
Non�Constructive Computational Mathematics
Kenneth Kunen �

University of Wisconsin� Madison� WI ������ U�S�A�

kunen	cs�wisc�edu

August ��� ����

ABSTRACT

We describe a non�constructive extension to Primitive Recursive Arithmetic� both
abstractly� and as implemented on the Boyer�Moore prover� Abstractly� this
extension is obtained by adding the unbounded � operator applied to primitive
recursive functions� doing so� one can de�ne the Ackermann function and prove
the consistency of Primitive Recursive Arithmetic� The implementation does not
mention the � operator explicitly� but has the strength to de�ne the � operator
through the built�in functions EVAL� and V�C��

x�� INTRODUCTION

This paper is a mixture of theory and practice�
The theory begins with the notions of constructivism and �nitism in the philosophy

of mathematics� As with all philosophical notions� these cannot appear directly in a
mathematical theorem or a computer program� but they have been useful guides over the
past hundred years to discovering mathematical results� and more recently� to designing
computer implementations�

Informally� a constructivist only believes in objects for which there is an explicit con�
struction� in particular� a function de�nition is meaningful only if it is accompanied by
a procedure for computing values of the function� Axiom systems such as ZF �Zermelo�
Fraenkel set theory� are obviously non�constructive� but even the system PA �Peano Arith�
metic�� which deals only with natural numbers� is non�constructive� For example� if ��x� y�
is some property of x� y� constructivists would not assert that they could prove

�x��y��x� y� � �y���x� y�� �	�

unless they could de�ne a function f and prove that

�x���x� f�x�� � �y����x� y��� �
�

Note that �
� is equivalent to

�x� y���x� y�� ��x� f�x��
�

�
��

�
Author supported by NSF Grant CCR
�������� The author is grateful to R� S� Boyer for his explanations

of the Boyer
Moore prover�

	

and this equivalence is constructive if � is decidable� so we may view f as a Skolem function
for ��

Now� for a constructivist� �function� presumably means �recursive function� �by
Church
s Thesis�� However� it is easy to �nd even primitive recursive � such that no
total recursive f satis�es �
��� for these �� �	� would be false to a constructivist� However�
�	� is immediate from the law of the excluded middle in classical logic� so it is trivially
provable in PA� Furthermore� within PA� it is easy to de�ne a function f and prove �
���
just let f�x� be �y ��x� y� if �y��x� y� and � otherwise ��y ��x� y� denotes the least y such
that ��x� y��� A constructivist would simply not accept such a de�nition of a function� For
further discussion of constructivism� see Beeson �
� or Troelstra �	���

Kleene �	
� turned the above philosophical argument into a mathematical theorem�
The system HA �Heyting Arithmetic� is an attempt to formalize constructive number
theory� HA has exactly the same axioms as does PA� but allows only intuitionistic logic
in its proofs� By �	
�� �	� is not provable within HA unless one can produce a recursive f
and prove �
��� in particular� one can write down speci�c primitive recursive � for which
�	� is not provable in HA�

Now� �nitism is an extreme version of constructivism� HA and PA have the same
induction axiom�

���� � �x���x�� ��x � 	�� � �x��x� ���

Here� � is an arbitrary logical formula� A true �nitist would reject such an axiom� saying
that a formula which quanti�es over the in�nite set of natural numbers does not in general
have any meaning�

The logical system PRA �Primitive Recursive Arithmetic� is an attempt to formalize
�nitistic mathematics� PRA has a name for every primitive recursive function� g� and in�
cludes the recursive de�nition of g as an axiom� The logic of PRA does not explicitly write
quanti�ers� but universal quanti�cation is understood� so that the theorems of PRA are all
universally quanti�ed validities about primitive recursive functions� Without quanti�ers�
induction in PRA can be formalized as a proof rule� for each quanti�er�free ��

if � ���� and � ��x�� ��x � 	� then � ��x� ���

The book by Goodstein ��� develops PRA in quite a bit of detail� proving basic facts
about number theory� through the uniqueness of prime factorization� Also� via G�odel
numbering� one may prove within PRA most of the known mathematical theorems about
�nite structures� For example� one may prove Ramsey
s Theorem� along with all the basic
theorems on the structure of �nite groups and �elds� The papers by Parsons �	�� and Sieg
�	�� say more about the proof�theoretic strength of PRA�

Still� PRA is weaker than HA� For example� the Ackermann function is a well�
known recursive function which is not primitive recursive� So� this function cannot even
be mentioned in PRA� whereas it is easy to de�ne it and derive its basic properties in
HA� Furthermore� the statement CON�PRA� �that PRA is consistent� is easy to express
within PRA� and is provable in HA but not in PRA� That PRA � CON�PRA� follows by
G�odel
s Second Incompleteness Theorem� which applies to any theory such as PRA� HA�
or PA� But HA � CON�PRA�� since within HA� one may de�ne a recursive function

universal for primitive recursive functions� and then formalize the proof that all sentences
provable from PRA are true� Actually� this proof just uses a small piece of HA� If we
form PRA� by adding to PRA a name� A� for the Ackermann function� and the axioms
that A satis�es its usual de�nition� then PRA� � CON�PRA� �see Lemma ��	����

To show that HA is weaker than PA� one must refer to Kleene
s result� mentioned
above� that instances of �	� are not provable inHA� By the Incompleteness Theorem� PA �

CON�HA�� because PA � CON�PA� and� by another result of G�odel ���� CON�HA� 	
CON�PA� is provable in PA �and� in fact� in PRA��

Now� as already mentioned� �constructive� is a philosophical notion� not a mathe�
matical one� and hence need not be constrained by the speci�c formal rules of HA or any
other formal system� In particular� although HA � CON�HA�� there are two well�known
proofs of CON�HA� �equivalently� by ���� of CON�PA��� which many constructivists
would accept� Kleene
s �	
� proof by recursive realizability formalizes the intuition that
every statement provable from HA is constructively true� The other is due to Gentzen ����
Let PRA�� be obtained by adding to PRA induction and recursion on the ordinal ��� This
is clearly stronger than PRA�� since the Ackermann function can be de�ned by recursion
on �
� Gentzen showed that PRA�� � CON�PA�� Although PA proves statements �e�g��
versions of �	� above� which no constructivist would accept� many constructivists would
accept the use of ��� and hence Gentzen
s proof of CON�PA�� In fact� we see no reason
why there could not be a constructive proof of CON�ZF ��

Aside from �logic� results� Paris and Harrington �	�� describe a strengthening of Ram�
sey
s Theorem which is provably equivalent to CON�PA�� This is a simple combinatorial
statement which is provable in PRA��� but not in PA� A direct proof from PRA�� was
given by Ketonen and Solovay �		�� see �	�� for a simpler proof�

We turn now to practice� There are many computer systems available for verifying
proofs in mathematical logic� One of the most well known among these is the system
Nqthm� developed by Boyer and Moore ���� and described by them as a system of �com�
putational logic�� To �rst approximation� it is an implementation of PRA� It has been
used to verify statements about the correctness of hardware and software design� as well
as constructive theorems of pure mathematics�

Actually� Nqthm extends PRA in three important ways� First� it can verify theorems
about �nite symbolic expressions �Lisp S�expressions�� as well as theorems about natural
numbers� Second� it allows the de�nition of functions by recursion on the ordinal ��� and
proofs by induction on ��� Third� it includes a self�referential feature� so that one may talk
about the semantics of Nqthm within Nqthm itself�

Of these three extensions� the �rst is both the least important in theory and the most
important in practice� Allowing symbolic entities in the formalism is clearly inessential�
since one may simply code these entities by G�odel numbers� but it is also clear that a
practical veri�cation system could not rely on G�odel numbering� The other two extensions
are de�nitely essential� in that each of them separately allows Nqthm to prove statements
which are not provable in PRA� However� the applications of these extensions seem to
be primarily in pure mathematics� we know of no useful �to engineers� statements about
algorithms or digital circuits which go beyond PRA�

By the second extension� Nqthm really contains PRA��� The use of ordinals in Nqthm

�

itself was described in some detail in �	��� including a veri�cation on Nqthm of the Paris�
Harrington Ramsey theorem� Still� as pointed out above� this extension remains �con�
structive� in some sense�

Now� the third extension to Nqthm is not constructive at all� In this paper� we show
that this extension alone �without using the second extension� is stronger than had hitherto
been suspected� This extension is implemented through axioms about the non�recursive
functions EVAL� and V�C�� Although� Boyer and Moore ����� pointed out that the de�nition
of these functions is non�constructive� it it was not clear from ����� that the introduction of
these functions was in fact non�conservative over PRA � that is� using the axioms about
these functions� one could prove a universal validity about primitive recursive functions
which was not already provable in PRA�

The theoretical content of the third extension �without the second� is the system we
shall call PRA�� This is obtained by adding a function symbol f and equation �
�� above
for each primitive recursive predicate �� In PRA�� one can de�ne the Ackermann function
and prove CON�PRA�� In particular� PRA� is not conservative over PRA�

In x
� we make some preliminary remarks on recursion theory� and in x�� we discuss our
theoretical results about PRA and related systems� Actually� the relationship between the
theory �PRA�� and practice �EVAL� and V�C� in Nqthm� is not completely straightforward�
we discuss this further in x��

x�� REMARKS ON RECURSION THEORY

x���� Names� The partial recursive functions form the least class containing some
simple basic functions and closed under primitive recursion and the � operator� Following
Kleene �	
� �roughly�� each such function can be denoted by a name� which describes how
it was constructed� Formally� the names are those symbolic entities built by applying the
following rules� j� n�m all denote natural numbers�

Base names �Identity� Zero� Successor function� Wild cards��
	� Inj �j � n� is a name of arity n�

� Zn ��
 n� is a name of arity n�
�� S� has arity 	�
�� Wn

j �� � n� is a name of arity n�
Compound names �Composition� Primitive recursion� Mu operator��
�� Cn

m��� 	��

 � 	m� is a name of arity n whenever n � �� m � 	� each 	i is a name
of arity n� and � is a name of arity m�

�� Pn��� 	 � is a name of arity n whenever n � 	� � is a name of arity n� 	� and 	
is a name of arity n� 	�

�� Mn�	 � is a name of arity n whenever n � � and 	 is a name of arity n� 	�
Note that the superscript denotes the arity of a name� which is always a natural number�
We shall sometimes need some special kinds of names� speci�cally�

 Primitive recursive names are those built just using rules 	 � ��

 Pure names are those built using just rules 	 � � and � � ��

 Simple names are those pure names built using rules 	 � �� but containing at most
one symbol of the type Mn�

�

The primitive recursive names are used to name the primitive recursive functions� which
can be de�ned without the use of the � operator� The Kleene Normal Form Theorem �see
Theorem
���	 below� says that every partial recursive function can be named by a simple
name� The wild cards are used primarily to describe relative computability� that is� the
computation of one function� using another as an oracle� Actually� the class of pure names
is just a minor convenience� since whenever we are not discussing relative computability�
we could just as well allow the wild cards� but interpret them all to be the identically zero
function�

x���� Partial functions� If n � �� ��n���� is the set of all functions from �n into ��
and ��n P���� is the set of all functions from �n into ��f�g� So� ��n���� � ��n P�����

If f � ��n P����� we think of f as a partial function� and let dom�f� � f�x � �n �
f��x� �� �g� we also extend f to a function on �� � f�g�n by saying that f��x� � �
whenever some component of �x is �� To motivate this convention� think of f as being
obtained by a computer program which expects n input values and attempts to output a
value� Then� f��x� � � means that the computation doesn
t halt� An input of � means
that the input never arrives� so that f certainly doesn
t halt� These conventions are useful
when discussing compositions of functions� where the input to f is the output of another
function�

If n � �� we think of a program which expects no input� so it just computes a number�
if it halts� That motivates the de�nitions� ������� � � and ��� P���� � � � f�g�

���� What the names name� An oracle is an indexed family� F � ffnj � j � ��
� � n � �g� of total functions� with fnj � ��n����� such that all but �nitely many of the

fnj are identically zero� �
F
� � ��n P���� is de�ned as follows whenever
 is a name with

arity n and F is an oracle��

 � Inj � �

F
� ��x� � xj �

 � Zn� �F� ��x� � ��

 � S�� �F� �x� � x � 	�

 �Wn
j � �

F
� ��x� � fnj ��x�

 � Cn
m��� 	��

 � 	m�� �

F
� ��x� � �

F
� ��

F
��
��x��

 ��F�m ��x���

 � Pn��� 	 �� �F� ��x� �� � �
F
� ��x�� �

F
� ��x� y � 	� � �

F
� ��x� y��

F
� ��x� y���

 �Mn�	 �� �F� ��x� � y � � i� �F� ��x� y� � �nf�g and for all z � y� �F� ��x� z� � ��

�F� ��x� � � if there is no such y�
If each fnj is the identically zero function� we write �� for �

F
� � If f � ��m����� we write

�f� for �
F
� � where f

m
� � f � and the other fnj are identically zero� Likewise de�ne �

f�g

�

when f � ��m���� and g � ��k�����

g � ��n P���� is partial recursive in F i� g � �F� for some n�ary name
� g is total
recursive �or just recursive� in F i� g is partial recursive in F and g is total �that is�
g � ��n������ g is primitive recursive in F i� g � �F� for some n�ary primitive recursive
name
�

�

���� Speci�c examples� We show here that some standard functions are primitive
recursive by our de�nition�

The constant function
 of three variables is named by C�
� �S

�� C�
��S

�� Z����

Addition is de�ned by

x � � � h�x� � x � �y � 	� � g�x� y� �x � y�� �

where h�x� � x and g�x� y� z� � z � 	 so � � �PLUS � where PLUS is the name
P
�I�� � C

�
��S

�� I�
 ���

Multiplication is de�ned by

x � � � h�x� � x � �y � 	� � g�x� y� �x � y�� �

where h�x� � � and g�x� y� z� � x � z� So� � � �TIMES� where TIMES is
P
�Z�� C�

�PLUS� I
�
� � I

�

 ��� or P

�Z�� C�

�P

�I�� � C
�
� �S

�� I�
 ��� I
�
� � I

�

 ��� Likewise� if FACT

is the name P ��C�
� �S

�� Z��� C

 �TIMES�C

� �S
�� I
� �� I

� ��� then the factorial function is

�FACT �

Other useful functions are sgn�x� �the smaller of x and 	�� given by the name
P ��Z�� C

��S
�� Z
��� and x ��y �the larger of � and x � y�� given by the name

P
�I�� � C
�
��P

��Z�� I
� �� I
�

 ��� One can then de�ne max�x� y� � x � �y ��x� and min�x� y� �

y �� �y ��x��

When we consider predicates� we follow the usual convention in computer program�
ming and identify the number � with false and all positive numbers with true� Note that
the � operator was de�ned with this convention in mind�

It is also conventional that 	 is the �primary� true value� to be returned by �intended�
booleans� For example� the � predicate �actually� function� is de�ned by LT �x� y� �
sgn�y ��x�� The propositional connectives are de�ned by� or�x� y� � sgn�x � y� and
not�x� � 	 ��x� other ones are combinations of these�

Using the � operator� it is easy to write names for non�total functions� For example� let
LOOP be the ��ary nameM��Z��� and let SLOOP be is its �successor�� C�

� �S
��M��Z����

Then �LOOP � �SLOOP � ��

x���� Computations� Informally� if �F� ��x� � y � �� then there is a �nite computa�
tion which establishes this fact� The computation is the search tree you would construct
in an attempt to compute the value of �F� ��x�� If de�ned in the natural way� such a compu�
tation is unique� For example� say you wanted to apply the de�nition and compute � �

by evaluating the name P
�I�� � C

�
� �S

�� I�
 ��� You could organize the search by unwinding
the intended meaning of P
 and C�

� � eventually getting down to the base names� whose
values you would write down at sight� The result of the computation might look like�

�

P
�I�� � C
�
� �S

�� I�
 �����
� � �
P
�I�� � C

�
� �S

�� I�
 ����� 	� � �
P
�I�� � C

�
��S

�� I�
 ����� �� � �
I�� ��� � �

C�
��S

�� I�
 ���� �� �� � �
I�
 ��� �� �� � �
S���� � �

C�
� �S

�� I�
 ���� 	� �� � �
I�
 ��� 	� �� � �
S���� � �

We can think of this as a tree� displayed in preorder traversal�
To make this formal� call a search node any triple of the form �
� �x� v�� where for

some n � ��
 is an n�ary name� �x � �n� and v � �� An F�computation is a �nite rooted
ordered tree� where each node N � �
� �x� v� in the tree is a search node� for which one of
the following holds�

 is a base name� N is a leaf� and �F� ��x� � v�

 is Cn

m��� 	��

 � 	m�� and for some y��

 � ym� the children of N are
�	�� �x� y���

 � �	m� �x� ym�� ��� �y� �

 � ym�� v�� in that order�

 � Pn��� 	 �� �x � ��u� ��� and N has one child� ��� �u� v��

 � Pn��� 	 �� �x � ��u� y � 	�� and for some z� N has two children

�
� ��u� y�� z�� and �	� ��u� y� z�� v�� in that order�

 �Mn�	 �� and for some y � �� N has v � 	 children� in order�

�	� ��x� ��� ��

 � �	� ��x� v � 	�� ��� �	� ��x� v�� y��
������ Lemma� Given F � an n�ary
� and �x � �n�

a� If �F� ��x� � y � �� there is exactly one F�computation with root node �
� �x� y��
b� If there is any F�computation with root node �
� �x� y�� then �F� ��x� � y�

x��	� Recursive Functionals� If we �x
 and let F vary� we get recursive second
order functionals� If m�n � �� and p � �������� we say that a map � � ��m���� �
��n���� is recursive in parameter p i� for some n�ary name
� ��f� � �p�f� for all f �
��m����� We may view ��m���� as a topological space �in fact� a separable complete
metric space� if we consider �m to be discrete and take the usual product topology� Since
every computation is �nite� we have�

��	��� Lemma� A map � � ��m����� ��n���� is continuous i� � is recursive in
some parameter�

These second�order recursive functionals are echoed in the proof theory of PRA� see
x��	� A version of this lemma is also true for maps on other separable complete metric
spaces� but it involves some coding of the points in the space by sequences of natural
numbers�

x��
� G�odel Numbering� As usual� ��� � S
n�� �

n is the set of all �nite sequences
of natural numbers� Let pi be the ith prime� so p� �
� p� � �� etc� If s � �n� let
 �s� �

Q
i�n p

si��
i � and let lh� �s�� � n� Denote the empty sequence by � or ��� ��� � 	

�

and lh�	� � �� Let Seq � f �s� � s � ���g� Let lh�x� � � for x �� Seq� Let ��i� s� � si
whenever s is a sequence of length greater than i� and let ��i� x� � � whenever i � lh�x��

��
��� Lemma� Seq� lh� and � are primitive recursive� For each n� the map
�x��

 � xn��� �� �x��

 � xn��� is primitive recursive�

If 	 is a name� we de�ne �	 � as follows�

 �Inj � � �	� n� j�� �Z
n� � �
� n�� �S�� � ��� 	�� �Wn

j � � ��� n� j�

 �Cn
m��� 	��

 � 	m�� � ��� n�m� ���� �	���

 � �	m��

 �Pn��� 	 �� � ��� n� ���� �	 ��

 �Mn�	 �� � ��� n� �	 ��

Using this numbering� we obtain a universal function� For each n � �� �x � �n� and n�ary
name
� de�ne �F �n�
� �x� � �F� ��x�� set �

F �n�e� �x� � � if e is not of the form
 for an
n�ary name� Let �F �ne ��x� � �F �n�e� �x�� Then� as e varies� the �F �ne enumerate all functions
in n variables partial recursive in F � As usual� delete the superscript F when F is the zero
oracle� also� delete the superscript n when it is clear from context�

Since the numbering is e�ective� �n�e� �x� is partial recursive in e� �x� but to prove this
rigorously� we must G�odel number computations� as we do in the next section�

x���� The Kleene Normal Form Theorem� If C is a computation whose root
node N � �
� �x� y� has r children� heading subtrees C��

 � Cr �r � ��� then let C �
 �
� �x� y� C��

 � Cr�� Thus� if C � C is the G�odel number of a computation�
then ���� C� is the G�odel number of the function being computed� ��	� C� is the G�odel
number of the input� and ��
� C� is the output� or upshot � of the computation�

De�nition� U�C� � ��
� C�� The Kleene T predicate �i�e�� function with range
f�� 	g� TF � ������� is de�ned by� TF�e� s�C� � 	 i� for some n�
� �x� C�
 is an n�ary
name� e �
� �x � �n� s � �x� C is an F�computation whose root node is of the form
�
� �x� y�� and C � C� For each n� let TF �n be the n �
 � ary predicate de�ned by�
TF �n�e� �x�C� � TF �e� �x�C��

������ Theorem� U is primitive recursive� and TF is primitive recursive in F � If
f � ��n P���� is partial recursive in F � then for some e � �� f is of the form�

f��x� � �F �n��x� � U��C TF �n�e� �x�C��

This Theorem arises in every formalization of recursion theory� and is embedded in
the following philosophical argument for Church
s Thesis� Suppose we have any precisely
de�ned algorithm for computing a function� Then� presumably� it is primitive recursive
to decide whether or not some scribbling is a correct computation and to retrieve the
value computed by that scribbling� We could then re�de�ne T ��x�C� to mean that C is the
G�odel number of a successful computation by this algorithm� and re�de�ne U�C� to be the
value computed by this computation� It follows that the function f��x� � U��C T ��x�C��
computed by this algorithm is partial recursive in our technical sense�

�

Note that Church
s Thesis does not rule out the computability of a non�recursive
function by� e�g�� some biological �� physical� process�

The technical interest in the Theorem is that it shows that every partial recursive
function is obtained by only one use of the � operator �i�e�� it is named by a simple name�
see x
�	�� It also yields a partial recursive enumeration of the partial recursive functions�
since it is now clear that �F �n is partial recursive in F � By the standard Cantor diagonal
argument� the halting problem� K � fe � ��e�e� �� �g� is undecidable�

x��
� The Recursion Theorem� Informally� in computing� a recursion is a de�ni�
tion of f�y� by some procedure which calls f itself� For example�

D	� f�y� � � if y � 	�� f�y� � f�y � 	� otherwise�
The First Recursion Theorem is the fairly obvious statement that any such recursion always
de�nes f as a partial recursive function � namely� what you get by trying to compute f
in the natural way� in the given example� dom�f� � fy � y
 	�g� For y �� dom�f��
the natural C or Lisp program for computing f�y� will not return a value� The Second
Recursion Theorem �Kleene �	
�� is the less obvious fact that one can actually de�ne f
from a G�odel number for f � For example� there is an e such that

D
� ��e��� � e� ��e�y � 	� � ��
�
e�y��

�
In general� such a de�nition will again de�ne a partial function� although in this particular
example� ��e is total� since we easily prove y � dom���e� by induction on y�

��
��� Theorem� Given a partial recursive g � ��n�� P����� there is an e � � such
that for all �y � �n� �ne ��y� � g�e� �y��

Proof� Let SUB be a primitive recursive function such that for each a� x� �y� we
have �n

SUB�a�x���y� � �n��a �x� �y�� Then� �x any a such that �n��a �x� �y� � g�SUB�x� x�� �y�

for all x� �y� Let e � SUB�a� a�� Then for all �y� �ne ��y� � �n
SUB�a�a���y� � �n��a �a� �y� �

g�SUB�a� a�� �y� � g�e� �y��

The diagonal argument in this proof is exactly the same as the one used in the proof
of G�odel
s Second Incompleteness Theorem to produce a formula which asserts its own
non�provability�

In example D
 above� g�x� �� � x and g�x� y � 	� � �g�x� y��
� The First Recursion
Theorem can be considered a special case of the Second� for example� for D	 above� we
can let g�x� y� be � if y � 	� and ��x�y � 	� otherwise�

Although example D	 is trivial� this method is actually useful in proving the com�
putability of functions which are de�ned in a way which is recursive but not primitive

recursive� A simple example of this is the Ackermann function� A� de�ned by�
A��� y� � 	
A�	� �� �

x �
� A�x� �� � x�

�x � � � y � ��� A�x� y� � A�A�x ��	� y�� y ��	�

The details of the de�nition vary in di�erent references �this one is from �	��� but the key
point is the double recursion on the last line of de�nition� which is not primitive recursive�
The other three lines were chosen so that for small y� the map x �� A�x� y� is a familiar
function� A�x� 	� �
x �for x � 	� and A�x�
� �
x� A�x� �� is the �stack�of�twos� function�

�

A�x � 	� �� �
A�x���� The diagonal� x �� A�x� x� eventually dominates every primitive
recursive function� To prove that A is a total recursive function� �rst apply the Recursion
Theorem� as with D	� to prove the existence of a partial recursive A satisfying the above
de�nition� and then prove by double induction on �y� x� that A�x� y� �� ��

x����� Universal functions� The map �e� x� �� �e�x� is a universal partial recursive
function� In general� any attempt to get a universal function for a class of total functions
leads out of the class by Cantor
s diagonal argument� Speci�cally� if f is a total function
of two variables� and we let fe�x� � f�e� x�� then the function e �� f�e� e� � 	 is not one of
the fe� One can e�ectively enumerate all the primitive recursive functions� For example�
if we let f�e� x� be �� �x� whenever e � 	 � where 	 is a pure primitive recursive name
�see x
�	� of arity one� and set f�e� x� � � otherwise� then f is total recursive� and the fe
enumerate all the primitive recursive functions� But� then� f is not primitive recursive�
Since there are only countably many recursive functions� it is easy to �nd a total f such
that the fe enumerate all total recursive functions� but then f will not be recursive�

Let PRK be the class of total functions which are primitive recursive in K �see x
���
�equivalently� primitive recursive in some r�e� set�� The following �failed� attempt to get a
PRK function which is universal for PRK can be motivated either by the Kleene Normal
Form Theorem� or by the desire to adjoin to the recursive functions just enough functions
to satisfy equations �
�� �
�� of the Introduction for each primitive recursive �� It is an
abstract version of what is implemented on Nqthm�

We concentrate on the simple names �see x
�	�� and evaluate them by re�interpreting
the � operator to return � rather than � when it is unde�ned� so that the whole theory
deals only with total functions� Formally� de�ne !� � ��n���� whenever
 is a simple
name with arity n� The cases in the de�nition of !� are exactly the same as in the
de�nition of ��� with the exception of the case

 �Mn�	 �� !���x� � y � � i� !� ��x� y� � �nf�g and for all z � y� !� ��x� z� � ��
!���x� � � if there is no such y�

Since we are applying this scheme only for simple names
� the 	 here is a primitive
recursive name� so !� � �� � In general for simple
� !���x� � ����x� whenever ����x� �� ��
so !� � �� whenever �� is total� As
 varies over the simple names� the �� enumerate
all the partial recursive functions �by the Kleene Normal Form Theorem�� and the !�
enumerate PRK�

Note that if 	 is a primitive recursive name and
 is Mn�	 �� then !� is a Skolem
function for �� �

�x� y��� ��x� y� �� � � �� ��x�!���x�� �� �
�

This is precisely equation �
�� of the Introduction� where ���x� y� says ��� ��x� y� �� �� and
f��x� is !���x��

Let "�x��x� be the least x such that ��x� if �x��x�� and � otherwise� So� the partial
recursive functions are all obtained by zero or one application of the � operator� but any
expression with multiple applications of the � operator is still partial recursive� The PRK
functions are those functions obtained by zero or one application of the "� operator� If we
allow multiple applications of "� �use all names� rather than just simple ones�� we would
obtain all arithmetical functions�

	�

For each n�ary name
� with e �
� and n�tuple �x� de�ne �e��x� � !���x�� set
�e��x� � � if e is not of the form
 for an n�ary simple name� The map �e� x� �� �e�x� is
universal for PRK and hence not in PRK� it is recursive in K� but not primitive recursive
in K� this map is the abstract analogue of the Nqthm EVAL��

Following Boyer and Moore ������ de�ne the function vc in PRK� Here� vc stands for
value and computation� and is the abstract analogue of the Nqthm V�C�� Let

vc�e� s� � "�C T �e� s�C�

That is� when e �
 for some n�ary name
� and s � �x for some �x � �n� then vc�e� s�
is the G�odel number of the computation which computes the value of ����x�� vc�e� s� � �
when there is no such computation� If we just want the value� without the computation�
we can just use the upshot function� U � and de�ne apply�e� s� � U�vc�e� s��� Then apply�
like vc� is in PRK� and is the analogue of the Nqthm APPLY�� Since U��� � � under our
G�odel numbering� apply�e� �x� is �e��x� when �e��x� �� �� and � otherwise� Now� suppose
e �
 for some simple n�ary name
� Then apply�e� �x� � �ne ��x� � �ne ��x� whenever
�x � dom��ne �� in particular this holds whenever
 is a primitive recursive name� One
should not confuse the two total functions � and apply� Since apply � PRK� it cannot
be universal for PRK� whereas �e� x� �� �e�x� is universal for PRK� To see a speci�c
example of the di�erence� let e � SLOOP � where SLOOP �de�ned in x
��� �computes�
the successor of the function which doesn
t halt� Then ��e �� � 	� while apply�e� ��� � ��
An Nqthm example like this is discussed in x
�	� of ���� but is not quite so transparent
there because the � operator is not built in on the surface� but must be constructed using
other primitives� see x� and below�

Roughly� PRA axiomatizes the �� � !� for 	 a primitive recursive name� One can
extend PRA in the natural way to axiomatize the !� for all simple names
� obtaining
the system PRA�� In PRA�� one can de�ne vc and apply� obtaining a function universal
for the primitive recursive functions and thereby proving CON�PRA�� These matters are
taken up more formally the next section� However� the recursion�theoretic strength of a
class of functions is a good informal guide to the proof�theoretic strength of the natural
axiomatization of the class� In this vein� we take up one more matter� which mirrors the
fact that using vc� that one can get by in Nqthm without an explicit � operator�

There is an apparent self�referentiality in the de�nition of vc� Let KTP be a primitive
recursive name for the Kleene T predicate T �e� s�C�� so that if V C is the simple name
M
�KTP �� then V C names vc in the sense that vc is !V C � Now in vc�e� s�� we may have
e �
� where
 is V C or the name of some function constructed from V C� Of course�
this self�referentiality is only apparent� since if vc calls itself in this way� it is really �V C
being called�

It turns out that if we keep the self�referentiality and delete the � operator� we will still
get the full strength of vc� To see this� use just the primitive recursive names� Our intent
is that the wild card W

� will denote vc� and the other wild cards denote the identically
zero function� To do this formally� de�ne a Vcomputation as follows� A Vcomputation
is still a �nite rooted ordered tree� where each node N � �
� �x� v� in the tree is a search
node� but now we demand that
 be only a primitive recursive name� The requirements
on N are then exactly as in x
��� except in the case where
 is of the form Wn

j � Then�

		

unless n �
 and j � �� we require that N be a leaf and v � �� If n �
 and j � ��
we have N � �W

� � �e� s�� v�� We then require that for some m��y� C� 	 � e � 	 � 	 is an
m�ary primitive recursive name� �y is an m�tuple of numbers� s � �y� C is a Vcomputation�
and v � C� Note that this de�nition is not circular� In fact� if we de�ne the predicate
eT �e� s�C� to be true i� for some n� e �
 for some n�ary primitive recursive name�
s � �x for some �x � �n� and C � C� where where C is a Vcomputation whose root node
is of the form �
� �x� y�� then eT is primitive recursive� since it can be de�ned by recursion on
C� For each n� de�ne eTn by� eTn�e� �x�C� � eT �e� �x�C�� Let e�ne ��x� � U��C eTn�e� �x�C���
so these e�ne are all partial recursive�

In particular� we have the partial recursive function �C eT �e� s�C�� and the correspond�
ing �non�recursive� total function� evc�e� s� � "�C eT �e� s�C�� which is an abstract version of
Nqthm V�C�� The following theorem says that evc has the full non�constructivity of vc�

������� Theorem�

a� If f � ��n P���� is partial recursive� then for some e � �� f � e�ne �
b� Every function in PRK is primitive recursive in evc�

Proof� To prove �a�� use the fact that the e�e satisfy the Recursion Theorem �by the
same proof as in x
���� and are closed under primitive recursion� Then� in particular� every
r�e� set is of the form fs � evc�e� s� �� �g for some e� from which �b� follows easily�

x�� PRIMITIVE RECURSIVE ARITHMETIC

x��� PRA� As already noted in the Introduction� PRA does not use quanti�ers�
although the semantics and proof rules are as if all variables are universally quanti�ed�
Thus� the theorems of PRA will all be universally valid statements about primitive recur�
sive functions� such as

x �� � � x � y � x � z � y � z

We now spell out a precise de�nition of PRA�
Basic Syntax� There is a constant symbol �� and for each primitive recursive name 	

of arity n� we have a function symbol� F� � of arity n� There is also a countably in�nite set
of variable symbols� Using �� variables� and function symbols� we form terms� An atomic

formula is an expression of the form � � �� where �� � are terms� We build formulas

from atomic formulas and propositional connectives� There are no quanti�ers� We use S
to abbreviate the function symbol for the successor function� FS� � We are using �� �� �� �
for terms of PRA� and� as before�
� 	� � for the names for primitive recursive functions�
We use ��� for formulas� Letters like x� y� z will be used for the variable symbols in the
logic� ����x� denotes the formula obtained by replacing all occurrences of x in � by ��

We call a formula � absolutely valid i� it is universally valid in all models� infor�
mally� this means that its validity can be established by reasoning about �� without
regard to the intended meaning of � or the F� � For example� any formula of the form
�� � �� � �����x� 	 ����x�� is absolutely valid� as is any propositional tautology�
Note that absolute validity is a primitive recursively decidable property of �� since it can
be tested by seeing if � is valid in all models of a �nite size bounded by an exponential
function of the size of ��

	

Axioms� � is a logical axiom whenever � is absolutely valid� For each primitive
recursive name
� we have de�nitional axioms corresponding to the de�nition of ���

 � S� � S�x� �� � � S�x� � S�y�� x � y

 � Inj � F��x��

 � xn��� � xj

 � Zn � F���x� � �

 � Cn
m��� 	��

 � 	m� � F���x� � F��F�� ��x�

 F�m��x��

 � Pn��� 	 � � F���x� �� � F���x� � F���x� S�y�� � F� ��x� y� F���x� y��

Proof Rules� � � means that � is provable in PRA� The provable formulas are the
least set of formulas containing all the axioms and closed under the following rules of
inference�

	� Modus Ponens� If � �� � and � � then � ��

� Substitution� If � � then � ����x��
�� Induction� If � ����x� and � ��� ��S�x��x�� then � ��

Equivalently� we may say � � i� there is a formal proof of �� where a formal proof is a
�nite list of formulas ���

 � �n� where �n is �� and each �i is either an axiom or follows
from earlier formulas on the list by one of the proof rules�

Note that the F� � for various 	 � are just distinct function symbols� PRA does not
contain any mechanism for quantifying over the 	 �

Most formalizations of PRA in the literature ����� do not take all the absolutely valid
formulas as axioms� but rather use some more low�level axiomatization� from which all the
absolutely valid formulas can be derived� In their �o#cial� explanation of their basic logic
����� Chapter ��� Boyer and Moore describe such a low�level axiomatization� but this is
irrelevant to the actual implementation of Nqthm� which employs an algorithm to detect
something like our absolutely valid formulas and rewrite them to true� in addition� it
also rewrites to true statements about � which are valid by �linear arithmetic�� such as
x � f�y� �
 � �x � �� � �	 � f�y�� � � �see ���� x		�	����

We may introduce some abbreviations� so that the theory looks more like conventional
mathematics� We have already introduced S� If PLUS and TIMES are the speci�c
names described in x
��� we let � � � abbreviate FPLUS ��� �� and let � � � abbreviate
FTIMES��� ��� Applying the axioms for the identity and zero functions� we have the usual
recursive axioms for � and ��

x� � � x � x � S�y� � S�x � y�

x � � � � � x � S�y� � x � y � x

For example� since PLUS is really P
�I�� � C
�
� �S

�� I�
 ��� we derive x � S�y� � S�x � y� as
follows� First derive�

x � S�y� � FC�

�
�S��I�

�
��x� y� x � y� ����

FC�

�
�S��I�

�
��x� y� x � y� � S�FI�

�

�x� y� x � y�� ��
�

FI�
�

�x� y� x � y� � x � y ����

	�

�� is a de�nitional axiom� and �
� �� follows from de�nitional axioms by substitution�
We now apply modus ponens three times with the �absolutely valid� logical axiom ��� �
��
 � ��� � �x � S�y� � S�x � y������

Using the axioms about �� �� plus induction� all the basic facts about �� � �such as the
associative� commutative� and distributive laws� may be derived� see ��� ��� Likewise� we
may let x � y abbreviate F��x� y� � S���� where
 is some standard name for the de�nition
of the � predicate �actually� function � see x
���� Likewise� introduce abbreviations x � y�
x � y� x ��y� etc�

Call a formula pure i� it is built using only the F� for
 a pure primitive recursive
name �see x
�	�� Let PRA� be PRA restricted to pure formulas� The usual de�nition of
PRA ��� is actually our PRA�� However� our PRA is a conservative extension of PRA��
since our axioms say nothing at all about the value of the wild cards� Formally�

������ Lemma� If � is a pure formula and is provable in PRA� then it is provable in
PRA��

Allowing wild cards is useful because it enables us to prove� within PRA� general
statements which apply to every function� In fact� under the natural interpretation� these
statements may be thought of as applying to all functions from � to �� and hence� by
suitable encoding� all real numbers� Thus� for example� some theorems of real analysis�
such as �x � ��sin�x�
 x� are theorems of PRA� and hence essentially �nitistic� We are
really proving results about primitive recursive functionals �see x
����

A generalization of Lemma ��	�	 is also useful for proving theorem schemas� which
then may be specialized to speci�c functions� To formalize this idea� call a retraction any
map � which assigns to each wild cardWn

j a pure primitive recursive name� �W
n
j ��� Then�

in the natural way� we de�ne ���� whenever � is a formula� The following is easily proved
by induction on derivations�

������ Lemma� Let �����

 � �n be formulas� and suppose one can derive � in
PRA by using ���

 � �n as additional axioms� Let � any retraction such that each of
������

 � ��n�� is provable in PRA�� Then ���� is provable in PRA��

As an example of Lemma ��	�
� we may formalize the following general argument�
which at �rst sight seems second order� Given any f any function on �� we may let g�n�
be the largest x
 n such that g�x�
 n� set g�n� � � if there is no such n� Assume now
that f is increasing �x � y � f�x� � f�y��� Then we can prove some theorems about g�
for example� g is a left inverse of f �g�f�x�� � x�� In particular� these theorems now apply
to any speci�c f we choose� Common examples are obtained by letting f�x� �
x� whence
g�n� � blog
�n�c when n � �� or by letting f�x� � x
� whence g�n� is the integer part ofp
n�
A version of Lemma ��	�
 as a proof rule is implemented in Nqthm� through the

commands CONSTRAIN and FUNCTIONALLY�INSTANTIATE� See ��� for a detailed
discussion�

As a special case of Lemma ��	�
� where � is a pure formula�

������ Lemma� Let ���

 � �n be formulas� and suppose there is some retraction
� such that each ������

 � ��n�� is provable in PRA�� Then PRA � f���

 � �ng is a
conservative extension of PRA��

	�

Now� using the same formalism� we may write natural axioms about a function which
are not satis�ed by any primitive recursive function� For example �see below�� one can
axiomatize the Ackermann function� This extension is not conservative� since it proves
CON�PRA��

First� some remarks on CON�PRA��

Each speci�c natural number k is denoted by a numeral pkq� where p�q is the symbol
� and pk�	q abbreviates the term S�pkq�� Thus� p�q abbreviates the term S�S�S�S�������

By using G�odel numbering� it is easy to formalize the syntax of PRA �including the
notion of �proof�� within PRA� In particular� one may express CON�PRA�� We let PF
be a name for the characteristic function of the set of all �x� y� such that y is the G�odel
number of a formula and x is the G�odel number of a proof of y� If k is the G�odel number
of the formula S��� � �� we can let CON�PRA� be the formula FPF �pkq� y� � �� Then
CON�PRA� is not provable in PRA� see ��� for an explanation of the Incompleteness
Theorem in the PRA� setting� Note that CON�PRA�� 	 CON�PRA� is provable in
PRA�

Every true ground pure statement �such as p�q�p�q � p�q� is provable in PRA� This
does not hold for non�ground statements� such as CON�PRA�� However� every provable
statement is true� whether or not it is ground� in particular� PRA is clearly consistent�
This remark can obviously be formalized in ZF set theory� but in fact can be formalized
in much weaker theories� All we really need is for the theory to contain some enumerating
function of the primitive recursive functions� In particular� it is easy to prove CON�PRA�
inHA� or even in some extension of PRA which axiomatizes such an enumerating function�

In fact� it is enough to add the Ackermann function� since that will give us an enumer�
ating function� Let PRA� be formed from PRA by adding a de�nition for the Ackermann
function� Formally� we shall use the �rst binary wild card to denote this function� So� use
A to abbreviate FW�

�

� and let PRA� be PRA plus the axioms

A��� y� � p	q
A�p	q� �� � p
q
x � p
q� A�x� �� � x� p
q
�x � � � y � ��� A�x� y� � A�A�x ��p	q� y�� y ��p	q�

Now� one may de�ne an enumerating function for the primitive recursive functions which
is primitive recursive in the Ackermann function� proving�

������ Lemma� PRA� � CON�PRA��
Further details of the proof are given below� Now� PRA� is a rather ad hoc extension of

PRA� since there is no particular reason for singling out the Ackermann function� Clearly
this is a part of something more general� but there are various candidates for what that
�something� is�

One possibility would be to formalize double recursions in general� These may be
viewed as recursion on the ordinal �
� and one could even go up to recursions on ��� Many
constructivists would accept these extensions as constructive �see the Introduction�� but
we do not dwell on these here� as we have discussed them elsewhere �	���

Another candidate is to formalize the � operator� This also seems natural� but it is
de�nitely not constructive� We take this up in the next section�

	�

We remark here that induction on �
 or even �n is completely within PRA� That is�

������ Lemma� Within PRA or PRA�� suppose ��x� y� is a formula� and f�x� y��
g�x� y� are function� and we can prove

���x� y� � �f�x� y�� g�x� y�� �lex �x� y� � ���f�x� y�� g�x� y�� �

where �lex denotes lexical order on pairs� Then we can prove ��x� y��
Proof� First� by ordinary primitive recursion� de�ne h�x� y� to be the least y�
 y

such that ���x� y�� if there is such a y� �and� say� � otherwise�� Then ���x� y� implies
���f�x� h�x� y��� g�x� h�x� y��� and f�x� h�x� y�� � x� so that ��x� y� can be proved by
ordinary induction�

Proof of Lemma ������ First� arguing within PRA� de�ne T��e� s�C� to be equal
to 	 �i�e�� true� unless e is a G�odel number of some n�ary pure primitive recursive name
and s is the G�odel number of an n�tuple of numbers� in which case T��e� s�C� is equal
to the Kleene T predicate� T �e� s�C�� Informally� it is true that �es�CT��e� s�C�� but we
cannot prove �or even say� this in PRA�

Now� within PRA�� de�ne a diagonal function�

D�e� s� � �C � A�s � �� e� �� �T��e� s�C��

Here� the � is the bounded � operator � that is� �C � b��C� returns b if there is no C � b
such that ��C�� This operator is primitive recursive� so that we indeed can de�ne D in
PRA�� But now� we argue by double induction on e� s �see Lemma ��	��� and prove that
indeed

�es�D�e� s� � A�s � �� e� ���

We can then de�ne diag�e� s� � U�D�e� s��� use this to de�ne a truth predicate for PRA
formulas� and then carry out the argument indicated above that every statement provable
from PRA is true�

x���� Formalizing the � operator� For each primitive recursive function f�x� y��
there is a natural way to axiomatize the behavior of the function �yf�x� y�� Since this
is a partial function� the logic will be simpler if we replace the � by �� so we are really
axiomatizing "�yf�x� y�� This way� we stay within the simple logical framework of PRA�
proving universal validities about natural numbers� but we create a stronger theory� which
shall call PRA�� Now� among these primitive recursive functions is the Kleene T function
�predicate�� applying "� to that will give us the power to prove theorems about computa�
tions from arbitrary names for recursive functions� As a special case� one can de�ne the
Ackermann function� so that PRA� will be an extension of PRA��

One way to formalize "�� in the spirit of x��	� would be to choose a wild card Wn
j for

each n�ary pure primitive recursive name and then to add axioms about Wn
j � However�

the choice of j would depend on some speci�c enumeration of these names� Since we have
already embedded the � operator in names anyway� it is equivalent� but slightly more
natural� to just use the simple names� as in x
�	��

	�

So� PRA� has a function symbol F� for each simple name
� The proof rules are the
same as for PRA� with� of course� a slightly di�erent set of terms� The logical axioms
are the same as those for PRA �with our new notion of term�� plus the axiom for the
"� operator� that is� whenever
 is Mn�	 � �so 	 is then a primitive recursive name�� we
formalize the de�nition of !� by taking as axioms�

F���x� � �� F� ��x� y� � �

F���x� � � � y � z � F� ��x� z� � �

F���x� � � � F� ��x� �� � �� F� ��x� z� � �

That is� if we say g�x� � "�xf�x� y�� then g�x� � � if there is no y such that f�x� y� �� ��
Note that it is also possible for g�x� to be � �honestly� � that is� f�x� �� �� �� This will
not cause a problem with the proof theory� since formal proofs can always branch on the
two cases� whether or not f�x� �� � ��

Observe that in PRA�� we have added Skolem functions for PRA formulas� making
equation �
�� of the Introduction into a theorem� More precisely� call a formula � in the
language of PRA� primitive recursive i� � is built using only the F� for
 a primitive
recursive name� Then

������ Lemma� Suppose ���x� y� is a primitive recursive formula� Then there is a
function symbol f such that

���x� y� � ���x� f��x��

is provable in PRA��

We remark that the de�nition of !� would have made sense for all names� not just
simple ones� and we could have then postulated the above axioms for all names� However�
then the !� would have enumerated all arithmetical sets� and the corresponding axiomatic
theory would have been equivalent to PA� in fact� it would be what you would get by
Skolemizing PA in the obvious way� Our system PRA� is strictly weaker than PA� since
PA � CON�PRA���

Next� we show how to formalize double recursions in PRA�� We focus speci�cally on
the Ackermann function �which will show that PRA� is contained in PRA��� but we do
not use any speci�c features about the Ackermann function �such as the fact that its graph
is primitive recursive��

������ Lemma� There is a
�ary simple name
 such that if we use A to abbreviate
F�� the PRA� axioms about A �see x��	� are provable in PRA��

Proof� First note that the Recursion Theorem has a non�vacuous content even within
PRA� That is� within PRA� one may talk about G�odel numbers for arbitrary partial
recursive functions� and de�ne the function SUB� We may thus trace out the argument
in Theorem
���	 to come up with a G�odel number e for a simple name
 such that �
e
�should� be the Ackermann function�

Within PRA� we cannot prove �or even say� that �xy�C T
�e� x� y�C�� However� in
PRA�� we can �rst of all state this �using our Skolem functions� by Lemma ��
�	�� and

	�

then prove it by double induction on �y� x�� which works in PRA� as it does in PRA �see
Lemma ��	����

Besides proving functions such as A are de�ned� we can also prove functions are not
de�ned� For example� if LOOP and SLOOP are as in x
��� then in PRA� one may prove
FLOOP �� � � and FSLOOP �� � p	q�

Arguing in ZF �or even in PA�� PRA� is obviously consistent� since it has a natural
model with domain of discourse �� Observe that an attempt to prove CON�PRA�� within
PRA� along the lines of Lemma ��	�� fails� Within PRA�� we may formalize vc�e� s� and
apply�e� s� �see the discussion in x
�	��� These appear to be self�referential� since e may
be any G�odel number of a simple name� However� this is misleading� since if the name
involves the � operator� apply�e� �x� can di�er from the actual value� �e��x�� One cannot
de�ne �e��x� within PRA��

x�� NQTHM

x���� Basics� Proof theories such as PRA and its variants could obviously be
implemented on the computer� but the naive implementations of these would be very
awkward to use� There are a number of complexities in Nqthm which make it easy to use
in practice� but which also make it di#cult to pin down its proof�theoretic strength� We
mention a few of these here� in an attempt to connect the theory with the practice� In
some cases� this is fairly straightforward� but the semantics of V�C� and EVAL� is a bit
more obscure�

We begin with the more straightforward complexities�
Nqthm does not actually have a �xed pre�existing symbol for each possible primitive

recursive function� Rather� it allows one to use primitive recursion to introduce new
symbolic names as they are needed� As a result� it does not include all the axioms of PRA
when it is booted up� as we seemed to indicate in x�� Rather� the axioms grow as the
user adds primitive recursive de�nitions� For example� a typical numeric de�nition is the
primitive recursive function euclid�x� y�� which implements the Euclidean Algorithm� It
returns gcd�x� y� when � � x � y� and � otherwise

�defn euclid �x y�

�if �not �and �lessp � x� �lessp x y��� �

�if �equal �remainder y x� �� x

�euclid �remainder y x� x����

When the user enters this expression� the axioms for this primitive recursive de�nition of
euclid are added to the database of axioms� More precisely� Nqthm maintains a symbol
table� on which EUCLID is stored with FORMALS equal to the list �X Y� and with BODY equal
to �IF �NOT �AND �LESSP � X�

 ����

Note that this is not a �standard� basic primitive recursion as described in x
� Nqthm
accepts this de�nition because it can verify that in the computation of euclid�x� y�� all
recursive calls will be of the form of euclid�x�� y�� with y� � y �actually� y� � x � y�
since otherwise there is no recursive call�� This is what is usually called a course�of�values

	�

recursion� but� as is well�known �	
�� such recursions can be reduced to standard primitive
recursions�

Furthermore� Nqthm functions operate not only on natural numbers but also on Lisp
S�expressions� There is a built�in function� count� which measures the complexity of S�
expressions� If y is a natural number� then count�y� � y� In particular� Nqthm views
euclid�x� y� as being de�ned for all x� y� not just numbers� Thus� in accepting the function
euclid� it actually veri�ed that in the computation of euclid�x� y�� all recursive calls would
be of the form of euclid�x�� y�� with count�y�� � count�y�� For this particular function� this
adds nothing new� since the condition �lessp x y� implies that y is a number� However�
all the standard Lisp�style recursions on complexity of S�expressions are also justi�ed in
Nqthm as recursions on count� It is easy to see that if one G�odel numbers S�expressions
in some standard way� then any recursion on count can be justi�ed as a course�of�values
recursion� so that such recursions are still all part of PRA�

So far� the features described give us a system equivalent to PRA� As mentioned in
the Introduction� the two features which go beyond PRA are the facility for recursion on
the ordinal �� and the facility for self�referential de�nitions�

Ordinal recursion on Nqthm has been discussed in detail elsewhere �	��� and in any
case� by Gentzen ���� there was never any doubt that this feature went beyond PRA� The
use or non�use of this feature is easy to document� if the source �le does not contain the
word ORD�LESSP� then ordinal recursion is never invoked�

The self�referential feature is implemented through a number of functions� V�C�� V�C�
APPLY�� APPLY�� EVAL�� and FOR� These functions are described in ���� and in more detail
in ���� There is no discussion there of the � operator� rather the informal motivation of
V�C� is an attempt to formalize an interpreter for the logic� Formally� this motivation
is circular� since the interpreter evaluates expressions built from V�C�� and of course�
by Tarski
s theorem� a system which can de�ne its own truth predicate is inconsistent�
However� in the formal analysis� one can ignore the motivation and work from the explicit
axiomatization for V�C� and related functions given in ���� In the notation of x
�	�� Nqthm
appears to avoid an inconsistency because it formalizes the theory of something like !V C�
which can talk about the evaluation of �V C � not !V C�

Ideally� one should do two things now�

	� Show that every theorem of PRA� can indeed be proved on Nqthm without using
ordinal recursion�

� Show that every theorem proved on Nqthm without using ordinal recursion can also
be proved in PRA��

In fact� we shall do neither� formally� although we shall present an informal argument for
both of these� The deductive mechanism in Nqthm is fairly complex� even without the use
of V�C�� Nqthm does not actually output a proof in some standard formal logic� but rather
it simply announces that a theorem has been proved� this announcement is accompanied by
an English explanation� but sometimes the explanation is simply that some complex term
has been rewritten to T �true�� Furthermore� veri�cations for statements involving V�C�
often are obtained by rewriting via internal routines such as REWRITE�V�C�APPLY�� which
are not even documented in ���� Thus� lacking a formal statement of the actual reduction
mechanism� it seems hopeless to attempt to prove �	� or �
� formally here� or even to

	�

prove that Nqthm is consistent� Because of its complexities� even given a formalization of
Nqthm� any formal analysis would probably require the assistance of automated reasoning
techniques�

Even informally� our argument involves a few tricks� Nqthm does not have any con�
struct directly analogous to the � operator� so we cannot make a direct translation to
PRA�� However� Nqthm has V�C�� which is roughly analogous to our vc �see x
�	��� and
this should be su#cient to capture all the non�constructivity in PRA� by Theorem
�	��	�
We consider �rst the similarities between vc and V�C�� and then the di�erences�

In our vc�e� s�� e encodes a name of a function and s encodes the arguments to the
function� The Nqthm V�C� also inputs a name and arguments� The axioms for V�C� spell
out how an expression is to be evaluated� and V�C� is axiomatized to return the atom F

if the evaluation fails to terminate� A user�de�ned function� such as the euclid above� is
evaluated by evaluating the BODY of the expression� this guarantees that purely primitive
recursive expressions get evaluated correctly�

A minor di�erence is in the form of the output� Our vc returns an actual computation�
which encodes in particular the value returned� In Nqthm� there is no formal notion of
�computation�� and V�C� returns just a �VALUE � COST� pair� where COST is a number
which measures in some way the number of steps such a computation would take� However�
under any reasonable formal de�nition� a computation would be obtained in a primitive
recursive way from the cost and the arguments�

A more important di�erence is in the form of the input� Since there is no � operator�
one cannot simply input a name for a partial recursive function� However� one can name
partial recursive functions via self�referential de�nitions� As a trivial example� in Nqthm
we cannot simply write a name for a ��ary function g�� which never halts� as we did
with LOOP in x
��� there� we said� essentially� g�� � �y �false�� However� in Nqthm�
we can formalize the Liar Paradox ��this statement is false�� by de�ning g�� � 	 ��g���
which guarantees that g�� is unde�ned� More generally� if � is a given predicate and we
wanted to de�ne f�x� � �y ��x� y�� we could instead de�ne f recursively by saying that
f�x� � h�x� ��� where h�x� y� � � if ��x� y�� and h�x� y� � h�x� y � 	� � 	 otherwise� As
described in Kleene �	
�� the use of such recursive schemas is an alternate way of obtaining
all the partial recursive functions� so that we can in fact in this way name every partial
recursive function�

Now� Nqthm will not accept a self�referential de�nition� such as

�defn liar �� �not �liar���

since the recursion is not well�founded� but the BODY of a function can call V�C� or EVAL��
which in turn can be fed some construct using names of functions� this is not even viewed
as a recursion at all� Since these names may include V�C�� it appears that Theorem
�	��	
applies to show that one can de�ne every partial recursive function in this way� More
simply� however� as described in ���� there is a built�in hack with EVAL� which enables one
to de�ne a function whose BODY explicitly calls that function� This does not come out in
the axioms for EVAL� �which appear to be a standard primitive recursion from V�C��� but
rather in the axioms for the computation of BODY� Thus� one can de�ne�

�defn liar �� �eval� T 	�not �liar�� NIL ��

Now� LIAR is stored in Nqthm
s symbol table with BODY equal to �NOT �LIAR��� and from

�

this one may prove in Nqthm that this function never halts� This function is discussed in
���� but for some reason is called RUSSELL there� Actually� the non�halting is due just to
the self�referentiality� not the liar paradox� With�

�defn selfref �� �eval� T 	�selfref� NIL ��

one can prove in Nqthm that this function never halts either� since by the axioms for V�C��
the cost of evaluating �selfref� must be one more than the cost of evaluating �selfref��
For further examples� see ���� along with x��
� where we show explicitly how to encode the
� operator and de�ne the Ackermann function�

Returning to items �	� �
� above� �	� holds �presumably� because one can� within
Nqthm� use V�C� to derive the axioms for the "� operator applied to any primitive recursive
function� �
� holds �presumably� because one can justify any self�referential de�nition
obtained with EVAL� and V�C� by the First Recursion Theorem� as we described in x
��
and x��
�

x���� A Script� We constructed a short ��	KB� Nqthm script� available by email
from the author� which illustrates some of the ideas in x��	 with three items�

Item �� A simple abstract example� corresponding to Lemma ��	��� that one may
formalize double inductions �that is� inductions on �
� in PRA� Rather than use the
built�in Nqthm de�nition of ordinal� which is a little more complex� we de�ned our own
notion of �ordinal below �
� to be just an ordered pair of numbers �x� y� �representing
� � x� y� and de�ned the order� which is just lexorder�

�defn ordp �p� �and

�listp p�

�numberp �car p��

�numberp �cdr p�� ��

�defn lexp �p
 p�� �or

�lessp �car p
� �car p���

�and �equal �car p
� �car p��� �lessp �cdr p
� �cdr p���� ��

We now considered an abstract property� Q on our �
� and assumed it was inductive� in
the sense that ����Q��� � �� � � �Q����� Of course� to even say this in Nqthm� we
need to postulate a function� g� which returns the � as g���� So� we had�

�dcl Q �p��

�dcl g �p��

�add�axiom Q�induction �rewrite� �implies

�and �ordp p� �not �Q p���

�and �ordp �g p�� �lexp �g p� p� �not �Q �g p���� ��

Then� after about 	�� lines of intermediate lemmas� corresponding to the proof of our
Lemma ��	��� we got�

�prove�lemma Q�is�true �rewrite� �implies �ordp p� �Q p���

Of course� the point here is that we did this by using only those features of Nqthm which
stay within PRA� we did not use the self�referential features of Nqthm �EVAL�� V�C�� etc���
or ORD�LESSP �which enables ordinal recursion and induction��

	

Item�� We used EVAL� and V�C�� but not ORD�LESSP� and de�ned the Ackermann
function �using the de�nition in x
���� We feel our method is general enough to implement
other such double recursions�

Of course� the goal here is not just to de�ne a function named �Ackermann�� but
prove that it works � that is� that it satis�es the de�nition given above� So� we wound up
proving�

�prove�lemma ackermann�works �rewrite� �equal �ackermann x y�

�if �zerop x�

�if �zerop y� �if �equal x
� � �plus x ���

�ackermann �ackermann �sub
 x� y� �sub
 y�� ����

To do this� we used three main tricks�
First trick� We found it a bit awkward to deal with the built�in V�C�� which is axiom�

atized to return a �value � cost� pair �or F if the computation fails to halt�� In our
intended application� the cost is irrelevant� so we de�ned a function qval �quick valuation�
which reset the cost to ��

�defn reset �x� �if x �cons �car x� �� F��

�defn qval �term va� �reset �v�c� T term va���

We then proved a sequence of lemmas showing that qval satis�es the axioms corresponding
to the built�in axioms about V�C� �see ���� x��	��
�� For example� the following lemma
explains how to evaluate an if statement� It is somewhat simpler for qval than for V�C��
since we do not have to compute the cost�

�prove�lemma qval�if �rewrite� �equal

�qval �list 	if test thencase elsecase� va �

�if �qval test va� � if evaluation of test halts

�if �car �qval test va�� � if test is true

�qval thencase va� � then evaluate the thencase

�qval elsecase va� � � else evaluate the elsecase

F� � �

This lemma� and a few others in our script� were greatly aided by the built�in Nqthm
routines REWRITE�V�C�APPLY� and REWRITE�CAR�V�C�APPLY�� These are not documented
in ���� but have the e�ect of letting Nqthm see unaided that V�C� does the �right thing�
when applied to ordinary primitive recursive functions�

Second trick� As described in x��	� we used the hack with EVAL� to de�ne ack� a �rst
approximation to the Ackermann function� as follows�

�defn base �x y� �or �zerop x� �zerop y���

�defn base�fn �x y� �if �zerop y� �row� x�
��

�defn ack �x y� �eval� T

	�if �base x y� �base�fn x y�

�ack �ack �sub
 x� y� �sub
 y� ��

�list �cons 	x x� �cons 	y y�� ��

Now� this de�nition doesn
t guarantee that ack �works�� It only guarantees that ack is
stored in Nqthm
s symbol table with BODY equal to the quoted expression�

	�if �base x y� �base�fn x y�

�ack �ack �sub
 x� y� �sub
 y� ��

This in turn guarantees that �qval 	�ack x y� va� will attempt to evaluate this BODY�
We still have to prove something about how this body is evaluated� which requires analyzing
its syntactic form� We used the functions base and base�fn to make this form as short as
possible� and to isolate the base case� which is the non�problematic part of the de�nition�
Our o#cial de�nition of the function ackermann is�

�defn assn �valx valy� �list �cons 	x valx� �cons 	y valy���

�defn A �valx valy� �qval 	�ack x y� �assn valx valy���

�defn ackermann �valx valy� �car �A valx valy���

That is� the function A should return a �value � �� pair� and then ackermann is the car
of this pair�

Third trick� Of course� the second trick could be applied to any self�referential de�ni�
tion� There are other such self�referential de�nitions which in fact de�ne total functions�
but for which this totality is not provable in PA �or� even in ZF �� In the case at hand�
the lemma ackermann�works requires a double induction on the pair �y� x�� and we use
the method of Item 	 for formalizing such inductions without the use of ordinals�

Item �� This illustrate the use of EVAL� and V�C� to implement the non�constructive
unbounded � operator� As of this writing� the twin prime conjecture is still open� this is the
statement that there are in�nitely many numbers y such that y and y�
 are both primes�
To keep the notation short� we de�ned primep in the obvious way� and then de�ned fpp�y�
to say that y is the �rst element of a twin prime pair�

�defn fpp �y� �and

�primep y�

�primep �add
 �add
 y�����

Then� we de�ned a function next�twin�prime which� for each x� returns a y � x such
that fpp�y� if there exists such a y� and returns the atom F if there is no such y� We called
those x for which such a y exists �good�� For good x� we proved that next�twin�prime
returns what it should�

�prove�lemma properties�of�good �rewrite� �implies

�good x�

�and

�fpp �next�twin�prime x��

�lessp x �next�twin�prime x���� �

If x is not good� we proved that next�twin�prime returns F and there is no larger twin
prime pair�

�prove�lemma properties�of�bad�
 �rewrite� �implies

�not �good x��

�equal �next�twin�prime x� F���
�prove�lemma properties�of�bad�� �rewrite� �implies

�and �not �good x�� �lessp x y��

�not �fpp y��� �

�

Since we did not settle the twin prime conjecture� this set of lemmas is non�constructive�
The actual de�nition of next�twin�prime was�

�defn ntp �x� �eval� T

	�if �fpp �add
 x�� �add
 x� �ntp �add
 x���

�list �cons 	x x�� � �

�defn N �valx� �qval 	�ntp x� �list �cons 	x valx����

�defn next�twin�prime �x� �if �good x� �car �N x�� F��

�defn good �x� �and

�fpp �car �N x���

�lessp x �car �N x�����

Thus� we �rst used the EVAL� hack� as with the Ackermann function� but here� as described
at the end of x��	� to explicitly name a use of the � operator� that is� ntp�x� � �y �y � x�
fpp�y��� Then� we used qval to get next�twin�prime from ntp in the same way that we
got Ackermann from ack�

x�� CONCLUSION
In this paper� we have analyzed the non�constructive self�referential features in the

Boyer�Moore system of �computational logic�� The question now arises as to why they
are there at all� Perhaps they should be deleted� Some readers may consider it to be
merely a philosophical quibble whether the proof theory is constructive� However� one
of the main uses of Nqthm has been to prove correctness assertions about hardware and
software� It seems unlikely that a practical statement about physical reality could re�
quire non�constructive means for its proof� Now� the practical uses of the self�referential
features are all constructive� One use of EVAL�� as described in ���� allows one to de�ne
functions which take �a name for� a function as input �as one does in Lisp�� and to prove
general theorems about these functions� However� these uses can be obtained just as well
through the constructive commands CONSTRAIN and FUNCTIONALLY�INSTANTIATE �see ����
or Lemma ��	�
 and the following discussion�� Another use in veri�cation is to implement
an embedded interpreter �see� e�g�� ����� However� these uses would be obtained if EVAL�
were restricted to apply to primitive recursive functions� Thus� Nqthm could be modi�ed
to be purely constructive without diminishing its practical usefulness�

Of course� there is a mathematical interest in non�constructive systems� and in par�
ticular in talking about unbounded searches through the natural numbers� In fact� the
original motivation of Boyer and Moore� as described in ���� was not to formalize PRA
at all ���� never mentions PRA�� However� one might then argue for a more straightfor�
ward implementation of PRA� or a stronger theory� where the unbounded � operator is
explicit� something of this nature has already been done as a modi�cation of Nqthm by
Kaufmann �	���

The full strength of Nqthm has not really been clear even to the community of users
of the system� and the script described in x��
 managed to hack Nqthm to produce results
beyond what was commonly expected to be possible� Although hacking can be fun� users
will tend to have more con�dence in a system if its semantics is clearly visible on the
surface�

�

REFERENCES

�	� A� V� Aho� J� E� Hopcroft� and J� D� Ullman� Data Structures and Algorithms�
Addison�Wesley� 	����

�
� M� L� Beeson� Foundations of Constructive Mathematics� Springer�Verlag� 	���
��� R� S� Boyer� D� Goldschlag� M� Kaufmann� and J S� Moore� Functional Instantiation in
First Order Logic� in Arti�cial Intelligence and Mathematical Theory of Computation�

Papers in Honor of John McCarthy� V� Lifschitz� ed�� Academic Press� 	��	� pp� � �

��

��� R� S� Boyer and J S� Moore� The Addition of Bounded Quanti�cation and Partial
Functions to a Computational Logic and its Theorem Prover J� Automated Reasoning�
� �	���� 		� � 	�
�

��� R� S� Boyer and J S� Moore� A Computational Logic Handbook� Academic Press� 	����
��� B� C� Brock and W� A� Hunt� An Overview of the Formal Speci�cation and Ver�
i�cation of the FM���	 Microprocessor� preprint� currently available on WWW at
http
��www�cli�com�hardware�fm���
�html�

��� G� Gentzen� Die Widerspruchsfreiheit der reinen Zahlentheorie� Mathematische An�

nalen 		
 ���� � ���� 	����
��� K� G�odel� Zur intuitionistischenArithmetik und Zahlentheorie� Ergebnisse eines Math�

ematischen Kolloquiums � �	���� �� � ��� reprinted in Feferman� Dawson� Kleene�
Moore� Solovay� and van Heijenoort� Kurt G�odel Collected Works� Volume �� Oxford
University Press� 	����

��� R� L� Goodstein� Recursive Number Theory� North�Holland 	����
�	�� M� Kaufmann� An Extension of the Boyer�Moore Theorem Prover to Support First�

Order Quanti�cation� J� Automated Reasoning� � �	��
� ��� � ��
�
�		� J� Ketonen and R� Solovay� Rapidly Growing Ramsey Functions� Annals of Math 		�

�	��	�
�� � �	��
�	
� S� C� Kleene� Introduction to Metamathematics� Van Nostrand� 	��
�
�	�� K� Kunen� A Ramsey Theorem in Boyer�Moore Logic� J� Automated Reasoning� to

appear�
�	�� J� Paris and L� Harrington� A Mathematical Incompleteness in Peano Arithmetic� in

Handbook of Mathematical Logic� J� Barwise� ed�� North�Holland� 	���� pp� 		�� �
		�
�

�	�� C� Parsons� On a Number�theoretic Choice Scheme and its Relation to Induction� in
Intuitionism and Proof Theory� Kino� Myhill� and Vessley� eds�� North�Holland� pp�
�������� See also JSL �� �	��
� ��� � ��
�

�	�� W� Sieg� Fragments of Arithmetic� APAL
� �	���� �� � �	�
�	�� A� S� Troelstra� Constructivism in Mathematics� Volume �� North�Holland� 	����

�

