Kleene’s result, mentioned
above, that instances of (1) are not provable in HA. By the Incompleteness Theorem, PA ¥
CON(HA), because PAF CON(PA) and, by another result of Godel [8], CON(HA) &
CON(PA) is provable in PA (and, in fact, in PRA).

Now, as already mentioned, “constructive” is a philosophical notion, not a mathe-
matical one, and hence need not be constrained by the specific formal rules of HA or any
other formal system. In particular, although HA ¥ CON(HA), there are two well-known
proofs of CON(HA) (equivalently, by [8], of CON(PA)), which many constructivists
would accept. Kleene’s [12] proof by recursive realizability formalizes the intuition that
every statement provable from H A is constructively true. The other is due to Gentzen [7].
Let PRA" be obtained by adding to PRA induction and recursion on the ordinal ;. This
is clearly stronger than PRA’, since the Ackermann function can be defined by recursion
on w?. Gentzen showed that PRA” F CON(PA). Although PA proves statements (e.g.,
versions of (1) above) which no constructivist would accept, many constructivists would
accept the use of €y, and hence Gentzen’s proof of CON(PA). In fact, we see no reason
why there could not be a constructive proof of CON(ZF).

Aside from “logic” results, Paris and Harrington [14] describe a strengthening of Ram-
sey’s Theorem which is provably equivalent to CON(PA). This is a simple combinatorial
statement which is provable in PRA", but not in PA. A direct proof from PRA" was
given by Ketonen and Solovay [11]; see [13] for a simpler proof.

We turn now to practice. There are many computer systems available for verifying
proofs in mathematical logic. One of the most well known among these is the system
Ngthm, developed by Boyer and Moore [5], and described by them as a system of “com-
putational logic”. To first approximation, it is an implementation of PRA. It has been
used to verify statements about the correctness of hardware and software design, as well
as constructive theorems of pure mathematics.

Actually, Nqthm extends PRA in three important ways. First, it can verify theorems
about finite symbolic expressions (Lisp S-expressions), as well as theorems about natural
numbers. Second, it allows the definition of functions by recursion on the ordinal ¢y, and
proofs by induction on €y. Third, it includes a self-referential feature, so that one may talk
about the semantics of Nqthm within Nqthm itself.

Of these three extensions, the first is both the least important in theory and the most
important in practice. Allowing symbolic entities in the formalism is clearly inessential,
since one may simply code these entities by Godel numbers, but it is also clear that a
practical verification system could not rely on Godel numbering. The other two extensions
are definitely essential, in that each of them separately allows Nqthm to prove statements
which are not provable in PRA. However, the applications of these extensions seem to
be primarily in pure mathematics; we know of no useful (to engineers) statements about
algorithms or digital circuits which go beyond PRA.

By the second extension, Nqthm really contains PRA"”. The use of ordinals in Nqthm

3

itself was described in some detail in [13], including a verification on Nqthm of the Paris-
Harrington Ramsey theorem. Still, as pointed out above, this extension remains “con-
structive” in some sense.

Now, the third extension to Nqthm is not constructive at all. In this paper, we show
that this extension alone (without using the second extension) is stronger than had hitherto
been suspected. This extension is implemented through axioms about the non-recursive
functions EVAL$ and V&C$. Although, Boyer and Moore [4,5] pointed out that the definition
of these functions is non-constructive, it it was not clear from [4,5] that the introduction of
these functions was in fact non-conservative over PRA — that is, using the axioms about
these functions, one could prove a universal validity about primitive recursive functions
which was not already provable in PRA.

The theoretical content of the third extension (without the second) is the system we
shall call PRA*. This is obtained by adding a function symbol f and equation (2') above
for each primitive recursive predicate ¢. In PRA*, one can define the Ackermann function
and prove CON(PRA). In particular, PRA* is not conservative over PRA.

In §2, we make some preliminary remarks on recursion theory, and in §3, we discuss our
theoretical results about PRA and related systems. Actually, the relationship between the
theory (PRA*) and practice (EVAL$ and V&C$ in Nqthm) is not completely straightforward,;
we discuss this further in §4.

§2. REMARKS ON RECURSION THEORY

§2.1. Names. The partial recursive functions form the least class containing some
simple basic functions and closed under primitive recursion and the y operator. Following
Kleene [12] (roughly), each such function can be denoted by a name, which describes how
it was constructed. Formally, the names are those symbolic entities built by applying the
following rules; j7,n,m all denote natural numbers:

Base names (Identity, Zero, Successor function, Wild cards):

1. I7 (j <n) is a name of arity n.
2. Z" (0 < n) is a name of arity n.
3. S! has arity 1.

4. W1 (0 < n) is a name of arity n.

Compound names (Composition, Primitive recursion, Mu operator):

5. CM(o,71,...,Tm) is a name of arity n whenever n > 0, m > 1, each 7; is a name
of arity n, and ¢ is a name of arity m.
6. P"(0,7) is a name of arity n whenever n > 1, ¢ is a name of arity n — 1, and 7
is a name of arity n + 1.
7. M"™(7) is a name of arity n whenever n > 0 and 7 is a name of arity n + 1.
Note that the superscript denotes the arity of a name, which is always a natural number.
We shall sometimes need some special kinds of names; specifically:
o Primitive recursive names are those built just using rules 1 — 6.
o Pure names are those built using just rules 1 — 3 and 5 — 7.
o Simple names are those pure names built using rules 1 — 7, but containing at most
one symbol of the type M™.

The primitive recursive names are used to name the primitive recursive functions, which
can be defined without the use of the y operator. The Kleene Normal Form Theorem (see
Theorem 2.9.1 below) says that every partial recursive function can be named by a simple
name. The wild cards are used primarily to describe relative computability; that is, the
computation of one function, using another as an oracle. Actually, the class of pure names
is just a minor convenience, since whenever we are not discussing relative computability,
we could just as well allow the wild cards, but interpret them all to be the identically zero
function.

§2.2. Partial functions. If n > 0, (w" —w) is the set of all functions from w” into w,
and (w™ 25 w) is the set of all functions from w™ into wU{L}. So, (w"—w) C (W™ Ly w).
If fc (w"-25w), we think of f as a partial function, and let dom(f) = {¥ € w" :
f(@) # L}; we also extend f to a function on (w U {L})" by saying that f(7) = L
whenever some component of ¥ is 1. To motivate this convention, think of f as being
obtained by a computer program which expects n input values and attempts to output a
value. Then, f(#) = L means that the computation doesn’t halt. An input of L means
that the input never arrives, so that f certainly doesn’t halt. These conventions are useful
when discussing compositions of functions, where the input to f is the output of another
function.

If n = 0, we think of a program which expects no input, so it just computes a number,
if it halts. That motivates the definitions: (w®—w) = w and (W° L5w) =w U {L}

2.3. What the names name. An oracle is an indexed family, F = {f;‘ 1) < w,
0 < n < w}, of total functions, with Ii € (w"—w), such that all but finitely many of the

[are identically zero. ®f € (W iﬂ,u) is defined as follows whenever A is a name with
arity n and F is an oracle.:

A=1 L (7) = z;.

A= 2" (%) =0.

A =St @f(:p) =z + 1.

A=W BT(T) = £1(7)

AN=Cl(o, Ty, Tm): @5 (T) = @f(@i (@),..., @fm (2)).

A= P"(o,7): ®{(Z,0)=@7(7). ®{(Z,y+1) =T (7,y,®I(Z,y)).

A= M"(r): ®%(7) =y € w iff ®Z(Z,y) € w\{0} and for all z < y, ®7(F,z) = 0.

®7 (%) = L if there is no such y.

If each f]' is the identically zero function, we write @ for ®L. If f € (W™ —w), we write
CID{ for ®7, where fI* = f, and the other fj are identically zero. Likewise define @{’g
when f € (w™—w) and g € (wF—w).

g € (W" iﬂ,u) is partial recursive in F iff g = ® for some n-ary name \. g is total
recursive (or just recursive) in F iff g is partial recursive in F and ¢ is total (that is,
g € (w'—w)). g is primitive recursive in F iff g = ®5 for some n-ary primitive recursive
name \.

