
POWER-ASSOCIATIVE, CONJUGACY CLOSED LOOPS

MICHAEL K. KINYON AND KENNETH KUNEN∗

Abstract. We study conjugacy closed loops (CC-loops) and power-associative
CC-loops (PACC-loops). If Q is a PACC-loop with nucleus N , then Q/N is an
abelian group of exponent 12; if in addition Q is finite, then |Q| is divisible by 16
or by 27. There are eight nonassociative PACC-loops of order 16, three of which
are not extra loops. There are eight nonassociative PACC-loops of order 27, four
of which have the automorphic inverse property.

We also study some special elements in loops, such as Moufang elements, weak
inverse property (WIP) elements, and extra elements. In a CC-loop, the set of
WIP and the set of extra elements are normal subloops. For each c in a PACC-
loop, c3 is WIP, c6 is extra, and c12 ∈ N .

1. Introduction

A loop is conjugacy closed (a CC-loop) iff it satisfies the equations:

xy · z = xz · (z\(yz)) (RCC) z · yx = ((zy)/z) · zx (LCC)

This definition follows Goodaire and Robinson [14, 15]; CC-loops were earlier intro-
duced independently, with different terminology, by So�ikis [23]. Further discussion
can be found in [8, 9, 17, 18]. The literature is not uniform as to which of these
two equations is left (LCC) and which is right (RCC). With our choice here, also
followed in [10, 21], LCC is equivalent to saying that the set of left multiplication
maps is closed under conjugation. In [17, 18], the equation labels LCC and RCC

were arranged in the opposite order.
In 1982, Goodaire and Robinson [14] showed that the nucleus N(Q) of a CC-loop

Q is a normal subloop. A fundamental result in the theory of CC-loops was proved
in 1991:

Theorem 1.1 (Basarab [2]). Let Q be a CC-loop with nucleus N = N(Q). Then
Q/N is an abelian group.

This was conjectured in [14], but Basarab was apparently unaware of the conjec-
ture, since he was following the terminology of So�ikis. Because of the differences
in terminology, Theorem 1.1 was not widely known until recently. Proofs in English
of Theorem 1.1 can be found in [8, 17].
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The CC-loops which are also diassociative (that is every 〈x, y〉 is a group) are
precisely the extra loops of Fenyves [12, 13]. For these, a detailed structure theory
was described in [16]. The current paper gives a structure theory for those CC-loops
which are only power-associative.

Definition 1.2. For any loop Q:

1. For c ∈ Q, define cρ and cλ by: ccρ = cλc = 1.
2. c ∈ Q is power-associative iff the subloop 〈c〉 is a group. Q is power-

associative iff every element is power-associative. A PACC-loop is a power-
associative CC-loop.

The two parts of this definition are related by:

Lemma 1.3 ([18]). Let c be an element of a CC-loop Q. Then

c is power associative iff cρ = cλ iff cc2 = c2c

If Q is a finite nonassociative extra loop, then 16 | |Q| (see [16, 17]), and there
are exactly five nonassociative extra loops of order 16 (see Chein [5], p. 49). We
shall show here (Theorem 6.4) that if Q is a finite nonassociative PACC-loop, then
16 | |Q| or 27 | |Q|. Furthermore (see §8), there are exactly eight nonassociative
PACC-loops of order 16 (including the five extra loops), and (see §9) there are
exactly eight nonassociative PACC-loops of order 27. In §7, we describe a method
of loop extension which will be useful in constructing the loops in §§8,9. In §5, we
prove some results about PACC-loops for which Q/N(Q) is small; these results will
be useful for describing the PACC-loops of small orders.

In §§3,4, we discuss some special kinds of elements in general CC-loops. Besides
the power-associative elements defined above, there are Moufang and pseudoMo-
ufang elements, extra elements, and WIP (weak inverse property) elements. A loop
is an extra loop iff all its elements are extra elements; likewise for Moufang and WIP.
These special elements help us prove some facts about PACC-loops. For example
(Theorem 4.20), if c is in a PACC-loop Q, then c12 ∈ N(Q); and this is proved by
showing that c3 is a WIP element and c6 is an extra element.

We shall begin in §2 be describing some basic facts about inner mappings, auto-
topisms, etc.

Our investigations were aided by the automated reasoning tool OTTER [20], and
the finite model builder Mace4 [19], both developed by McCune. We would also like
to thank the referee for many useful suggestions.

2. Inner Mappings, Commutators, and Associators

As usual in a loop Q, we define the right and left multiplications by xy = xRy =
yLx. These permutations define a number of important subgroups of Sym(Q):

Mlt(Q) := 〈Rx, Lx : x ∈ Q〉 RMlt(Q) := 〈Rx : x ∈ Q〉 LMlt(Q) := 〈Lx : x ∈ Q〉
Inn(Q) := (Mlt(Q))1 RInn(Q) := (RMlt(Q))1 LInn(Q) := (LMlt(Q))1
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Mlt(Q) is called the multiplication group of a loop Q; it is generated by all the
multiplications. Then the inner mapping group Inn(Q) is the stabilizer in Mlt(Q)
of the identity element 1. By using only right or only left multiplications, we get
the right and left multiplication groups and the right and left inner mapping groups.

For x, y, z ∈ Q, define

R(x, y) := RxRyR
−1
xy L(x, y) := LxLyL

−1
yx

Tx := RxL
−1
x

These are the standard generators of the inner mapping groups [3, 4]:

Inn(Q) = 〈R(x, y), L(x, y), Tx : x, y ∈ Q〉
RInn(Q) = 〈R(x, y) : x ∈ Q〉 LInn(Q) = 〈L(x, y) : x ∈ Q〉

Also note that a subloop of Q is normal if and only if it is invariant under the action
of Inn(Q) [4].

Lemma 2.1. Let Q be a loop with nucleus N = N(Q) such that N � Q and Q/N
is an abelian group. If M is a subloop of Q satisfying N ≤ M , then M � Q.

Proof. For each x ∈ M , ϕ ∈ Inn(Q), there exists n ∈ N such that (x)ϕ = xn ∈ M .
Thus Inn(Q) leaves M invariant, and so M is normal. �

An autotopism of a loop Q is a triple of permutations (α, β, γ) such that xα ·yβ =
(xy)γ for all x, y ∈ Q. The autotopisms form a subgroup of Sym(Q)3. Defining

R(z) := (Rz, Tz, Rz) L(z) := (T−1
z , Lz, Lz) ,

we see that (RCC) and (LCC) are equivalent, respectively, to the assertions that
each R(z) and each L(z) is an autotopism. In any loop, if (α, β, α) or (β, α, α) is
an autotopism and (1)α = 1, then β = α and α is an automorphism. Applying this
in a CC-loop, where R(x)R(y)R(xy)−1 and L(x)L(y)L(yx)−1 are autotopisms, we
get the following lemma, the parts of which are from [14] and [8], respectively.

Lemma 2.2. For x, y in a CC-loop Q,

1. R(x, y) and L(x, y) are automorphisms of Q.
2. R(x, y) = TxTyT

−1
xy and L(x, y) = T−1

x T−1
y Tyx, so that Inn(Q) is generated

by {Tx : x ∈ Q}.
Definition 2.3. Define the commutator [x, y] and the associator (x, y, z) by:

xy = yx · [x, y] xy · z = (x · yz) · (x, y, z) .

The associator subloop is A(Q) := 〈(x, y, z) : x, y, z ∈ Q〉.
By Theorem 1.1, (1) of the following lemma holds for CC-loops.

Lemma 2.4. In a loop Q with nucleus N = N(Q), the following are equivalent:

1. N � Q and Q/N is commutative.
2. Every commutator is contained in N .

In case these conditions hold, xTy = x[x, y] for all x, y ∈ Q.
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Proof. That (1) implies (2) is clear. If (2) holds, then y · (x)Ty = xy = yx[x, y], so
xTy = x[x, y]. Thus, NTy ⊆ N for all y. Since N is also pointwise fixed by RInn(Q)
and LInn(Q), we have N � Q, and hence (1). �

A = A(Q) is not in general a normal subloop of Q; if it is normal, then Q/A is
defined, and it is clearly a group. The next lemma implies that A � Q for CC-loops,
since A ≤ N(Q) by Theorem 1.1.

Lemma 2.5. Let Q be a loop with associator subloop A = A(Q). If A ≤ N(Q),
then for all x, y, z, u ∈ Q,

1. (x, y, z)Tu = (x, yz, u)−1(y, z, u)−1(x, y, zu)(xy, z, u)
2. [(x, y, z), u] = (x, y, z)−1(x, yz, u)−1(y, z, u)−1(x, y, zu)(xy, z, u)

In particular, A(Q) � Q.