2.4. Specific examples. We show here that some standard functions are primitive
recursive by our definition.

The constant function 2 of three variables is named by C3(S', C3(S!, Z?)).
Addition is defined by

e+ 0="h(z); 2+ (y+1) =gz.y,(x+y)) ,

where h(z) = 2 and g¢(z,y,2) = z+ 1 so + = ®pryg, where PLUS is the name
P(I5,CY(SY, I3)).
Multiplication is defined by

r+x0="h(x); ex(y+1)=glx,y,(x*y)) ,

where h(z) = 0 and g(x,y,2) = « + 2. So, * = Prryps, where TIMES is
P2(ZY,C3(PLUS,I3,13)), or P*(Z',C3(P*(1},C3(SY, I3)), I3, I3)). Likewise, if FACT
is the name PY(CY(S',Z%),C2(TIMES,C?(S', I2),1?)), then the factorial function is
Cracr.

Other useful functions are sgn(x) (the smaller of # and 1), given by the name
PYZ°,C¥(S, Z?)), and x~y (the larger of 0 and x — y), given by the name
P21}, C3(PY(Z°,12),13)). One can then define maz(z,y) = + (y =) and min(x,y) =
y=(y-=u).

When we consider predicates, we follow the usual convention in computer program-
ming and identify the number 0 with false and all positive numbers with ¢rue. Note that
the p operator was defined with this convention in mind.

It is also conventional that 1 is the “primary” true value, to be returned by “intended”
booleans. For example, the < predicate (actually, function) is defined by LT(x,y) =
sgn(y—x). The propositional connectives are defined by: or(z,y) = sgn(z + y) and
not(x) = 1 = x; other ones are combinations of these.

Using the p operator, it is easy to write names for non-total functions. For example, let
LOOP be the 0-ary name M%(Z!), and let SLOOP be is its “successor”, CY(St, MO (Z1)).
Then @,00p = ®sroopr = L.

§2.5. Computations. Informally, if ® (¥) = y € w, then there is a finite computa-
tion which establishes this fact. The computation is the search tree you would construct
in an attempt to compute the value of ®7 (7). If defined in the natural way, such a compu-
tation is unique. For example, say you wanted to apply the definition and compute 7 + 2
by evaluating the name P%(I},C?(S!,IJ)). You could organize the search by unwinding
the intended meaning of P? and C?, eventually getting down to the base names, whose
values you would write down at sight. The result of the computation might look like:

6

P15, CY(S, I;))[7,2] = 9
P21y, C(S I;))[7, 1] =
P15, CY(SY, 13))IT,]

Rl =7
CY(S, 13)[7,0,7] =7
B3[7,0,7) =7
S\ =8
CP(s', 13)[7,1,8] = 9
B3[7,1,8] =8
SH8] =

We can think of this as a tree, displayed in preorder traversal.

To make this formal, call a search node any triple of the form (A, ¥, v), where for
some n € w, A\ is an n-ary name, ¥ € w", and v € w. An F-computation is a finite rooted
ordered tree, where each node N = (A, #,v) in the tree is a search node, for which one of
the following holds:

A is a base name, N is a leaf, and ®% (%) = v.

ANis Cl (o, 71,...,Tm), and for some yi,...,Ym, the children of N are

(71, 2,01)5 oy (T @3 Ym)y (05 (Y14 -« -, Ym), v), in that order.

A= P"o,7), ¥ = (u,0), and N has one child, (o, u,v).

A= P"(o,7), ¥ = (U,y + 1), and for some z, N has two children

(A, (U,y),2), and (7, (u,y,2),v), in that order.
A = M"(7), and for some y > 0, N has v 4+ 1 children, in order:

((f 0) 0) 7(T7 (l‘,v 1)70)7(T7 (:z:,v),y).

2.5.1. Lemma. Given F, an n-ary A, and ¥ € w",
a. If ®7(¥) = y € w, there is exactly one F-computation with root node (\, ¥, y).
b. If there is any JF-computation with root node (), ,y), then ®7(¥) = y.

62.6. Recursive Functionals. If we fix A and let F vary, we get recursive second
order functionals. If m,n > 0, and p € (w'—w), we say that a map ' : (W™ —w) —
(wh'—w) is recursive in parameter p iff for some n-ary name A\, I'(f) = @];’f for all f €
(W™ —w). We may view (w™—w) as a topological space (in fact, a separable complete
metric space) if we consider w™ to be discrete and take the usual product topology. Since
every computation is finite, we have:

2.6.1. Lemma. A map I' : (W™ —w) = (w"—w) is continuous iff I" is recursive in
some parameter.

These second-order recursive functionals are echoed in the proof theory of PRA; see
63.1. A version of this lemma is also true for maps on other separable complete metric
spaces, but it involves some coding of the points in the space by sequences of natural
numbers.

§2.7. Godel Numbering. As usual, w<“ =[], ., w" is the set of all finite sequences
of natural numbers. Let p; be the ith prime; so pg = 2, py = 3, ete. If s € W", let
#(s) = [Licn Py’ i1 and let [h(#(s)) = n. Denote the empty sequence by () or (); #(0) = 1

7

and (h(1) = 0. Let Seq = {#(s) : s € w<“}. Let lh(z) =0 for « ¢ Seq. Let w(i,#s) = s;
whenever s is a sequence of length greater than i, and let 7(¢,2) = 0 whenever ¢ > [h(z).

2.7.1. Lemma. Seq, lh, and 7 are primitive recursive. For each n, the map
(x0,...,&n_1) — #(20,...,2,—1) is primitive recursive.

If 7 is a name, we define #(7) as follows:

#(I7) = #(1,n,9); #(27) = #(2,n); (D =#03,1); #(W]) = (4,0, j)
H(Cn(0 15 Tm)) = #(5,n,m, #(0), #(71), -, #(Tm))
#(P"(0,7)) = (6 n,#() #(7))

#(M"(7)) = #(7,n, #(7))

Using this numbering, we obtain a universal function. For each n > 0, ¥ € w", and n-ary
name A, define 7 "(#\, T) = @7 (7); set o7 "(e,7) = L if e is not of the form #)\ for an
n-ary name. Let o7 "(¥) = p7 (e, #). Then, as e varies, the @7 "
in n variables partial recursive in F. As usual, delete the superscript F when F is the zero
oracle; also, delete the superscript n when it is clear from context.

Since the numbering is effective, ¢" (e, &) is partial recursive in e, &, but to prove this

rigorously, we must Godel number computations, as we do in the next section.

enumerate all functions

62.8. The Kleene Normal Form Theorem. If C is a computation whose root
node N = (A, Z,y) has r children, heading subtrees Cy,...,C, (r > 0), then let #C =
H(H#N, #2Z,y, #Cr, ..., #Cp). Thus, if C = #C is the Godel number of a computation,
then 7(0,C) is the Godel number of the function being computed, (1, C) is the Godel
number of the input, and x(2, C') is the output, or upshot, of the computation.

Definition. U(C) = =(2,C). The Kleene T predicate (i.e., function with range
{0,1}) T7 € (w3 —w) is defined by: T7 (e, s,C) = 1 iff for some n, A, 7,C, \ is an n-ary
name, ¢ = #\, ¥ € w", s = #&, C is an F-computation whose root node is of the form
(A, Z,y), and C = #C. For each n, let T7" be the n + 2 — ary predicate defined by:
T7 (e, 7,C) =T (e, #7,C).

2.8.1. Theorem. U is primitive recursive, and T7 is primitive recursive in F. If
f € (w5 w) is partial recursive in F, then for some e € w, f is of the form:

F(&) = o7 "(F) = U(C T "(e,7,0)) .

This Theorem arises in every formalization of recursion theory, and is embedded in
the following philosophical argument for Church’s Thesis: Suppose we have any precisely
defined algorithm for computing a function. Then, presumably, it is primitive recursive
to decide whether or not some scribbling is a correct computation and to retrieve the
value computed by that scribbling. We could then re-define T'(Z, C') to mean that C' is the
Godel number of a successful computation by this algorithm, and re-define U(C') to be the
value computed by this computation. It follows that the function f(¥) = U(uC T(¥,C))
computed by this algorithm is partial recursive in our technical sense.

8

Note that Church’s Thesis does not rule out the computability of a non-recursive
function by, e.g., some biological (= physical) process.

The technical interest in the Theorem is that it shows that every partial recursive
function is obtained by only one use of the p operator (i.e., it is named by a simple name;
see §2.1). It also yields a partial recursive enumeration of the partial recursive functions,
since it is now clear that ¢7 " is partial recursive in F. By the standard Cantor diagonal
argument, the halting problem, K = {e : ¢l(e) # 1}, is undecidable.

§2.9. The Recursion Theorem. Informally, in computing, a recursion is a defini-
tion of f(y) by some procedure which calls f itself. For example,

D1: f(y)=3ify=10; f(y) = f(y+1) otherwise.
The First Recursion Theorem is the fairly obvious statement that any such recursion always
defines f as a partial recursive function — namely, what you get by trying to compute f
in the natural way; in the given example, dom(f) = {y : y < 10}. For y ¢ dom(f),
the natural C or Lisp program for computing f(y) will not return a value. The Second
Recursion Theorem (Kleene [12]) is the less obvious fact that one can actually define f
from a Godel number for f. For example, there is an e such that

D2 l0)=¢ plly+1)=(piy))*
In general, such a definition will again define a partial function, although in this particular
example, p! is total, since we easily prove y € dom(p!) by induction on y.

2.9.1. Theorem. Given a partial recursive g € (w"t' —£50), there is an e € w such

that for all § € w™, p2(y) = g(e, ¥).
Proof. Let SUB be a primitive recursive function such that for each a,x,¥, we
have PSUB(a x)(g) = "2, 7). Then, fix any a such that ¢"T(2,¢) = ¢g(SUB(z,2),¥)

for all ,y. Let e = SUB(a,a). Then for all §: ¢(y) = PSUB(a a)(j) = "t a,y) =
9(SUB(a,a),y) = g(e,¥). m

The diagonal argument in this proof is exactly the same as the one used in the proof
of Godel’s Second Incompleteness Theorem to produce a formula which asserts its own
non-provability.

In example D2 above, g(x,0) = and g(z,y + 1) = (g(«,y))?. The First Recursion
Theorem can be considered a special case of the Second; for example, for D1 above, we
can let g(z,y) be 3 if y = 10 and ¢l (y + 1) otherwise.

Although example D1 is trivial, this method is actually useful in proving the com-
putability of functions which are defined in a way which is recursive but not primitive
recursive. A simple example of this is the Ackermann function, A, defined by:

A(0,y) =1

A(1,0) =2

r>2= A(x,0)=ax+2

(x>0ANy >0)= A(z,y) = A(A(x - 1,y),y—1)

The details of the definition vary in different references (this one is from [1]), but the key
point is the double recursion on the last line of definition, which is not primitive recursive.
The other three lines were chosen so that for small y, the map @ — A(x,y) is a familiar
function; A(x,1) = 22 (for x > 1) and A(x,2) = 2%; A(x,3) is the “stack-of-twos” function,

9

A(z +1,3) = 243 The diagonal, = — A(z,z) eventually dominates every primitive
recursive function. To prove that A is a total recursive function, first apply the Recursion
Theorem, as with D1, to prove the existence of a partial recursive A satisfying the above
definition, and then prove by double induction on (y, x) that A(z,y) # L.

§2.10. Universal functions. The map (e, z) — ¢.(2) is a universal partial recursive
function. In general, any attempt to get a universal function for a class of total functions
leads out of the class by Cantor’s diagonal argument. Specifically, if f is a total function
of two variables, and we let f.(x) = f(e,), then the function e — f(e, e) 4+ 1 is not one of
the f.. One can effectively enumerate all the primitive recursive functions. For example,
if we let f(e,x) be ®,(x) whenever e = #7, where 7 is a pure primitive recursive name
(see §2.1) of arity one, and set f(e,x) = 0 otherwise, then f is total recursive, and the f,
enumerate all the primitive recursive functions. But, then, f is not primitive recursive.
Since there are only countably many recursive functions, it is easy to find a total f such
that the f. enumerate all total recursive functions, but then f will not be recursive.

Let PRK be the class of total functions which are primitive recursive in K (see §2.8)
(equivalently, primitive recursive in some r.e. set). The following (failed) attempt to get a
PRK function which is universal for PRK can be motivated either by the Kleene Normal
Form Theorem, or by the desire to adjoin to the recursive functions just enough functions
to satisty equations (2),(2') of the Introduction for each primitive recursive ¢. It is an
abstract version of what is implemented on Nqthm.

We concentrate on the simple names (see §2.1), and evaluate them by re-interpreting
the p operator to return 0 rather than | when it is undefined, so that the whole theory
deals only with total functions. Formally, define ¥ € (w™—w) whenever A is a simple
name with arity n. The cases in the definition of W) are exactly the same as in the
definition of @, with the exception of the case

A=M"71): U\(Z)=yecwif U (Z,y) € w\{0} and for all z <y, ¥ (&, z) =0.

U, (&) = 0 if there is no such y.
Since we are applying this scheme only for simple names A, the 7 here is a primitive
recursive name, so U, = ®,. In general for simple \, U (&) = &5 () whenever ®,(7) # L,
so Uy = &, whenever ®) is total. As \ varies over the simple names, the ®, enumerate
all the partial recursive functions (by the Kleene Normal Form Theorem), and the Wy
enumerate PRA.

Note that if 7 is a primitive recursive name and A is M"(7), then ¥, is a Skolem
function for ®,:

Va,y(@-(Z,y) 0 = @.(Z, V(7)) #0)

This is precisely equation (2') of the Introduction, where ¢(¥,y) says “®.(Z,y) # 0”7 and
F(&) is Up(d).

Let fai(x) be the least & such that ¢ () if Jzy(x), and 0 otherwise. So, the partial
recursive functions are all obtained by zero or one application of the p operator, but any
expression with multiple applications of the p operator is still partial recursive. The PRK
functions are those functions obtained by zero or one application of the [operator. If we
allow multiple applications of i (use all names, rather than just simple ones), we would
obtain all arithmetical functions.

10

For each n-ary name A\, with e = #\, and n-tuple &, define () = U5 (Z); set
Ye(¥) = 0 if e is not of the form #\ for an n-ary simple name. The map (e, x) — ¥ () is
universal for PRK and hence not in PRK; it is recursive in K, but not primitive recursive
in K; this map is the abstract analogue of the Nqthm EVAL$.

Following Boyer and Moore [4,5], define the function ve in PRK. Here, ve stands for
value and computation, and is the abstract analogue of the Nqthm V&C$. Let

ve(e,s) = pCT(e,s,C)

That is, when e = #\ for some n-ary name A, and s = #& for some ¥ € w", then ve(e,)
is the Godel number of the computation which computes the value of ®(Z); ve(e,s) =0
when there is no such computation. If we just want the value, without the computation,
we can just use the upshot function, U, and define apply(e, s) = U(ve(e, s)). Then apply,
like ve, is in PR, and is the analogue of the Nqthm APPLY$. Since U(0) = 0 under our
Godel numbering, apply(e, #7) is ¢ (¥) when ¢ (7) # L, and 0 otherwise. Now, suppose
e = #A for some simple n-ary name \. Then apply(e, #7) = ¢2(¥) = 7 (¥) whenever
T € dom(e?); in particular this holds whenever \ is a primitive recursive name. One
should not confuse the two total functions ?» and apply. Since apply € PRK, it cannot
be universal for PRK, whereas (e,) — t.(x) is universal for PRK. To see a specific
example of the difference, let e = #SLOOP, where SLOOP (defined in §2.4) “computes”
the successor of the function which doesn’t halt. Then ¢%() = 1, while apply(e, #()) = 0.
An Ngthm example like this is discussed in §2.10 of [5], but is not quite so transparent
there because the p operator is not built in on the surface, but must be constructed using
other primitives; see §4 and below.