Proof. Compute

(x · yz)(x, y, z)u = (xy · z)u = xy · zu · (xy, z, u) = x(y · zu)(x, y, zu)(xy, z, u)

= x(yz · u)(y, z, u)−1(x, y, zu)(xy, z, u)

= (x · yz) · u · (x, yz, u)−1(y, z, u)−1(x, y, zu)(xy, z, u).

Cancel x · yz and then divide both sides on the left by u to obtain (1). (2) follows
from (1), using (x, y, z) ∈ N . By (1), aTu ∈ A for each generator a of A and each
u ∈ Q. It follows that each ATu ⊆ A; to verify this, use A ≤ N(Q) and note that
(mn)Tu = mTu · nTu whenever m, n, mTu, nTu ∈ N . Thus, A is normal, since any
subloop of N(Q) is pointwise fixed by RInn(Q) and LInn(Q). �
Lemma 2.6. Let Q be a loop with nucleus N = N(Q). If N � Q and Q/N is a
group, then

1. (x, y, z) = (ux, vy, wz) for all x, y, z ∈ Q and u, v, w ∈ N .
2. A(Q) ≤ Z(N) so that A(Q) is an abelian group.
3. (xρ, y, z) = (xλ, y, z).

Proof. For (1) and (2), see, for instance, [17], §5. For (3), note that xρ/xλ ∈ N . �
In particular, Lemma 2.6 applies to CC-loops by Theorem 1.1.

Lemma 2.7. In a loop,

1. RCC is equivalent to (x, y, z) = (x, z, yTz).
2. LCC is equivalent to (x, y, z) = (yT−1

x , x, z).

Proof. RCC is equivalent to xy · z = xz · yTz, so (1) is clear from:

xy · z =(x · yz) · (x, y, z)

xz · yTz =(x · (z · yTz)) · (x, z, yTz) = (x · yz) · (x, z, yTz)

(2) is the mirror of (1). �
Lemma 2.8. A loop Q is a CC-loop iff
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a. All associators are invariant under permutations of their arguments, and
b. All commutators are nuclear.

Proof. For ⇒, (a), which is ([17], Theorem 4.4), follows from Theorem 1.1 and
Lemmas 2.6 and 2.7 (since yTz = vy for some v ∈ N), while (b) follows from
Theorem 1.1. For ⇐, note that (a), (b), and Lemmas 2.4 and 2.6 yield (x, y, z) =
(x, z, yTz) and (x, y, z) = (yT−1

x , x, z), and then apply Lemma 2.7. �

We shall frequently use Lemmas 2.6 and 2.8 without comment when writing
equations with associators. We next collect some further properties of associators
in CC-loops.

Lemma 2.9. In any CC-loop Q:

1. (xy, z, u) = (x, z, u)Ty · (y, z, u) = (x, z, u) · (y, z, u)Tx

2. [(x, z, u), y] = [(y, z, u), x]
3. (xρ, z, u)Tx = (x, z, u)−1

4. (xy, z, u) = 1 iff (x, z, u) = (yρ, z, u)
5. for each x, y ∈ Q, {u : (u, x, y) = 1} is a subloop of Q.

Proof. We know that associators are invariant under permutations of their ar-
guments (Lemma 2.8) and lie in the center of the nucleus (Lemma 2.6). Also,
(xy, z, u) = (yx, z, u) because commutators are nuclear. Now, by Lemma 2.5(1),

(x, y, z)Tu = (x, yz, u)−1(y, z, u)−1(x, y, zu)(xy, z, u)

(x, z, y)Tu = (x, zy, u)−1(z, y, u)−1(x, z, yu)(xz, y, u) .

But these are equal, so

(x, y, zu)(xy, z, u) = (x, z, yu)(xz, y, u) .

Using this and Lemma 2.5(1) again, we get (1):

(x, z, u)Ty · (y, z, u) =(x, zu, y)−1(x, z, uy)(xz, u, y) =

(x, zu, y)−1(x, y, uz)(xy, u, z) = (xy, z, u) .

(2) follows from Lemma 2.4 and (1). We obtain (3) by taking y = xρ in (1). (4)
follows from (1) and (3). In (5), note that {u : (u, x, y) = 1} = {u : uR(x, y) = u},
which is a subloop because R(x, y) is an automorphism. �

Lemma 2.10. For all x, y, z in a CC-loop Q,

1. zL(x, y) = z(z, x, y)−1

2. zR(x, y) = z(z, xλ, yλ)
3. R(x, y)−1 = L(xλ, yλ), so that RInn(Q) = LInn(Q).
4. R(x, y) = R(y, x)
5. R(x, y)R(u, v) = R(u, v)R(x, y), so that RInn(Q) is an abelian group.
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Proof. (1) is from ([17], §4). Next, we compute

xR(y, z)Ryz = xy · z = xRyz · (x, y, z)

so that xR(y, z) = xRyzR(x,y,z)R
−1
yz = x[(yz · (x, y, z))/(yz)]. By Lemma 2.9(4),

yz · (x, y, z) = y(x, y, zλ)−1z = (x, yλ, zλ) · yz, and (2) holds. (3) follows from (1),
(2), and Lemma 2.2(1). (4), which is from [17], follows from (3) and Lemma 2.9(1).
(5), which is also from [17], follows from (2) and Lemmas 2.2(1) and 2.6(1). �

By finding an expression for L(x, y) as a product of right multiplications, Drápal
[8] was the first to show that RInn(Q) = LInn(Q) for a CC-loop Q. However, the
equation in Lemma 2.10(3) relating the generators of the two groups seems to be
new.

The following inner mapping was used also in [17, 18]:

Ex := R(x, xρ) = RxRxρ .

The next lemma collects some of its properties:

Lemma 2.11. For every x, y in a CC-loop Q:

1. Each Ex is an automorphism.
2. yEx = y(y, xλ, x).
3. Ex = R(xλ, x) = L(x, xλ)−1 = L(xρ, x)−1 = RxLxR

−1
x L−1

x .
4. If x is power-associative, then Exn = En2

x , [Ex, Lx] = [Ex, Rx] = I, and

Rxn = Rn
xE

(n−1)n/2
x , Lxn = Ln

xE
−(n−1)n/2
x , Rn

xLm
x = Lm

x Rn
xEmn

x .
5. If Q is a PACC-loop, then E6

x = I.

Proof. (1) and (2) are just specializations of Lemmas 2.2(1) and 2.10(2), respec-
tively. The first two equalities of (3) follow from (2) and Lemma 2.10(1)(2); that
is, yR(xλ, x) = y(y, x, xλ) and yL(x, xλ)−1 = y(y, x, xλ). The third equality follows
from these and Lemma 2.6(3). The remaining equality of (3) is from [18], as is (4).
(5) is from [17]. �

We conclude this section with the following easy criterion for checking that a
subset is a subloop:

Lemma 2.12. A subset X of a CC-loop Q is a subloop iff X is closed under product
and either ρ or λ.

Proof. By Lemma 2.11, L−1
x = ExLxρ = LxλEx and R−1

x = RxρE−1
x = E−1

x Rxλ .
This yields the equations

x\y = xρ(yx · xρ) = (xλy · xλ)x
y/x = x(xρ · yxρ) = (xλ · xy)xλ

which immediately yield the desired result. �
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3. WIP Elements

The role played by weak inverse property elements in CC-loops was already high-
lighted in [15, 17]. In this section we elaborate further on that theme.

Definition 3.1. An element c of a loop Q is a weak inverse property (WIP) element
iff for all x ∈ Q,

c(xc)ρ = xρ (cx)λc = xλ . (WIP)

Let W (Q) denote the set of all WIP elements of Q.

The two equations defining a WIP element are equivalent in all loops ([17], Lemma
2.18). Also note that N(Q) ⊆ W (Q).

Lemma 3.2. For an element c of a CC-loop, the following are equivalent; in (ii)–
(vii), the variable x is understood to be universally quantified:

i. c is a WIP element
ii. x(cx)ρ = cρ iii. (xc)λx = cλ

iv. c = (c · xEc)x
ρ v. x = (x · cEx)c

ρ

vi. (c, x, xρ) = (xρ, c, cρ) vii. (x, c, cρ) = (cρ, x, xρ).

Proof. (i) holds iff x · c(xc)ρ = 1, that is, iff c · [c\(xc)](xc)ρ = 1 for all x, using
LCC. Replacing x with (cx)/c, we have that (i) holds iff c · x(cx)ρ = 1 for all x.
Thus (i) ↔ (ii), and the mirror of this argument yields (i) ↔ (iii).

Next, (i) holds iff (xc)ρ = c\xρ; that is, 1 = xc · (c\xρ). Multiplying on the left
by c and using LCC, we have that (i) holds iff c = xRcLcR

−1
c · xρ = (c · xEc) · xρ,

recalling Ec = RcLcR
−1
c L−1

c (see Lemma 2.11). Thus (i) ↔ (iv). Interchanging c
and x in this argument, we get (ii) ↔ (v).