Roughly, PRA axiomatizes the &, = ¥, for 7 a primitive recursive name. One can
extend PRA in the natural way to axiomatize the ¥y for all simple names A, obtaining
the system PRA*. In PRA*, one can define ve and apply, obtaining a function universal
for the primitive recursive functions and thereby proving CON(PRA). These matters are
taken up more formally the next section. However, the recursion-theoretic strength of a
class of functions is a good informal guide to the proof-theoretic strength of the natural
axiomatization of the class. In this vein, we take up one more matter, which mirrors the
fact that using ve, that one can get by in Nqthm without an explicit p operator.

There is an apparent self-referentiality in the definition of ve. Let KT P be a primitive
recursive name for the Kleene T predicate T'(e,s,C), so that if VC is the simple name
M?*(KTP), then VC names vc in the sense that vc is Uy . Now in ve(e, s), we may have
e = #\, where A is VC or the name of some function constructed from VC'. Of course,
this self-referentiality is only apparent, since if ve calls itself in this way, it is really @y ¢
being called.

It turns out that if we keep the self-referentiality and delete the p operator, we will still
get the full strength of ve. To see this, use just the primitive recursive names. Our intent
is that the wild card W will denote ve, and the other wild cards denote the identically
zero function. To do this formally, define a Vecomputation as follows. A Vcomputation
is still a finite rooted ordered tree, where each node N = (A, #,v) in the tree is a search
node, but now we demand that A be only a primitive recursive name. The requirements
on N are then exactly as in §2.5, except in the case where A is of the form W}. Then,

11

unless n = 2 and j = 0, we require that N be a leaf and v = 0. If n = 2 and 5 = 0,
we have N = (W§,(e,s),v). We then require that for some m,7,C,7: € = #7, 7 is an
m-ary primitive recursive name, ¢ is an m-tuple of numbers, s = #¢, C is a Vcomputation,
and v = #C. Note that this definition is not circular. In fact, if we define the predicate
T(e,s,C) to be true iff for some n, e = #\ for some n-ary primitive recursive name,
s = & for some ¥ € w", and C = #C, where where C is a Vcomputation whose root node
is of the form (A, ¥, y), then T is primitive recursive, since it can be defined by recursion on
C'. For each n, define T by: Tv"(e,f, C) = Tv(e,#f, C). Let o7 (¥) = U(uC T"(e,f, C));
so these @7 are all partial recursive.

In particular, we have the partial recursive function puC' T(e, s, ('), and the correspond-
ing (non-recursive) total function, ve(e, s) = 4C T(e, s,C'), which is an abstract version of
Nqthm V&C$. The following theorem says that ve has the full non-constructivity of ve.

2.10.1. Theorem.
a. If f € (w" L5 w) is partial recursive, then for some ¢ € w, f = @7,
b. Every function in PRK is primitive recursive in ve.
Proof. To prove (a), use the fact that the ¢, satisfy the Recursion Theorem (by the
same proof as in §2.9), and are closed under primitive recursion. Then, in particular, every
r.e. set is of the form {s: ve(e, s) # 0} for some e, from which (b) follows easily. m

3. PRIMITIVE RECURSIVE ARITHMETIC

63.1 PRA. As already noted in the Introduction, PRA does not use quantifiers,
although the semantics and proof rules are as if all variables are universally quantified.
Thus, the theorems of PRA will all be universally valid statements about primitive recur-
sive functions, such as

r£O0Naxy=a*xz = y=z

We now spell out a precise definition of PRA.

Basic Syntax: There is a constant symbol 0, and for each primitive recursive name 7
of arity n, we have a function symbol, F}., of arity n. There is also a countably infinite set
of variable symbols. Using 0, variables, and function symbols, we form terms. An atomic
formula is an expression of the form a = [, where o, are terms. We build formulas
from atomic formulas and propositional connectives. There are no quantifiers. We use S
to abbreviate the function symbol for the successor function, Fgi. We are using «, 3,7, 9
for terms of PRA, and, as before, A, 7,0 for the names for primitive recursive functions.
We use ¢, for formulas. Letters like x,y, 2z will be used for the variable symbols in the
logic. ¢(a/x) denotes the formula obtained by replacing all occurrences of = in ¢ by «.

We call a formula ¢ absolutely valid iff it is universally valid in all models; infor-
mally, this means that its validity can be established by reasoning about =, without
regard to the intended meaning of 0 or the F.. For example, any formula of the form
(a = 0) = (¢plajx) & ¢(B/x)) is absolutely valid, as is any propositional tautology.
Note that absolute validity is a primitive recursively decidable property of ¢, since it can
be tested by seeing if ¢ is valid in all models of a finite size bounded by an exponential
function of the size of ¢.

12

Axioms: ¢ is a logical aziom whenever ¢ is absolutely valid. For each primitive
recursive name A, we have definitional azioms corresponding to the definition of @ y:

A=S5": S(2)#0; S(x)=Sy)=r=y

A=17 Fx(zo,...,Tpn-1) =
N=Z": F\(7)=0
A=Ch(o,m,....,mm): FA(&) = F,(Fr (7)... Fr (¥))
A= Poy7): FA(7,0) = Eo(i) 5 Fx(7,S(9)) = F(,9, Ex(7,)

Proof Rules: = ¢ means that ¢ is provable in PRA. The provable formulas are the
least set of formulas containing all the axioms and closed under the following rules of
inference:

1. Modus Ponens: If F ¢ = ¢ and - ¢ then F .

2. Substitution: If - ¢ then F o(a/x).

3. Induction: If F ¢(0/x) and F (¢ = ¢(S(x)/x)) then F ¢.
Equivalently, we may say F ¢ iff there is a formal proof of ¢, where a formal proof is a
finite list of formulas ¢q, ..., ¢,, where ¢, is ¢, and each ¢; is either an axiom or follows
from earlier formulas on the list by one of the proof rules.

Note that the F,, for various 7, are just distinct function symbols. PRA does not
contain any mechanism for quantifying over the 7.

Most formalizations of PRA in the literature ([9]) do not take all the absolutely valid
formulas as axioms, but rather use some more low-level axiomatization, from which all the
absolutely valid formulas can be derived. In their “official” explanation of their basic logic
([3], Chapter 4), Boyer and Moore describe such a low-level axiomatization, but this is
irrelevant to the actual implementation of Nqthm, which employs an algorithm to detect
something like our absolutely valid formulas and rewrite them to true; in addition, it
also rewrites to true statements about + which are valid by “linear arithmetic”, such as
e =fly) = 2+ (2 +3) = (1+ fly)) +4 (see [5], §11.1.4).

We may introduce some abbreviations, so that the theory looks more like conventional
mathematics. We have already introduced S. If PLUS and TIMES are the specific
names described in §2.4, we let o + [abbreviate Fprys(a,) and let o % 3 abbreviate
Frives(a,). Applying the axioms for the identity and zero functions, we have the usual
recursive axioms for 4+ and *:

z+0=x; z+Sy) =95 +y)
r+x0=0; x+S(y)=ax*xy+ua

For example, since PLUS is really P?(I},C3(S1,I3)). we derive 2 + S(y) = S(z + y) as

follows. First derive:

x4+ 5(y) = Fessr (9,2 +y) (1)
Fesesi mzy(vy, 0 +y) = S(Fpz(a,y,¢ +y)) (¢2)
Frs(e,y,e+y) =2 +y (¢3)

13

¢1 1s a definitional axiom, and ¢35, ¢3 follows from definitional axioms by substitution.
We now apply modus ponens three times with the (absolutely valid) logical axiom (¢1 =
(6 = (65 = (v + S(y) = S(z +9))).