For (iv) ↔ (vi), use Lemma 2.11(2) plus Lemma 2.9(3) to get:

(c · xEc)x
ρ = cx · (x, cρ, c) · xρ = cx · xρ · (xρ, cρ, c)−1 = c · (c, x, xρ)(xρ, cρ, c)−1 .

Interchanging c and x in this argument yields (v) ↔ (vii). �
Corollary 3.3. For a WIP element c of a CC-loop, xEc = x iff cEx = c.

Proof. By parts (iv) and (v) of Lemma 3.2. �
Theorem 3.4. In a CC-loop Q, W (Q) is a normal subloop.

Proof. We show that W = W (Q) is a subloop, so fix b, c ∈ W , and we show that
W contains bc and cρ (see Lemma 2.12). Normality will follow from Lemma 2.1.

For bc: Set u = c · xcρ, and note that bu · c = bc · x by RCC, since RcρLcRcL
−1
c =

I (by Lemma 2.11(3): Ec = RcRcρ = RcLcR
−1
c L−1

c ). Then, using Lemma 3.2,
RcρLc = LcR

−1
c , LCC, and c ∈ W , we have

bρ = u(bu)ρ = ((cx)/c) · (bu)ρ = c · x(c\(bu)ρ) = c · x(bu · c)ρ = c · x(bc · x)ρ.

Now
bc = (bρ)λc = (c · x(bc · x)ρ)λc = (x(bc · x)ρ)λ,
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that is, (bc)ρ = x(bc · x)ρ. By Lemma 3.2, bc ∈ W .
For cρ: By LCC,

c[(c\x)xρ] = (x/c) · cxρ = (cxρ)λ · cxρ = 1 .

Then, using Lemma 2.11(3) (Ecρ = L(cρ, c)−1 = L−1
c L−1

cρ ):

cρ = (c\x)xρ = xEcρLcρ · xρ = (cρ · xEcρ)xρ ,

so cρ is WIP by Lemma 3.2. �

Corollary 3.5. In a CC-loop Q, if c ∈ W (Q), then 〈c〉 ⊆ W (Q).

For a PACC-loop, we can say something about the structure of the quotient by
the WIP subloop. To this end, we quote the following from [17], Theorem 8.4:

Theorem 3.6. Let Q be a PACC-loop. For each c ∈ Q, c3 ∈ W (Q).

Corollary 3.7. Let Q be a PACC-loop with WIP subloop W (Q). Then Q/W (Q) is
an elementary abelian 3-group.

Then, since N ≤ W , we have:

Corollary 3.8. If Q is a PACC-loop and ar ∈ N(Q), where gcd(r, 3) = 1, then a
is a WIP element.

WIP elements have the following further associator properties:

Lemma 3.9. In a CC-loop, if a is a WIP element and b is arbitrary, then (a2, x, y) =
(b2, u, v) = 1 for all x, y ∈ 〈a, b〉 and all u, v ∈ 〈a〉. If b is also power-associative,
then (b2, u, v) = 1 for all u, v ∈ 〈a, b〉.
Proof. By Lemma 3.2(vi) and (vii), we have

(a, b, bρ) = (bρ, a, aρ) (aρ, bρ, b) = (b, a, aρ)

and

(b, a, aρ) = (aρ, b, bρ) (bρ, a, aρ) = (aρ, b, bρ)

so all these associators are equal. It follows by Lemma 2.9(4) that (a2, b, bρ) = 1 and
(b2, a, aρ) = 1. By Lemma 2.9(5), we have (a2, x, y) = (b2, u, v) = 1 for all x, y ∈ 〈b〉
and all u, v ∈ 〈a〉.

Since b was arbitrary, we can also replace b by a to get (a2, x, y) = 1 for all
x, y ∈ 〈a〉. Then, by Lemma 2.9(1),

(a2, aρ, b) = (a, aρ, b)Ta · (a, aρ, b) = (a, bρ, b)Ta · (a, bρ, b) = (a2, bρ, b) = 1 ,

so by Lemma 2.9(5), we have (a2, x, y) = 1 for all x ∈ 〈a〉 and y ∈ 〈b〉. Applying
Lemma 2.9(5) two more times, we get (a2, x, y) = 1 for all x, y ∈ 〈b〉.

If b is also power-associative, then (b2, u, v) = 1 for all u, v ∈ 〈b〉, and the above
argument then gives us (b2, u, v) = 1 for all u, v ∈ 〈a, b〉. �
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This implies the following properties of 2-generated CC-loops when one of the
generators has WIP. Parts of this lemma are in [17] (see Theorems 7.8, 7.10); the
proof here is different.

Lemma 3.10. Let Q be a CC-loop with nucleus N = N(Q), and assume that
Q = 〈a, b〉N where a has WIP. Then a2 ∈ N . Further,

1. If b is power-associative, then b2 ∈ N and 〈a2, b〉 is a group.
2. If a and b are power-associative, then 〈a, b2〉 is a group, (a, a, b) = (a, b, b)

generates A(Q), |A(Q)| ≤ 2, Q is a PACC-loop, and A(Q) ≤ Z(Q).

Proof. First, a2 ∈ N by Lemma 3.9 because (a2, x, y) = 1 for all x, y ∈ Q. Likewise,
if b is power-associative then b2 ∈ N by Lemma 3.9, and 〈a2, b〉 ≤ 〈{b}∪N〉 = 〈b〉N
is a group.

Now assume that both a and b are power-associative. Then 〈a, b2〉 is a group
because b2 ∈ N . By Theorem 1.1 and Lemmas 2.4 and 2.6, every associator in Q can
be expressed in the form (aibj , akb�, ambn) for integers i, j, k, �, m, n. Furthermore,
since a2, b2 ∈ N(Q), Lemma 2.6 implies the value of (aibj , akb�, ambn) depends only
on i, j, k, �, m, n mod 2.

Lemma 3.2 (vi) and (vii) now gives us (a, a, b) = (a, b, b); call this value u. Then

u = (a, a, a)Tb · (b, a, a) = (ab, a, a) = (a, a, a) · (b, a, a)Ta = uTa

by Lemma 2.9(1), so (ab, a, a) = uTa = u; similarly, (ab, b, b) = uTb = u. Then,

u2 = (a, a, b) · (a, a, b)Ta = (a2, a, b) = 1 .

Then (ab, a, b) = (a, a, b)·(b, a, b)Ta = u2 = 1 and (ab, a, ab) = (a, a, ab)·(b, a, ab)Ta =
u, and likewise (ab, a, ab) = u. Finally, (ab, ab, ab) = (a, ab, ab) · (b, ab, ab)Ta = u2 =
1. This accounts for all associators, so A(Q) = {1, u}.

Since (x, x, x) = 1 for each of x = a, b, ab, we have (x, x, x) = 1 for all x, so Q is
a PACC-loop. Finally u ∈ Z(Q) because u commutes with a and b. �

Corollary 3.11 ([17], Corollary 8.5). For each a, b in a PACC-loop, 〈a3, b2〉 and
〈a6, b〉 are groups.

Proof. By Theorem 3.6, a3 has WIP, so the result follows from Lemma 3.10. �

4. Moufang, PseudoMoufang, and Extra Elements

Lemma 4.1. Let Q be a CC-loop, and fix a, b ∈ Q. If any of the following hold,
then they all hold:

a · ba = ab · a (Flex)
a · ab = a2b (LAlt) ba · a = ba2 (RAlt)
aλ · ab = b (LIP) ba · aρ = b (RIP)

∀x [ab · xa = a(bx · a)]] (Mfg1) ∀x [ax · ba = (a · xb)a] (Mfg2)
∀x [ab · ax = a(ba · x)] (F1) ∀x [xa · ba = (x · ab)a] (F2)
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Proof. (Flex), (LAlt), and (RAlt) are equivalent by Lemma 2.8. (RIP) is bEa =
b, and Lemma 2.11(3) shows that this is equivalent to (LIP) and to (Flex). Taking
x = 1 in (Mfg1) or in (F1) gives (Flex). To see that (Flex) → (F1 ∧ Mfg1),
apply LCC and (Flex) to get:

a(ba · a\u) = ((a · ba)/a) · (a · a\u) = ab · u .

Set u = ax to get (F1). Setting u = xa and applying RCC yields (Mfg1) by

ab · xa = a(ba · a\xa) = a(bx · a) .

The equivalence with (Mfg2) and with (F2) is established similarly. �
If V is a variety of loops defined by some (universally quantified) equation, we

may fix one variable of the equation and define an element c of an arbitrary loop to
be a “V element” iff c satisfies that equation with the other variables quantified. For
short, we simply say “c is V ”. We have already seen one example of this with WIP
elements. For another, one of the Moufang equations is ∀x, y, z [(z · xy)z = zx · yz],
and Bruck defines c to be a Moufang element iff ∀x, y [(c · xy)c = cx · yc] (see
[4],VII§2). Of course, V may be defined by several equivalent equations, each of
which may have several variables, so the proper definition of a “V element” is not
uniquely determined. The following definitions seem to be useful in CC-loops.

Definition 4.2. An element c of a CC-loop Q is a(n)

Moufang element iff

{
∀x, y [c(xy · c) = cx · yc]

∀x, y [(c · xy)c = cx · yc]
(Mfg)

pseudoMoufang element iff

{
∀z, x [z(cx · z) = zc · xz]

∀z, x [(z · xc)z = zx · cz]
(PsM)

extra element iff ∀x, y [c(x · yc) = (cx · y)c] (Ex)

Let M(Q), P (Q), and Ex(Q) denote the sets of Moufang, pseudoMoufang, and
extra elements of Q, respectively.

In all loops, the two equations defining a Moufang element are equivalent because
each one implies ∀z [c ·zc = cz ·c]. Note that (PsM) is obtained by fixing a different
variable in the Moufang laws. In CC-loops, the two equations defining a Pseudo-
Moufang element are equivalent because, by Lemma 4.1, (Mfg1) ↔ (Mfg2).

Note that elements of M(Q), P (Q), and Ex(Q) are power-associative.
The following is immediate from Lemmas 4.1 and 2.11(2).

Corollary 4.3. Let c be an element of a CC-loop Q.

(i) c ∈ M(Q) iff Ec = I iff (x, c, cρ) = 1 for all x.
(ii) c ∈ P (Q) iff cEx = c for all x iff (c, x, xρ) = 1 for all x.

This corollary plus Lemma 2.9(5) yields the next two corollaries:

Corollary 4.4. In a CC-loop Q, if a ∈ M(Q) ∩ P (Q) and b is a power-associative
element, then 〈a, b〉 is a group.
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Corollary 4.5. In a CC-loop Q, if a ∈ M(Q) then 〈a〉N(Q) ⊆ M(Q).

Theorem 4.6. In a CC-loop Q, P (Q) is a normal subloop.

Proof. P (Q) is exactly the fixed point subset of the automorphisms Ex (Corollary
4.3(ii)), and thus is a subloop. Since P (Q) ≥ N(Q), the normality follows from
Lemma 2.1. �
Lemma 4.7. Let a, b be Moufang elements of a CC-loop Q. Then the following are
equivalent:

1. ab is a Moufang element 2. ba is a Moufang element
3. (x, a, b) = (x, aρ, b) for all x ∈ Q 4. (x, a, b) = (x, a, bρ) for all x ∈ Q

Proof. (1) ↔ (2) holds by Corollary 4.5, because [a, b] ∈ N(Q). For (1) ↔ (3),
note that ab ∈ M(Q) iff (x, ab, aρbρ) = 1 for all x (by Corollary 4.3), and

(x, ab, aρbρ) = (x, a, aρbρ)Tb · (x, b, aρbρ) =

(x, a, aρ)TbρTb · (x, a, bρ)Tb · (x, b, bρ)Taρ · (x, b, aρ) = (x, a, b)−1 · (x, b, aρ) ,

using a, b ∈ M(Q) and Lemma 2.9. Similarly, (2) ↔ (4). �
While we will use Lemma 4.7 below, we have not been able to show that M(Q)

is a subloop even in the power-associative case. Thus we offer the following.

Conjecture 4.8. There exists a PACC-loop Q in which M(Q) is not a subloop.

Note that by Lemma 4.14 below, such a Q cannot be WIP.
Extra loops, introduced by Fenyves [12, 13], are loops satisfying one of the fol-

lowing three equivalent identities:

zx · zy = z(xz · y) xz · yz = (x · zy)z z(x · yz) = (zx · y)z .

The identities (F1) and (F2) in Lemma 4.1 are obtained by fixing variables in the
first two of these, but for our definition of “extra element”, we found it more useful
to fix a variable in the third one. Extra loops are both CC and Moufang, and all
squares in an extra loop are nuclear. Generalizing this,

Lemma 4.9. For an element c of a CC-loop Q, the following are equivalent:

(i) c is extra
(ii) ∀x, y [c(x · cy) = (cx · c)y] (iii) ∀x, y [(yc · x)c = y(c · xc)]
(iv) ∀x, y [c(x · cy) = (c · xc)y] (v) ∀x, y [(yc · x)c = y(cx · c)]

(vi) c is Moufang and c2 ∈ N(Q)

Proof. First note that (i)–(v) imply that c · xc = cx · c (setting y = 1 in (Ex) or
(ii)–(v)). Thus, by Lemma 4.1, in all cases, c is Moufang, and hence also c ·cx = c2x
(i.e., L2

c = Lc2). (ii)↔(iv) and (iii)↔(v) follow from c · xc = cx · c.
For (i)↔(vi), note that c is extra iff A(c) := (Lc, R

−1
c , LcR

−1
c ) is an autotopism,

and c is Moufang iff B(c) := (Lc, Rc, RcLc) is an autotopism. Since c is Moufang,
D(c) := A(c)B(c) = (Lc2, I, Lc2), and c is extra iff D(c) is an autotopism iff c2 ∈ N .
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Now, (ii) holds iff H(c) := (LcRc, L
−1
c , Lc) is an autotopism, and c Moufang

implies that F (c) := (Rc, L
−1
c Rc, Rc) is an autotopism (see (F2) in Lemma 4.1).

Then (i)↔(ii) follows from H(c) = A(c)F (c) (using LcRc = RcLc). (i)↔(iii) is
similar. �
Lemma 4.10. In a CC-loop Q, let a be an extra element and let b be a Moufang
element. Then ab and ba are Moufang elements.

Proof. By Lemma 4.9, a is Moufang and a2 ∈ N(Q). By Lemma 2.6(1), (x, aρ, b) =
(x, a2aρ, b) = (x, a, b). Now use Lemma 4.7. �
Lemma 4.11. In a CC-loop Q, S(Q) := {a : a2 ∈ N(Q)} is a normal subloop.

Proof. If a, b ∈ Q, then by Theorem 1.1, there exists n1, n2 ∈ N such that (ab)2 =
(a2b2)n1 and (aρ)2 = (a2)ρn2. Thus a, b ∈ S implies ab, aρ ∈ S, and so S is a subloop
by Lemma 2.12. Normality follows from Lemma 2.1. �
Theorem 4.12. In a CC-loop Q, Ex(Q) is a normal subloop.

Proof. Fix a, b ∈ Ex(Q). By Lemmas 4.9 and 4.10, ab is Moufang. By Lemmas
4.9 and 4.11, (ab)2 ∈ N , so ab ∈ Ex(Q). Next a−1 ∈ Ex(Q) by Corollary 4.5. Thus
Ex(Q) is a normal subloop by Lemmas 2.1 and 2.12. �

Now we relate Moufang and pseudoMoufang elements to WIP elements, after first
proving a technical lemma.

Lemma 4.13. Let c be an element of a CC-loop. The following are equivalent: (i)
c is pseudoMoufang, (ii) cx = (cx · yxρ) · xyρ for all x, y, (iii) xc = yλx · (xλy · xc)
for all x, y.

Proof. (ii) → (i) follows from taking x = 1 and using Corollary 4.3(ii).
For (i) → (ii): We start with the equation x = (x · yxρ) · xyρ ([17], Lemma 5.1).

Define u, v by the equations yxρ = (u)Tx and xyρ = (v)Tx. Then x = ux · (v)Tx =
uv ·x using RCC. Thus uv = 1, and so by Corollary 4.3(ii), c = cEu = cu ·v. Hence
cx = (cu · v)x = (cu · x) · xyρ = (cx · yxρ) · xyρ using RCC twice.

The proof of (i) ↔ (iii) is just the mirror of the preceding argument. �
Lemma 4.14. Let c be an element of a CC-loop. Any two of the following properties
imply the third: (i) c is a WIP element, (ii) c is Moufang, (iii) c is pseudoMoufang.
In case these conditions hold, c is extra.

Proof. If c is a WIP element, then (ii) and (iii) are equivalent by Corollaries 3.3
and 4.3. If c is Moufang and pseudoMoufang, then c = cEx = (c · xEc) · xρ, and so
c is WIP by Lemma 3.2.