Using the axioms about +, %, plus induction, all the basic facts about 4+, * (such as the
associative, commutative, and distributive laws) may be derived; see [9, 5]. Likewise, we
may let @ < y abbreviate Fy(x,y) = S(0), where A is some standard name for the definition
of the < predicate (actually, function — see §2.4). Likewise, introduce abbreviations « > vy,
r >y, r—y, etc.

Call a formula pure iff it is built using only the F) for A a pure primitive recursive
name (see §2.1). Let PRAg be PRA restricted to pure formulas. The usual definition of
PRA [9] is actually our PRAy. However, our PRA is a conservative extension of PRAy,
since our axioms say nothing at all about the value of the wild cards. Formally,

3.1.1. Lemma. If ¢ is a pure formula and is provable in PRA, then it is provable in

PRA,.

Allowing wild cards is useful because it enables us to prove, within PRA, general
statements which apply to every function. In fact, under the natural interpretation, these
statements may be thought of as applying to all functions from w to w, and hence, by
suitable encoding, all real numbers. Thus, for example, some theorems of real analysis,
such as Va > 0[sin(x) < z] are theorems of PRA, and hence essentially finitistic. We are
really proving results about primitive recursive functionals (see §2.6).

A generalization of Lemma 3.1.1 is also useful for proving theorem schemas, which
then may be specialized to specific functions. To formalize this idea, call a retraction any
map p which assigns to each wild card W' a pure primitive recursive name, (W]”),o. Then,
in the natural way, we define (¢)p whenever ¢ is a formula. The following is easily proved
by induction on derivations:

3.1.2. Lemma. Let ¢,¢1,...,%, be formulas, and suppose one can derive ¢ in
PRA by using ¥1,...,%, as additional axioms. Let p any retraction such that each of
(¥1)p, ..., (tn)p is provable in PRAy. Then (¢)p is provable in PRA,.

As an example of Lemma 3.1.2, we may formalize the following general argument,
which at first sight seems second order: Given any f any function on w, we may let g(n)
be the largest @ < n such that g(x) < n; set g(n) = 0 if there is no such n. Assume now
that f is increasing (v < y = f(x) < f(y)). Then we can prove some theorems about ¢;
for example, g is a left inverse of f (¢(f(x)) = x). In particular, these theorems now apply
to any specific f we choose. Common examples are obtained by letting f(x) = 2%, whence
g(n) = |logy(n)| when n > 0, or by letting f(z) = 2?, whence g(n) is the integer part of
Vn.

A version of Lemma 3.1.2 as a proof rule is implemented in Nqthm, through the
commands CONSTRAIN and FUNCTIONALLY-INSTANTIATE. See [3] for a detailed
discussion.

As a special case of Lemma 3.1.2, where ¢ is a pure formula:

3.1.3. Lemma. Let 9q,...,%, be formulas, and suppose there is some retraction
p such that each (¢1)p,...,(¢n)p is provable in PRAy. Then PRA U {¢1,...,¢,} is a

conservative extension of PRAg.

14

Now, using the same formalism, we may write natural axioms about a function which
are not satisfied by any primitive recursive function. For example (see below), one can
axiomatize the Ackermann function. This extension is not conservative, since it proves
CON(PRA).

First, some remarks on CON(PRA).

Each specific natural number k is denoted by a numeral "%k, where "0 is the symbol
0 and "k+1" abbreviates the term S("k™). Thus, "4 " abbreviates the term S(S(S(S(0)))).

By using Godel numbering, it is easy to formalize the syntar of PRA (including the
notion of “proof”) within PRA. In particular, one may express CON(PRA). We let PF
be a name for the characteristic function of the set of all (x,y) such that y is the Godel
number of a formula and z is the Godel number of a proof of y. If k is the Godel number
of the formula S(0) = 0, we can let CON(PRA) be the formula Fpp("k",y) = 0. Then
CON(PRA) is not provable in PRA; see [9] for an explanation of the Incompleteness
Theorem in the PRA(setting. Note that CON(PRAg) & CON(PRA) is provable in
PRA.

Every true ground pure statement (such as "374+747 = "77) is provable in PRA. This
does not hold for non-ground statements, such as CON(PRA). However, every provable
statement is true, whether or not it is ground; in particular, PRA is clearly consistent.
This remark can obviously be formalized in ZF set theory, but in fact can be formalized
in much weaker theories. All we really need is for the theory to contain some enumerating
function of the primitive recursive functions. In particular, it is easy to prove CON(PRA)
in HA, or even in some extension of PRA which axiomatizes such an enumerating function.

In fact, it is enough to add the Ackermann function, since that will give us an enumer-
ating function. Let PRA' be formed from PRA by adding a definition for the Ackermann
function. Formally, we shall use the first binary wild card to denote this function. So, use
A to abbreviate ng, and let PRA’ be PRA plus the axioms

A(0,y)="1"

A("170) =27

x>"27T= A(x,0) = a4 2"

(x>0ANy >0)= A(z,y) = A(A(x ="1 N y),y="1T)

Now, one may define an enumerating function for the primitive recursive functions which
is primitive recursive in the Ackermann function, proving:

3.1.4. Lemma. PRA'+ CON(PRA).

Further details of the proof are given below. Now, PRA' is a rather ad hoc extension of
PRA, since there is no particular reason for singling out the Ackermann function. Clearly
this is a part of something more general, but there are various candidates for what that
“something” is.

One possibility would be to formalize double recursions in general. These may be
viewed as recursion on the ordinal w?, and one could even go up to recursions on €. Many
constructivists would accept these extensions as constructive (see the Introduction), but
we do not dwell on these here, as we have discussed them elsewhere [13].

Another candidate is to formalize the p operator. This also seems natural, but it is
definitely not constructive. We take this up in the next section.

15

2

We remark here that induction on w” or even w” is completely within PRA. That is,

3.1.5. Lemma. Within PRA or PRA', suppose ¢(x,y) is a formula, and f(z,y),
g(x,y) are function, and we can prove

_‘Qb(xvy) = (f(l’,y),g(l‘,y)) <lew (xvy) A ﬁqb(f(x,y),g(x,y)))

where <., denotes lexical order on pairs. Then we can prove ¢(z,y).

Proof. First, by ordinary primitive recursion, define h(x,y) to be the least y' < y
such that —¢(x,y’) if there is such a y' (and, say, 0 otherwise). Then —¢(x,y) implies
“6(f (bl y). gl h(r.y)) and f(z.h(z,y)) < o so that Gz.y) can be proved by

ordinary induction. m

Proof of Lemma 3.1.4. First, arguing within PRA, define T~ (e, s,C) to be equal
to 1 (i.e., true) unless e is a Goédel number of some n-ary pure primitive recursive name
and s is the Godel number of an n-tuple of numbers, in which case T (e, s, C) is equal
to the Kleene T predicate, T(e, s, C'). Informally, it is true that Ves3CT (e, s,C), but we
cannot prove (or even say) this in PRA.

Now, within PRA’, define a diagonal function,

D(e,s) = pC < A(s+5,e+5) (T (e,s,C))

Here, the i is the bounded p operator — that is, uC' < b(C') returns b if there isno C < b
such that ¢(C). This operator is primitive recursive, so that we indeed can define D in
PRA'. But now, we argue by double induction on e, s (see Lemma 3.1.5) and prove that
indeed

Ves(D(e,s) < A(s + 5,e+5))

We can then define diag(e,s) = U(D(e, s)), use this to define a truth predicate for PRA
formulas, and then carry out the argument indicated above that every statement provable
from PRA is true. m

§3.2. Formalizing the p operator. For each primitive recursive function f(x,y),
there is a natural way to axiomatize the behavior of the function pyf(z,y). Since this
is a partial function, the logic will be simpler if we replace the 1 by 0, so we are really
axiomatizing fyf(x,y). This way, we stay within the simple logical framework of PRA,
proving universal validities about natural numbers, but we create a stronger theory, which
shall call PRA*. Now, among these primitive recursive functions is the Kleene T function
(predicate); applying /i to that will give us the power to prove theorems about computa-
tions from arbitrary names for recursive functions. As a special case, one can define the
Ackermann function, so that PRA* will be an extension of PRA'.