Now suppose c satisfies (i), (ii), and (iii). Since c−1 is pseudoMoufang (Theorem
4.6), we have c−1x = (c−1x · yxρ) ·xyρ for all x, y, by Lemma 4.13. Replacing x with
cx and using c−1 · cx = x (Corollary 4.3(i)), we obtain x = [x · y(cx)ρ](cx · yρ). Now
(cx)ρ = x\c−1 by Lemma 3.2, and so x = [x·y(x\c−1)](cx·yρ) = ((xy)/x)c−1·(cx·yρ),
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using LCC. Thus xc = [((xy)/x)c−1 · c](c\[(cx · yρ)c]) = ((xy)/x)(c\[(cx · yρ)c]) by
RCC and Corollary 4.3(1) again. Using LCC again, xc = x · y{x\(c\[(cx · yρ)c])}.
Cancelling x’s and rearranging, we have (cx · yρ)c = c(x(y\c)) = c(x · yρc) by
Corollary 4.3(2). Replacing y with yλ establishes the desired result. �
Example 4.15. The converse of Lemma 4.14 is not true, since in a CC-loop, ex-
tra elements need not be WIP. For the CC-loop Q in Table 1, Z(Q) = {0, 1},
N(Q) = W (Q) = {0, 1, 2, 3}, Ex(Q) = M(Q) = {0, 1, 2, 3, 4, 5, 6, 7}, and P (Q) =
{0, 1, 2, 3, 8, 9, 10, 11}. For example, 4 is extra but not WIP because 4 · (8 · 4)ρ =
4 · 14ρ = 4 · 13 = 9 �= 8ρ = 8. The set of power-associative elements of this loop is
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, which is not a subloop. We also see that Theorem
3.6 cannot be improved; that is, in a PACC-loop, W (Q) contains all cubes, but in
this loop, 4 is power-associative, and 43 = 4 /∈ W (Q). This example was produced
by the program Mace4 [19]; as usual, given the example, it is trivial to verify its
properties using a standard programming language.

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 11 10 14 15 13 12 0 1 3 2 6 7 5 4
9 9 8 10 11 15 14 12 13 1 0 2 3 7 6 4 5
10 10 11 9 8 12 13 15 14 2 3 1 0 4 5 7 6
11 11 10 8 9 13 12 14 15 3 2 0 1 5 4 6 7

12 12 13 15 14 10 11 9 8 5 4 6 7 3 2 0 1
13 13 12 14 15 11 10 8 9 4 5 7 6 2 3 1 0
14 14 15 13 12 8 9 11 10 7 6 4 5 1 0 2 3
15 15 14 12 13 9 8 10 11 6 7 5 4 0 1 3 2

Table 1. extra �→ WIP

In the power-associative case, however, the converse of Lemma 4.14 does hold,
and the pseudoMoufang elements coincide with the extra elements.

Lemma 4.16. If Q is a PACC-loop, then P (Q) = Ex(Q) ≤ W (Q).

Proof. For Ex(Q) ≤ W (Q): if c ∈ Q is extra, then c2 ∈ N(Q) (Lemma 4.9) and
c3 ∈ W (Q) (Theorem 3.6), and so c = c3 · c−2 ∈ W (Q) by Theorem 3.4.
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For P (Q) ≤ W (Q): if c ∈ Q is pseudoMoufang, then cx · x−1 = c = cx · (cx)−1c
for all x by Corollary 4.3. Cancel the cx to get that c is WIP.

Finally, Ex(Q) = P (Q) follows from Lemmas 4.14 and 4.9. �
Corollary 4.17. Let a, b be elements of a PACC-loop, and suppose a is extra. Then
〈a, b〉 is a group.

Proof. By Lemmas 4.9, 4.16, and 4.14, a is both Moufang and pseudoMoufang.
Now apply Corollary 4.4. �

We insert here some criteria for determining when a PACC-loop is WIP.

Lemma 4.18. Let Q be a PACC-loop. The following are equivalent: (i) Q is WIP,
(ii) every square is nuclear, (iii) every square is extra, (iv) every square is Moufang,
(v) every square is pseudoMoufang, (vi) every square is WIP.

Proof. (i)→(ii) is due essentially to Basarab [1], and is true in any CC-loop; see
also [17], §7. (ii)→(iii) is clear from the definitions, and (iii)→(iv) follows from
Lemma 4.9.

(iv)→(v): By (iv) and Lemma 2.11(4), E4
y = Ey2 = I. Since 〈x2, y3〉 is a group

(by Corollary 3.11), x2Ey = x2E9
y = x2Ey3 = x2, so x2 is pseudoMoufang.

(v)→(vi) is from Lemma 4.16.
(vi)→(i): Each x3 ∈ W (Q) by Theorem 3.6. Thus each x = x3 · x−2 ∈ W (Q) by

Theorem 3.4. �
We now turn to the main results of this section.

Theorem 4.19. In a CC-loop Q, if c ∈ W (Q), then c2 ∈ Ex(Q) and c2c2 ∈ N(Q).

Proof. For each x ∈ Q, c2 ∈ N(〈c, x〉) by Lemma 3.10. Thus c2 is Moufang, and
so by Lemma 4.14, c2 is extra. The rest follows from Lemma 4.9. �

Incidentally, by Lemma 3.10, c · cc2 = c2c2 = c2c · c; however, c · c2 need not
equal c2 · c. Thus, the final part of the conclusion of Theorem 4.19 would have been
ambiguous if written as c4 ∈ N(Q).

Theorem 4.20. For all c in a PACC-loop Q,

1. c3 is a WIP element
2. c6 is an extra element
3. c12 ∈ N(Q)

In particular, if c has finite order prime to 6, then c ∈ N(Q).

Proof. (1) just restates Theorem 3.6, and apply Theorem 4.19 for the rest. �
Note that Theorem 4.20(2) and Corollary 4.17 give a different proof of part of

Corollary 3.11. We now have:

Corollary 4.21. Let Q be a PACC-loop.

1. Q/W (Q) is an elementary abelian 3-group.
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2. Q/Ex(Q) is an abelian group of exponent 6.
3. Q/N(Q) is an abelian group of exponent 12.

5. Fat Nuclei

Following up on Corollary 4.21(3), in this section we consider the minimal possi-
bilities for Q/N(Q) for PACC-loops Q.

Lemma 5.1. If Q is a PACC-loop, G ≤ Q is a group, and GN = Q, then Q is a
group.

Proof. The set G∪N associates, so 〈G∪N〉 is a group; see ([17], Corollary 6.4). �

Corollary 5.2. A PACC-loop Q with Q/N cyclic is a group.

The following two lemmas are especially useful for PACC-loops in which the center
coincides with the nucleus.

Lemma 5.3. Let Q = 〈a, b〉 be a PACC-loop, and assume bEa = bu and aEb = av
where u, v ∈ Z(Q). Then u3 = v3, u6 = v6 = 1, and

(aibj , akb�, ambn) = u−ikn−i�m−jkmv−i�n−jkn−j�m (†)
for all integers i, j, k, �, m, n. Also, a6, b6 ∈ N(Q) and A(Q) = 〈u, v〉 ≤ Z(Q).

Proof. Since E6
a = E6

b = I (Lemma 2.11(5)), we have u6 = v6 = 1. Now u =
(b, a, a−1) = (a, a, b)−1 and v = (a, b, b−1) = (a, b, b)−1 by Lemmas 2.11(2) and
2.9(3). Applying Lemma 2.9(1)(3) and multiple inductions, we get

(aibj , akb�, ambn) = (a, a, b)ikn+i�m+jkm(a, b, b)i�n+jkn+j�m

= u−ikn−i�m−jkmv−i�n−jkn−j�m.

Now if i = j = k = � = m = n = 1, we have 1 = (ab, ab, ab) = u−3v−3, and when
combined with u6 = v6 = 1, this gives u3 = v3. By Theorem 1.1 and Lemmas 2.4 and
2.6, every associator in Q can be expressed in the form (†), and so A(Q) = 〈u, v〉 ≤
Z(Q). Taking i = 6, j = 0 in (†) gives a6 ∈ N(Q), and similarly, b6 ∈ N(Q). �

Corollary 5.4. Let Q be a 2-generated PACC-loop with A(Q) ≤ Z(Q). Then
Q/N(Q) is an abelian group of exponent 6.

Lemma 5.5. Let Q = 〈a, b〉 be a PACC-loop satisfying the hypotheses of Lemma
5.3. In addition, assume ba = abz where z = [b, a] ∈ Z(Q). Then

biaj = ajbi · zijui(j−1)j/2v−j(i−1)i/2 , (Z1)

and

aibj · akb� = ai+kbj+� · zjkui�k+j(k−1)k/2v−ij�−k(j−1)j/2 (Z2)

for all integers i, j, k, �.
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Proof. We first prove the following special cases of (Z1):

baj = ajb · zju(j−1)j/2 (Z3) bia = abi · ziv−(i−1)i/2 (Z4)

Now (Z3) is clear for j = 1, and proceeding by induction, using Lemma 5.3:

baj+1 = ba · aj · (b, a, aj)−1 = abz · aj · uj = a · baj · (a, b, aj) · zuj

= a · ajb · zju(j−1)j/2 · (a, aj , b) · zuj = aj+1b · zj+1uj(j+1)/2

The mirror of this argument yields (Z4). Now, in (Z3), we can replace b by bi,
replace z by ziv−(i−1)i/2 (using (Z4)), and replace u by ui (since (bi)Ea = biui) to
get (Z1).