One way to formalize /i, in the spirit of §3.1, would be to choose a wild card W} for
each n-ary pure primitive recursive name and then to add axioms about W. However,
the choice of j would depend on some specific enumeration of these names. Since we have
already embedded the p operator in names anyway, it is equivalent, but slightly more
natural, to just use the simple names, as in §2.10.

16

So, PRA* has a function symbol F) for each simple name A. The proof rules are the
same as for PRA, with, of course, a slightly different set of terms. The logical axioms
are the same as those for PRA (with our new notion of term), plus the axiom for the
i operator; that is, whenever A is M"(7) (so 7 is then a primitive recursive name), we
formalize the definition of Wy by taking as axioms:

V

F\(Z) > 0= F.(,y)
FA(@)>0Ay>z= F (7, 2)
Fx(Z)=0AF (Z,0) =0= F/(Z,%2)

0
0
0

That is, if we say g(x) = fxf(x,y), then g(x) = 0 if there is no y such that f(x,y) # 0.
Note that it is also possible for g(z) to be 0 “honestly” — that is, f(x,0) # 0. This will
not cause a problem with the proof theory, since formal proofs can always branch on the
two cases: whether or not f(x,0) = 0.

Observe that in PRA*, we have added Skolem functions for PRA formulas, making
equation (2') of the Introduction into a theorem. More precisely, call a formula ¢ in the
language of PRA* primitive recursive iff ¢ is built using only the F)\ for A a primitive
recursive name. Then

3.2.1. Lemma. Suppose ¢(Z,y) is a primitive recursive formula. Then there is a
function symbol f such that

o(Ty) = (&, f(T))
is provable in PRA*.

We remark that the definition of ¥y would have made sense for all names, not just
simple ones, and we could have then postulated the above axioms for all names. However,
then the ¥y would have enumerated all arithmetical sets, and the corresponding axiomatic
theory would have been equivalent to PA; in fact, it would be what you would get by
Skolemizing PA in the obvious way. Our system PRA* is strictly weaker than PA, since
PAFCON(PRAY).

Next, we show how to formalize double recursions in PRA*. We focus specifically on
the Ackermann function (which will show that PRA’ is contained in PRA*), but we do
not use any specific features about the Ackermann function (such as the fact that its graph
is primitive recursive).

3.2.2. Lemma. There is a 2-ary simple name A such that if we use A to abbreviate
F, the PRA’ axioms about A (see §3.1) are provable in PRA*.

Proof. First note that the Recursion Theorem has a non-vacuous content even within
PRA. That is, within PRA, one may talk about Godel numbers for arbitrary partial
recursive functions, and define the function SUB. We may thus trace out the argument
in Theorem 2.9.1 to come up with a Godel number e for a simple name \ such that 2
“should” be the Ackermann function.

Within PRA, we cannot prove (or even say) that Vay3dC T?(e,x,y,C). However, in
PRA*, we can first of all state this (using our Skolem functions, by Lemma 3.2.1), and

17

then prove it by double induction on (y,), which works in PRA* as it does in PRA (see
Lemma 3.1.5). m

Besides proving functions such as A are defined, we can also prove functions are not

defined. For example, if LOOP and SLOOP are as in §2.4, then in PRA* one may prove
Froop() =0 and Fsroop() ="1".

Arguing in ZF (or even in PA), PRA* is obviously consistent, since it has a natural
model with domain of discourse w. Observe that an attempt to prove CON(PRA*) within
PRA* along the lines of Lemma 3.1.4 fails. Within PRA*, we may formalize vc(e, s) and
apply(e, s) (see the discussion in §2.10). These appear to be self-referential, since e may
be any Godel number of a simple name. However, this is misleading, since if the name
involves the 11 operator, apply(e, #&) can differ from the actual value, .(Z). One cannot

define ¢ (#) within PRA*.

§4. NQTHM

§4.1. Basics. Proof theories such as PRA and its variants could obviously be
implemented on the computer, but the naive implementations of these would be very
awkward to use. There are a number of complexities in Nqthm which make it easy to use
in practice, but which also make it difficult to pin down its proof-theoretic strength. We
mention a few of these here, in an attempt to connect the theory with the practice. In
some cases, this is fairly straightforward, but the semantics of V&C$ and EVAL$ is a bit
more obscure.

We begin with the more straightforward complexities.

Nqgthm does not actually have a fixed pre-existing symbol for each possible primitive
recursive function. Rather, it allows one to use primitive recursion to introduce new
symbolic names as they are needed. As a result, it does not include all the axioms of PRA
when it is booted up, as we seemed to indicate in §3. Rather, the axioms grow as the
user adds primitive recursive definitions. For example, a typical numeric definition is the
primitive recursive function euclid(x,y), which implements the Euclidean Algorithm. It
returns ged(x,y) when 0 < @ < y, and 0 otherwise

(defn euclid (x y)
(if (not (and (lessp 0 x) (lessp x y))) 0
(if (equal (remainder y x) 0) x
(euclid (remainder y x) x))))

When the user enters this expression, the axioms for this primitive recursive definition of
euclid are added to the database of axioms. More precisely, Nqthm maintains a symbol
table, on which EUCLID is stored with FORMALS equal to the list (X Y) and with BODY equal
to (IF (NOT (AND (LESSP 0 X) ...))).

Note that this is not a “standard” basic primitive recursion as described in §2. Nqthm
accepts this definition because it can verify that in the computation of euclid(x,y), all
recursive calls will be of the form of euclid(z',y") with ¥’ < y (actually, ¢ = = < v,
since otherwise there is no recursive call). This is what is usually called a course-of-values

18

recursion, but, as is well-known [12], such recursions can be reduced to standard primitive
recursions.

Furthermore, Nqthm functions operate not only on natural numbers but also on Lisp
S-expressions. There is a built-in function, count, which measures the complexity of S-
expressions. If y is a natural number, then count(y) = y. In particular, Nqthm views
euclid(x,y) as being defined for all z,y, not just numbers. Thus, in accepting the function
euclid, it actually verified that in the computation of euclid(x,y), all recursive calls would
be of the form of euclid(z',y") with count(y’) < count(y). For this particular function, this
adds nothing new, since the condition (lessp x y) implies that y is a number. However,
all the standard Lisp-style recursions on complexity of S-expressions are also justified in
Nqgthm as recursions on count. It is easy to see that if one Godel numbers S-expressions
in some standard way, then any recursion on count can be justified as a course-of-values
recursion, so that such recursions are still all part of PRA.

So far, the features described give us a system equivalent to PRA. As mentioned in
the Introduction, the two features which go beyond PRA are the facility for recursion on
the ordinal ¢y and the facility for self-referential definitions.

Ordinal recursion on Nqthm has been discussed in detail elsewhere [13], and in any
case, by Gentzen [7], there was never any doubt that this feature went beyond PRA. The
use or non-use of this feature is easy to document; if the source file does not contain the
word ORD-LESSP, then ordinal recursion is never invoked.

The self-referential feature is implemented through a number of functions: V&C$, v&C-
APPLY$, APPLY$, EVAL$, and FOR. These functions are described in [5], and in more detail
in [4]. There is no discussion there of the p operator; rather the informal motivation of
V&C$ is an attempt to formalize an interpreter for the logic. Formally, this motivation
is circular, since the interpreter evaluates expressions built from V&C$, and of course,
by Tarski’s theorem, a system which can define its own truth predicate is inconsistent.
However, in the formal analysis, one can ignore the motivation and work from the explicit
axiomatization for V&C$ and related functions given in [5]. In the notation of §2.10, Nqthm
appears to avoid an inconsistency because it formalizes the theory of something like ¥y ¢,
which can talk about the evaluation of @y ¢, not ¥y .