For (Z2), we repeatedly use Lemma 5.3, (Z1) and (Z2) to compute

aibj · akb� = ai · (bj · akb�) · (ai, bj , akb�)

= ai(bjak · b�) · (bj , ak, b�)−1 · u−ijkv−ij�

= ai(akbj · b�) · zjkuj(k−1)k/2v−k(j−1)j/2 · (bj , ak, b�)−1 · u−ijkv−ij�

= ai · akbj+� · zjku−ijk+j(k−1)k/2v−ij�−k(j−1)j/2

= ai+kbj+� · (ai, ak, bj+�)−1 · zjku−ijk+j(k−1)k/2v−ij�−k(j−1)j/2

= ai+kbj+� · zjkui�k+j(k−1)k/2v−ij�−k(j−1)j/2

�
In Theorem 7.9, we will construct loops satisfying the hypotheses of Lemma 5.5.

Lemma 5.6. Let Q = 〈a, b〉 be a PACC-loop satisfying the hypotheses of Lemma
5.5, and assume also that a3 ∈ Z(Q). Then u3 = v3 = z3 = 1 and b3 ∈ Z(Q).

Proof. By Lemma 5.5(Z1), if a3 ∈ Z(Q), then 1 = z3iu3iv−3(i−1)i/2 for all i. Taking
i = 1, we have 1 = z3u3. Since u6 = 1, z3 = u3. Then taking i = 2, we get
1 = z6u6v−3 = v−3, and so v3 = 1, and so u3 = z3 = 1 by Lemma 5.3. That
b3 ∈ Z(Q) then follows from Lemma 5.5(Z2). �
Lemma 5.7. Let Q = 〈a, b〉 be a PACC-loop satisfying the hypotheses of Lemma
5.5, and assume also that a2, b2 ∈ Z(Q). Then u = v = z2 and u2 = z4 = 1.

Proof. By Lemma 5.5(Z1), if a2 ∈ Z(Q), then 1 = z2iuiv−(i−1)i for all i. Taking
i = 1, we have 1 = z2u, and so u = z−2. Taking i = 2, we get 1 = z4u2v−2 = v−2.
Next, b2 ∈ Z(Q) gives 1 = z2ju(j−1)jv−j for all j. Taking j = 1 gives 1 = z2v−1 =
z2v, and so u = z−2 = v and u2 = z−4 = v2 = 1. �

Since [a, b] ∈ N(Q) always holds in a CC-loop (Theorem 1.1), we have:

Corollary 5.8. Let Q be a PACC-loop.

1. If Z(Q) is an elementary abelian 2-group and A(Q) ≤ Z, then Q is WIP.
2. If N = Z is an elementary abelian 2-group, then Q is extra.
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Proof. For (1): fix a, b ∈ Q and adopt the notation of Lemma 5.3. Then u = v and
u2 = v2 = 1. By Lemma 2.11(4), bEa2 = bE4

a = b, and so every square is Moufang.
By Lemma 4.18, Q is WIP.

For (2): N = Z being an elementary abelian 2-group, and Theorem 1.1 imply
the hypotheses of (1), so that Q is WIP. Thus squares are central by Lemma 4.18.
Fixing a, b ∈ Q, Lemma 5.7 implies u = v = z2 = 1. Hence {a, b} associates so that
〈a, b〉 is a group, i.e., Q is extra. �
Corollary 5.9. If Q is a PACC-loop of order 8, then Q is a group.

Proof. Otherwise, by Corollaries 5.2 and 5.8, |N | = 2 and Q is an extra loop, but
the smallest nonassociative extra loop has order 16 (see [16, 17], or [5]). �

We conclude this section by examining the case |Q/N | = 4 in some detail.

Lemma 5.10. Assume that Q is a PACC-loop with |Q/N | = 4. Then Q/N is an
elementary abelian 2-group, and Q has WIP. If Q/N = {N, Na, Nb, Nab}, then
A(Q) = {1, u} ≤ Z(Q), where u = (a, a, b) = (a, b, b) �= 1. Also, 4 divides |N |.
Proof. Q/N is an elementary abelian 2-group by Corollary 4.21(1) (or by Lemma
3.10), and Q has WIP by Corollary 3.8. The claim about A(Q) follows from Lemma
3.10.

Now suppose that |N | = 2r, where r is odd, so |Q| = 8r. Let G = Q/A,
and let π : Q � G be the quotient map. G is a group of order 4r and π(N) �
G, with |π(N)| = r. Let P be a Sylow 2-subgroup of G. Then |P | = 4, and
P contains exactly one element from each of the four cosets of π(N). Say P =
{1, π(n1a), π(n2b), π(n3ab)}, with n1, n2, n3 ∈ N . Then π−1(P ) is a subloop of Q
of order 8. Since (n1a, n1a, n2b) = (a, a, b) = u �= 1, π−1(P ) is nonassociative,
contradicting Corollary 5.9. �

6. Orders

There are nonassociative PACC-loops of order 16 (the five extra loops plus three
others; see §8) and of order 27 (see §9). By taking products with a group of order n,
we get nonassociative PACC-loops of order 16n and 27n for all finite n ≥ 1. These
are the only possible finite orders by Theorem 6.4 below.

Lemma 6.1. Let Q be a PACC-loop with finite associator subloop A = A(Q). Let
n be an integer relatively prime to |A|.

1. If a ∈ Q satisfies En
a = I, then Ea = I.

2. If a ∈ Q satisfies Ean = I, then Ea = I.

Proof. For (1): For each x ∈ Q, (x)Ea = xu where u = (x, a, a−1). Thus x =
(x)En

a = xun, and un = 1. Since n is prime to |A|, u = 1.

For (2): this follows from (1) and Ean = En2

a . �
Lemma 6.2. Let Q be a finite PACC-loop, and suppose |A(Q)| is relatively prime
to |Q/N(Q)|. Then Q is a group.
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Proof. For each a ∈ Q, we have ak ∈ N for some k relatively prime to |A|. Thus
Eak = I, and so Ea = I by Lemma 6.1. Therefore Q is Moufang (Corollary 4.3(i)),
and hence an extra loop. But in an extra loop, A and Q/N are elementary abelian
2-groups [16], and so Q must be a group. �
Lemma 6.3. If Q is a finite PACC-loop and 3 � |A(Q)|, then Q is WIP.

Proof. First, fix any x, y ∈ Q. Then yEx = yn for some n ∈ A. E6
x = I implies

n6 = 1, but then n2 = 1 since 3 � |A|. Thus, E2
x = I for all x, and hence also

Ex2 = E4
x = I. Thus, Q is WIP by Lemma 4.18 and Corollary 4.3. �

Theorem 6.4. Let Q be a finite, nonassociative PACC-loop. If Q is WIP, then
16 | |Q|. If Q is not WIP, then 27 | |Q|.
Proof. If Q is WIP, then x4 ∈ N for all x by Theorem 4.19. Thus, |Q/N | = 2k for
some k ≥ 2 by Corollary 5.2, and 2 | |N | by Lemma 6.2, so 16 | |Q| unless 4 � |N |
and |Q/N | = 4; but this would contradict Lemma 5.10.

If Q is not WIP, fix b /∈ W . Say o(b) = 3jk, where gcd(3, k) = 1. Then bk /∈ W by
Corollary 3.7, and so replacing b by bk if necessary, WLOG assume that o(b) = 3j .
Now fix a such that b(ab)−1 �= a−1. Then a /∈ 〈b〉W . To see this, suppose that
a = biw for w ∈ W and i ∈ Z. Then a, b ∈ 〈w, b2〉 (since o(b) = 3j), and 〈w, b2〉 is a
group by Lemma 3.10, contradicting b(ab)−1 �= a−1.

Thus, 9 | |Q/W |. Since 3 | |A| by Lemma 6.3, 3 | |W |, and so 27 | |Q|. �

7. Extension

Here, we show how in some cases, the equations of Lemma 5.3 may be used as
a prescription for constructing a PACC-loop. This will be useful in Sections 8 and
9, where we construct all PACC-loops of a given order. The natural converse to
Lemma 5.5 would be:

Lemma 7.1. Assume that Q is a PACC-loop, a, b ∈ Q, and z, u, v ∈ Z(Q), with

aibj · akb� = ai+kbj+� · zjkuj(k−1)k/2v−k(j−1)j/2 · ui�kv−ij�

holding for all i, j, k, � ∈ Z. Then ba = abz, (b)Ea = bu, and (a)Eb = av.

Proof. Setting j = k = 1 and i = � = 0, we get ba = abz. Also,

(b)Ea = ba · a−1 = ab · a−1 · z = b · z−1u · z = bu

(setting i = j = 1, k = −1, � = 0), and

(a)Eb = ab · b−1 = a · v
(setting i = j = 1, k = 0, � = −1). �

We now consider how to build such loops. First, a more general construction; the
following is a variant of the construction described in [16] (see Definition 7.1 and
Lemmas 7.2 and 7.3):
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Definition 7.2. Say we are given abelian groups (A, +) and (G, +), and a function
f : A × A → G, satisfying

f(0, a) = f(a, 0) = 0 for all a ∈ A . (∗1)

Then A �f G is the set Q = A × G with a product defined by:

(a, x) · (b, y) = (a + b, x + y + f(a, b)) .

Lemma 7.3. Let Q = A�f G, where f satisfies (∗1). Then Q is a loop with identity
element (0, 0) and divisions given by:

(c, z)/(b, y) = (c − b, z − y − f(c − b, b))

(a, x)\(c, z) = (c − a, z − x − f(a, c − a)) .

Associators are given by

((a, x), (b, y), (c, z)) =
(
0, Af(a, b, c)

)
,

where
Af(a, b, c) := f(a, b) + f(a + b, c) − f(b, c) − f(a, b + c).

Commutators are given by

[(b, y), (a, x)] = (0, f(b, a) − f(a, b)) ,

and so
(b, y)T(a,x) = (b, y) · (0, f(b, a) − f(a, b)) .

Also, G ∼= {0} × G ≤ Z(Q).

Proof. The division formulas are obtained by solving (a, x) · (b, y) = (c, z) for (a, x)
and for (b, y). It is clear that elements of {0} ×G commute with all elements of Q.
To show that {0} × G ≤ N(Q) (and hence {0} × G ≤ Z(Q)), note

(a, x) · (b, y)(c, z) = (a + b + c, x + y + z + f(b, c) + f(a, b + c))

(a, x)(b, y) · (c, z) = (a + b + c, x + y + z + f(a, b) + f(a + b, c)) .

These two are equal if at least one of a, b, c is 0. Thus, {0} × G ≤ N(Q). Dividing
the expressions for products, we get the formula for associators. Finally,

(b, y) · (a, x) = (a, x) · (b, y) · (0, f(b, a) − f(a, b)) .

yields the formulas for commutators and for the mappings T(a,x) = R(a,x)L
−1
(a,x). �

Definition 7.4. If A, G be abelian groups, then a mapping f : A × A → G is

• CC-good if f satisfies (∗1) and A �f G is a CC-loop.
• PACC-good if f satisfies (∗1) and A �f G is a PACC-loop.

The characterization of associators in Lemma 7.3 gives us:

Lemma 7.5. Let A, G be abelian groups, and assume f : A×A → G satisfies (∗1).
Then f is CC-good iff Af(a, b, c) is invariant under permutations of {a, b, c}. In
that case, (a, x) ∈ Z(A �f G) iff f(a, b) = f(b, a) for all b.
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Proof. Since A �f G clearly satisfies (b) of Lemma 2.8, CC is equivalent to (a),
which is equivalent to the invariance of Af(a, b, c) under permutations. Then, note
that for CC-loops, (a, x) ∈ Z(Q) iff (a, x) commutes with all other elements, and
apply the characterization of commutators in Lemma 7.3. �
Lemma 7.6. Let A, G be abelian groups, and assume f : A × A → G is CC-good.
Then f is PACC-good iff Af(a, a, a) = 0 for all a ∈ A. In that case, f(ma, na) =
f(na, ma) for all a ∈ A and all m, n ∈ Z.

Proof. By Lemma 1.3, (x, a) is a power-associative element of A �f G iff (0, 0) =
((x, a), (x, a), (x, a)) = (0,Af(a, a, a)). The rest follows since (a, x)m and (a, x)n

must commute in a power-associative loop. �
Lemma 7.7. If A, G are abelian groups, then the sets of all CC-good and PACC-
good f : A × A → G are subgroups of GA×A.

Proof. If f, g : A × A → G satisfy (∗1), then obviously so does f + g. The rest
follows from Lemmas 7.5, 7.6, and the observation that Af+g(a, b, c) = Af(a, b, c) +
Ag(a, b, c) for all a, b, c ∈ A. �
Lemma 7.8. If A, G are abelian groups and f : A × A → G is bilinear, then f is
PACC-good and A �f G is a group.

Motivated now by Lemma 7.1, we start with A = 〈a〉 × 〈b〉 ∼= Z × Z, and let G
be some abelian group containing elements z, u, v. Converting to additive notation,
we define f : A × A → G by:

f(ia + jb, ka + �b) = (j(k − 1)k/2 + i�k)u + (−k(j − 1)j/2− ij�)v + (jk)z . (∗2)

This is a well-defined function since a and b are assumed to have infinite order.
Then, if it is desired to construct a finite loop, we will quotient out a suitable
normal subloop of A �f G.

Theorem 7.9. Let G be an abelian group and A = 〈a〉×〈b〉 ∼= Z×Z. Fix z, u, v ∈ G
and define f as in (∗2), and let P = A �f G. Then P is a CC-loop. In addition, P
is a PACC-loop iff 3u = 3v and 6u = 6v = 0. In this case, 6a, 6b ∈ N(P ).

Proof. First, observe that the mapping fz(ia + jb, ka + �b) = (jk)z is bilinear, and
hence PACC-good by Lemma 7.8.

Next, consider fu(ia + jb, ka + �b) = (j(k − 1)k/2 + i�k)u. We compute Afu :

Afu(ia + jb, ka + �b, pa + qb) =

fu(ia + jb, ka + �b) + fu((i + k)a + (j + �)b, pa + qb)−
fu(ka + �b, pa + qb) − fu(ia + jb, (k + p)a + (� + q)b) =

(j(k − 1)k/2 + ik�)u + ((j + �)p(p − 1)/2 + (i + k)pq)u−
(�p(p − 1)/2 + kpq)u − (j(k + p − 1)(k + p)/2 + i(k + p)(� + q))u =

(−ikq − jkp − i�p)u .
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Thus Afu is invariant under permutation of its arguments, and so fu is CC-good by
Lemma 7.5.

Similarly, for fv(ia + jb, ka + �b) = (−k(j − 1)j/2 − ij�)v, we find that Afv(ia +
jb, ka + �b, pa + qb) = −i�p − j�q − jkq, and so fv is CC-good by Lemma 7.5.

Since f = fu + fv + fz, f is CC-good by Lemma 7.7.
Now Af = Afu + Afv , and so Af(ia + jb, ia + jb, ia + jb) = −3i2ju − 3ij2v =

−3ij(iu + jv) for all i, j. If f is PACC-good, then −3ij(iu + jv) = 0 for all i, j by
Lemma 7.6. Taking i = −j = 1, we have 3u = 3v, and so 3ij(i + j)u = 0. Taking
i = j = 1, we have 6u = 6v = 0. Conversely, if 6u = 0, then since ij(i+ j) is always
even, 3ij(i + j)u = 0, and so if 3u = 3v, then 3ij(iu + jv) = 0 for all i, j. Therefore
f is PACC-good by Lemma 7.6.

Finally, note that Af(6a, ka + �b, pa + qb) = −6(kq + lp)u − 6(lq)v = 0, and so
6a ∈ N(P ), and similarly 6b ∈ N(P ). �

We now consider special cases of this construction.

Corollary 7.10. Let G be an abelian group and A = 〈a〉 × 〈b〉 ∼= Z × Z. Define f
as in (∗2), and let P = A �f G. Then TFAE:

1. For every choice of z, u, v ∈ G, P is a PACC-loop.
2. G is of exponent 3.

Proof. For (1) =⇒ (2), applying the theorem with v = 2u gives 3v = 0 for all
v ∈ G. The converse is clear. �

The other special case of Theorem 7.9 we will consider is motivated by Lemma
5.7.

Corollary 7.11. Let G be an abelian group and A = 〈a〉× 〈b〉 ∼= Z×Z. Fix z ∈ G,
set v = 2z, u = −2z, and define f as in (∗2). Let P = A �f G. Then P is a
PACC-loop iff the order of z divides 12.