Ideally, one should do two things now:

1. Show that every theorem of PRA* can indeed be proved on Nqthm without using
ordinal recursion.
2. Show that every theorem proved on Nqthm without using ordinal recursion can also
be proved in PRA*.
In fact, we shall do neither, formally, although we shall present an informal argument for
both of these. The deductive mechanism in Nqthm is fairly complex, even without the use
of V&C$. Nqthm does not actually output a proof in some standard formal logic, but rather
it simply announces that a theorem has been proved; this announcement is accompanied by
an English explanation, but sometimes the explanation is simply that some complex term
has been rewritten to T (true). Furthermore, verifications for statements involving V&C$
often are obtained by rewriting via internal routines such as REWNRITE-V&C-APPLY$, which
are not even documented in [5]. Thus, lacking a formal statement of the actual reduction
mechanism, it seems hopeless to attempt to prove (1) or (2) formally here, or even to

19

prove that Nqthm is consistent. Because of its complexities, even given a formalization of
Nqgthm, any formal analysis would probably require the assistance of automated reasoning
techniques.

Even informally, our argument involves a few tricks. Nqthm does not have any con-
struct directly analogous to the p operator, so we cannot make a direct translation to
PRA*. However, Nqthm has V&C$, which is roughly analogous to our ve (see §2.10), and
this should be sufficient to capture all the non-constructivity in PRA* by Theorem 2.10.1.
We consider first the similarities between ve and V&C$, and then the differences.

In our ve(e, s), e encodes a name of a function and s encodes the arguments to the
function. The Nqthm V&C$ also inputs a name and arguments. The axioms for V&C$ spell
out how an expression is to be evaluated, and V&C$ is axiomatized to return the atom F
if the evaluation fails to terminate. A user-defined function, such as the euclid above, is
evaluated by evaluating the BODY of the expression; this guarantees that purely primitive
recursive expressions get evaluated correctly.

A minor difference is in the form of the output. Our ve returns an actual computation,
which encodes in particular the value returned. In Nqthm, there is no formal notion of
“computation”, and V&C$ returns just a (VALUE . COST) pair, where COST is a number
which measures in some way the number of steps such a computation would take. However,
under any reasonable formal definition, a computation would be obtained in a primitive
recursive way from the cost and the arguments.

A more important difference is in the form of the input. Since there is no p operator,
one cannot simply input a name for a partial recursive function. However, one can name
partial recursive functions via self-referential definitions. As a trivial example, in Nqthm
we cannot simply write a name for a 0-ary function ¢() which never halts, as we did
with LOOP in §2.4; there, we said, essentially, g() = py(false). However, in Nqthm,
we can formalize the Liar Paradox (“this statement is false”) by defining g() = 1= g¢(),
which guarantees that ¢() is undefined. More generally, if ¢ is a given predicate and we
wanted to define f(x) = py é(x,y), we could instead define f recursively by saying that
f(z) = h(x,0), where h(x,y) = 0 if ¢(z,y), and h(x,y) = h(x,y + 1) + 1 otherwise. As
described in Kleene [12], the use of such recursive schemas is an alternate way of obtaining
all the partial recursive functions, so that we can in fact in this way name every partial
recursive function.

Now, Nqthm will not accept a self-referential definition, such as

(defn liar () (not (liar)))
since the recursion is not well-founded, but the BODY of a function can call V&C$ or EVALS,
which in turn can be fed some construct using names of functions; this is not even viewed
as a recursion at all. Since these names may include V&C$, it appears that Theorem 2.10.1
applies to show that one can define every partial recursive function in this way. More
simply, however, as described in [5], there is a built-in hack with EVAL$ which enables one
to define a function whose BODY explicitly calls that function. This does not come out in
the axioms for EVAL$ (which appear to be a standard primitive recursion from V&C$), but
rather in the axioms for the computation of BODY. Thus, one can define:

(defn liar () (eval$ T ’(not (liar)) NIL))

Now, LIAR is stored in Nqthm’s symbol table with BODY equal to (NOT (LIAR)); and from

20

this one may prove in Nqthm that this function never halts. This function is discussed in
[5], but for some reason is called RUSSELL there. Actually, the non-halting is due just to
the self-referentiality, not the liar paradox. With:

(defn selfref () (eval$ T ’(selfref) NIL))
one can prove in Nqthm that this function never halts either, since by the axioms for V&C$,
the cost of evaluating (selfref) must be one more than the cost of evaluating (selfref).
For further examples, see [5], along with §4.2, where we show explicitly how to encode the
1t operator and define the Ackermann function.

Returning to items (1) (2) above: (1) holds (presumably) because one can, within
Nqthm, use V&C$ to derive the axioms for the [i operator applied to any primitive recursive
function. (2) holds (presumably) because one can justify any self-referential definition
obtained with EVAL$ and V&C$ by the First Recursion Theorem, as we described in §2.9
and §3.2.

§4.2. A Script. We constructed a short (31KB) Nqthm script, available by email
from the author, which illustrates some of the ideas in §4.1 with three items.

Item 1: A simple abstract example, corresponding to Lemma 3.1.5, that one may
formalize double inductions (that is, inductions on w?) in PRA. Rather than use the
built-in Ngqthm definition of ordinal, which is a little more complex, we defined our own
notion of “ordinal below w?” to be just an ordered pair of numbers (z,y) (representing
w -2+ y) and defined the order, which is just lexorder:

(defn ordp (p) (and
(1istp p)
(numberp (car p))
(numberp (cdr p))))
(defn lexp (pl p2) (or
(lessp (car pl) (car p2))
(and (equal (car pl) (car p2)) (lessp (cdr pl) (cdr p2)))))

We now considered an abstract property,) on our w?, and assumed it was inductive, in

the sense that V(-Q(F) = Ja < f-Q(«a)). Of course, to even say this in Nqthm, we
need to postulate a function, ¢, which returns the o as g(3). So, we had:

(del Q (p))
(del g (p))
(add-axiom Q-induction (rewrite) (implies
(and (ordp p) (mot (Q p)))
(and (ordp (g p)) (lexp (g p) p) (not (Q (g p))))))

Then, after about 100 lines of intermediate lemmas, corresponding to the proof of our
Lemma 3.1.5, we got:

(prove-lemma Q-is-true (rewrite) (implies (ordp p) (Q p)))

Of course, the point here is that we did this by using only those features of Nqthm which
stay within PRA; we did not use the self-referential features of Nqthm (EVAL$, V&C$, etc.),
or ORD-LESSP (which enables ordinal recursion and induction).

21

Item2: We used EVAL$ and V&C$, but not ORD-LESSP, and defined the Ackermann
function (using the definition in §2.9). We feel our method is general enough to implement
other such double recursions.

Of course, the goal here is not just to define a function named “Ackermann”. but
prove that it works — that is, that it satisfies the definition given above. So, we wound up
proving:

(prove-lemma ackermann-works (rewrite) (equal (ackermann x y)

(if (zerop x) 1
(if (zerop y) (if (equal x 1) 2 (plus x 2))
(ackermann (ackermann (subl x) y) (subl y))))))

To do this, we used three main tricks.

First trick: We found it a bit awkward to deal with the built-in V&C$, which is axiom-
atized to return a (value . cost) pair (or F if the computation fails to halt). In our
intended application, the cost is irrelevant, so we defined a function qval (quick valuation)
which reset the cost to O:

(defn reset (x) (if x (cons (car x) 0) F))
(defn gval (term va) (reset (v&c$ T term va)))

We then proved a sequence of lemmas showing that qval satisfies the axioms corresponding
to the built-in axioms about V&C$ (see [5], §4.10.2). For example, the following lemma
explains how to evaluate an if statement. It is somewhat simpler for qval than for V&C$,
since we do not have to compute the cost:

(prove-lemma qval-if (rewrite) (equal
(gval (list ’if test thencase elsecase) va)

(if (qval test va) ; if evaluation of test halts
(if (car (qval test va)) ; if test is true
(qval thencase va) ; then evaluate the thencase
(gval elsecase va)) ; else evaluate the elsecase
F)))

This lemma, and a few others in our script, were greatly aided by the built-in Nqthm
routines REWRITE-V&C-APPLY$ and REWRITE-CAR-V&C-APPLY$. These are not documented
in [5], but have the effect of letting Nqthm see unaided that V&C$ does the “right thing”
when applied to ordinary primitive recursive functions.

Second trick: As described in §4.1, we used the hack with EVAL$ to define ack, a first
approximation to the Ackermann function, as follows:

(defn base (x y) (or (zerop x) (zerop y)))
(defn base-fn (x y) (if (zerop y) (row0 x) 1))
(defn ack (x y) (eval$ T
’(if (base x y) (base-fn x y)
(ack (ack (subl x) y) (subl y)))
(1ist (comns ’x x) (cons ’y y))))

Now, this definition doesn’t guarantee that ack “works”. It only guarantees that ack is
stored in Nqthm’s symbol table with BODY equal to the quoted expression,

22

’(if (base x y) (base-fn x y)
(ack (ack (subl x) y) (subl y)))

This in turn guarantees that (qval ’(ack x y) va) will attempt to evaluate this BODY.
We still have to prove something about how this body is evaluated, which requires analyzing
its syntactic form. We used the functions base and base-fn to make this form as short as
possible, and to isolate the base case, which is the non-problematic part of the definition.
Our official definition of the function ackermann is:

(defn assn (valx valy) (list (cons ’x valx) (coms ’y valy)))
(defn A (valx valy) (qval ’(ack x y) (assn valx valy)))
(defn ackermann (valx valy) (car (A valx valy)))

That is, the function A should return a (value . 0) pair, and then ackermann is the car
of this pair.

Third trick: Of course, the second trick could be applied to any self-referential defini-
tion. There are other such self-referential definitions which in fact define total functions,
but for which this totality is not provable in PA (or, even in ZF). In the case at hand,
the lemma ackermann-works requires a double induction on the pair (y,z), and we use
the method of Item 1 for formalizing such inductions without the use of ordinals.

Item 3. This illustrate the use of EVAL$ and V&C$ to implement the non-constructive
unbounded t operator. As of this writing, the twin prime conjecture is still open; this is the
statement that there are infinitely many numbers y such that y and y + 2 are both primes.
To keep the notation short, we defined primep in the obvious way, and then defined fpp(y)
to say that y is the first element of a twin prime pair:

(defn fpp (y) (and
(primep y)
(primep (addl (addl y)))))
Then, we defined a function next-twin-prime which, for each z, returns a y > x such
that fpp(y) if there exists such a y, and returns the atom F if there is no such y. We called
those = for which such a y exists “good”. For good x, we proved that next-twin-prime
returns what it should:

(prove-lemma properties-of-good (rewrite) (implies
(good x)
(and
(fpp (next-twin-prime x))
(lessp x (next-twin-prime x)))))

If = 1s not good, we proved that next-twin-prime returns F and there is no larger twin
prime pair:
(prove-lemma properties-of-bad-1 (rewrite) (implies
(not (good x))

(equal (next-twin-prime x) F)))
(prove-lemma properties-of-bad-2 (rewrite) (implies

(and (not (good x)) (lessp x y))
(not (fpp y))))

23

Since we did not settle the twin prime conjecture, this set of lemmas is non-constructive.
The actual definition of next-twin-prime was:

(defn ntp (x) (eval$ T
»(if (fpp (addl x)) (addl x) (ntp (addl x)))
(list (cons ’x x))))
(defn N (valx) (qval ’(ntp x) (list (coms ’x valx))))
(defn next-twin-prime (x) (if (good x) (car (N x)) F))
(defn good (x) (and
(fpp (car (N x)))
(lessp x (car (N x)))))
Thus, we first used the EVAL$ hack, as with the Ackermann function, but here, as described
at the end of §4.1, to explicitly name a use of the y operator; that is, ntp(z) = py (y > @ A
frp(y)). Then, we used qval to get next-twin-prime from ntp in the same way that we
got Ackermann from ack.

5. CONCLUSION

In this paper, we have analyzed the non-constructive self-referential features in the
Boyer-Moore system of “computational logic”. The question now arises as to why they
are there at all. Perhaps they should be deleted. Some readers may consider it to be
merely a philosophical quibble whether the proof theory is constructive. However, one
of the main uses of Nqthm has been to prove correctness assertions about hardware and
software. It seems unlikely that a practical statement about physical reality could re-
quire non-constructive means for its proof. Now, the practical uses of the self-referential
features are all constructive. One use of EVAL$, as described in [5], allows one to define
functions which take (a name for) a function as input (as one does in Lisp), and to prove
general theorems about these functions. However, these uses can be obtained just as well
through the constructive commands CONSTRAIN and FUNCTIONALLY-INSTANTIATE (see [3],
or Lemma 3.1.2 and the following discussion). Another use in verification is to implement
an embedded interpreter (see, e.g., [6]). However, these uses would be obtained if EVAL$
were restricted to apply to primitive recursive functions. Thus, Nqthm could be modified
to be purely constructive without diminishing its practical usefulness.

Of course, there is a mathematical interest in non-constructive systems, and in par-
ticular in talking about unbounded searches through the natural numbers. In fact, the
original motivation of Boyer and Moore, as described in [5], was not to formalize PRA
at all ([5] never mentions PRA). However, one might then argue for a more straightfor-
ward implementation of PRA* or a stronger theory, where the unbounded p operator is
explicit; something of this nature has already been done as a modification of Nqthm by
Kaufmann [10].

The full strength of Nqthm has not really been clear even to the community of users
of the system, and the script described in §4.2 managed to hack Nqthm to produce results
beyond what was commonly expected to be possible. Although hacking can be fun, users
will tend to have more confidence in a system if its semantics is clearly visible on the
surface.

24

1]

[16]
[17]

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.

M. L. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985

R. S. Boyer, D. Goldschlag, M. Kaufmann, and J S. Moore, Functional Instantiation in
First Order Logic, in Artificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John MecCarthy, V. Lifschitz, ed., Academic Press, 1991, pp. 7 —
26.

R. S. Boyer and J S. Moore, The Addition of Bounded Quantification and Partial
Functions to a Computational Logic and its Theorem Prover J. Automated Reasoning,
4(1988) 117 — 172.

R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press, 1988.
B. C. Brock and W. A. Hunt, An Overview of the Formal Specification and Ver-
ification of the FM9001 Microprocessor, preprint, currently available on WWW at
http://www.cli.com/hardware/fm9001.html.

G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische An-
nalen 112 (493 — 565) 1936.

K. Godel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines Math-
ematischen Kolloquiums 4 (1933) 34 — 38, reprinted in Feferman, Dawson, Kleene,
Moore, Solovay, and van Heijenoort, Kurt Godel Collected Works, Volume 1, Oxford
University Press, 1986.

R. L. Goodstein, Recursive Number Theory, North-Holland 1964.

M. Kaufmann, An Extension of the Boyer-Moore Theorem Prover to Support First-
Order Quantification, J. Automated Reasoning, 9 (1992) 355 — 372.

J. Ketonen and R. Solovay, Rapidly Growing Ramsey Functions, Annals of Math 113
(1981) 267 — 314.

S. C. Kleene, Introduction to Metamathematics, Van Nostrand, 1952.

K. Kunen, A Ramsey Theorem in Boyer-Moore Logic, J. Automated Reasoning, to
appear.

J. Paris and L. Harrington, A Mathematical Incompleteness in Peano Arithmetic, in
Handbook of Mathematical Logic, J. Barwise, ed., North-Holland, 1978, pp. 1133 —
1142.

C. Parsons, On a Number-theoretic Choice Scheme and its Relation to Induction, in
Intuitionism and Proof Theory, Kino. Myhill, and Vessley, eds., North-Holland, pp.
459-473. See also JSL 37 (1972) 466 — 482.

W. Sieg, Fragments of Arithmetic, APAL 28 (1985) 33 - 71.

A. S. Troelstra, Constructivism in Mathematics, Volume 1, North-Holland, 1988.

25