Proof. In this case, Af(ia+jb, ia+jb, ia+jb) = −3ij(iu+jv) = 6ij(i−j)z. Since
ij(i − j) is always even, P is power-associative iff 12z = 0 by Lemma 7.6. �

We now apply the corollaries to get examples with a, b of finite order:

Lemma 7.12. Let (G, ·) be an abelian group of exponent 3, and fix z, u, v, t, w ∈ G.
Then there is a PACC-loop Q = 〈G ∪ {a, b}〉 with G ≤ Z(Q) and Q/G ∼= Z3 × Z3,
such that Q satisfies:

ba = abz (b)Ea = bu (a)Eb = av a3 = t b3 = w .

Proof. Start with the loop P = (Z × Z) �f G constructed in Theorem 7.9, where
a, b have infinite order. Then (b, 0)(a, 0) = (a, 0)(b, 0)(0, z), (b, 0)E(a,0) = (b, 0)(0, u),
and (a, 0)E(b,0) = (a, 0)(0, v) by Lemma 7.1. Since G has exponent 3, (∗2) yields

f(ia + jb, ka + �b) = (−jk2 + i�k + jk)u + (kj2 − ij� − jk)v + (jk)z . (∗3)



22 M. K. KINYON AND K. KUNEN

Also note:

f(3ia + 3jb, ka + �b) = f(ia + jb, 3ka + 3�b) = 0 ,

so that all (3ia+3jb, x) ∈ Z(P ) by Lemma 7.5. Let H = {(3ia+3jb,−it−jw) : i, j ∈
Z}. Then H ≤ Z(P ), so H is a normal subloop, and the lemma is satisfied by P/H .
To see this, note that f(ia, ka) = f(jb, �b) = 0, so that (a, 0)3 = (3a, 0) ≡ (0, t)
(mod H) and (b, 0)3 = (3b, 0) ≡ (0, w) (mod H). �

When |G| = 3, this lemma lists all PACC-loops of order 27; see §9.

Lemma 7.13. Let (G, ·) be an abelian group, and fix z, t, w ∈ G with z4 = 1. Then
there is a PACC-loop Q = 〈G ∪ {a, b}〉 with G ≤ Z(Q) and Q/G ∼= Z2 × Z2, such
that Q satisfies:

ba = abz (b)Ea = bz−2 (a)Eb = az2 a2 = t b2 = w .

Proof. Start with the loop P = (Z×Z)�f G constructed in Theorem 7.9, where a, b
have infinite order. Then (b, 0)(a, 0) = (a, 0)(b, 0)(0, z), (b, 0)E(a,0) = (b, 0)(0,−2z),
and (a, 0)E(b,0) = (a, 0)(0, 2z) by Lemma 7.1. Since 4z = 0, (∗2) yields

f(ia + jb, ka + �b) = (2ik� + 2ij� − jk2 − kj2 − jk)z .

Also note:

f(2ia + 2jb, ka + �b) = f(ia + jb, 2ka + 2�b) = 0 ,

since jk2+jk and kj2+jk are always even; thus all (2ia+2jb, x) ∈ Z(P ) by Lemma
7.5. Let H = {(2ia + 2jb,−it − jw) : i, j ∈ Z}. Then H ≤ Z(P ), so H is a normal
subloop, and the lemma is satisfied by P/H . �

When G = Z4, this lemma describes the two PACC-loops Q of order 16 with
Z(Q) = N(Q) ∼= Z4; see §8.

We conclude this section by considering the automorphic inverse property.

Definition 7.14. A PACC-loop has the automorphic inverse property (AIP) iff the
map x → x−1 is an automorphism.

When A�f G is power-associative, f(a,−a) = f(−a, a) for all a (see Lemma 7.6),
and (a, x)−1 = (−a,−x − f(a,−a)). Then,

((a, x) · (b, y))−1 = (−a − b,−x − y − f(a, b) − f(a + b,−a − b))

(a, x)−1 · (b, y)−1 = (−a − b,−x − y + f(−a,−b) − f(a,−a) − f(b,−b)) ,

so A �f G satisfies the AIP iff

f(a + b,−a − b) = f(a,−a) + f(b,−b) − f(−a,−b) − f(a, b)

holds for all a, b ∈ A. We remark that when f is bilinear, this reduces to f(b, a) =
f(a, b) which is equivalent to the group A�f G being abelian. Replacing a by ia+jb
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and b by ka + �b, we get

f(ia + jb + ka + �b,−(ia + jb + ka + �b)) =

f(ia + jb,−(ia + jb)) + f(ka + �b,−(ka + �b))

−f(−(ia + jb),−(ka + �b)) − f(ia + jb, ka + �b)

Now, consider the case where G has exponent 3 and f is as in (∗3). Then

f(ia+jb,−(ia+jb)) = (−ji2+iji−ji)u+(−ij2+ijj+ji)v−(ji)z = −ij(u−v+z) .

So, the requirement becomes

− (i + k)(j + �)(u − v + z) =

− ij(u + v + z) − k�(u − v + z)

− [(jk2 − i�k + jk)u + (−kj2 + ij� − jk)v + (jk)z]

− [(−jk2 + i�k + jk)u + (kj2 − ij� − jk)v + (jk)z] .

This simplifies to

(i� + kj)(u − v + z) = 2jk(u − v + z)

for all i, j, k, �, which is equivalent to v = u + z. Passing to the quotient, we get

Lemma 7.15. If Q is the loop constructed in Lemma 7.12, then Q has the AIP iff
v = u + z.

Proof. We had Q = P/H , where P = (Z×Z)�f G. We have just seen that v = u+z
implies the AIP of P , and hence of P/H . Conversely, if v �= u+z, then the AIP fails
in P , with [(ia+jb, 0) · (ka+�b, 0)]−1 \ [(ia+jb, 0)−1 · (ka+�b, 0)−1] = (0, z) �= (0, 0)
for some i, j, k, �. Since (0, z) /∈ H , the AIP fails in Q as well. �

This lemma will be used in §9 to determine which of the PACC-loops of order 27
satisfy the AIP.

8. 2-Loops

In this section we show that there are eight nonassociative PACC-loops of order
16; this includes the five extra loops already described by Chein ([5], p. 49). If Q is
such a loop, then Z = Z(Q) is nontrivial, so our strategy is to analyze the various
possibilities for Z and N .

Lemma 8.1. If Q is a PACC-loop of finite order 2n, then

1. |Z(Q)| = 2r, where 0 < r ≤ n.
2. Q has WIP.
3. Q/N(Q) is an elementary abelian 2-group.

Proof. (1) is from [17], Cor. 3.5, and is true of all CC-loops. (2) is by Corollary
3.7. (3) is by Lemma 4.18. �



24 M. K. KINYON AND K. KUNEN

The five nonassociative extra loops of order 16 all have Z(Q) = N(Q) ∼= Z2 and
Q/Z an elementary abelian 2-group. For the nonextra ones, we have two cases,
described by:

Lemma 8.2. If Q is a nonextra PACC-loop of order 16, then |N | = 4, Q/N ∼=
Z2 × Z2, and either:

1. |Z| = 4 and Z ∼= Z4, or
2. |Z| = 2 and |N | = 4.

Proof. |N | = 2 or |N | = 4 by Corollary 5.2, but |N | = 2 would contradict Corollary
5.8, which also yields |Z| = 4 → Z ∼= Z4. �

In Case (1), fix a, b ∈ Q with aZ �= bZ. Then Q/Z = {Z, aZ, bZ, abZ}. Define
z = [b, a] = (ab)\(ba) as in Lemmas 5.5 and 5.7. Then z2 �= 1, since otherwise {a, b}
would associate, but then Q would be a group by Lemma 5.1. So, z is a generator
of Z. Say a2 = zr and b2 = zs, where r, s ∈ {0, 1, 2, 3}. Then, applying Lemmas 5.3
and 5.7, we get the loop Qr,s defined by the table:

Qr,s zj azj bzj abzj

zi zi+j azi+j bzi+j abzi+j

azi azi+j zi+j+r abzi+j bzi+j+r+2

bzi bzi+j abzi+j+1 zi+j+s azi+j+s+1

abzi abzi+j bzi+j+r+1 azi+j+s+2 zi+j+r+s+1

Each Qr,s really defines a PACC-loop by Lemma 7.13. Qr,s is never diassociative,
since aa · b �= a · ab. There are 16 possibilities for r, s, but up to isomorphism, there
are only two loops, Q0,0 and Q1,1:

If r, s are both even, then Qr,s
∼= Q0,0, since if we let 2i = −r and 2j = −s and

define â = azi and b̂ = bzj , then (â)2 = (b̂)2 = 1 and (âb̂)\(b̂â) = z. If we replace

a, b by â, b̂, we get the table for Q0,0.
Also, if r is even and s is odd, then Qr,s

∼= Q0,0. To see this, let 2i = −r and

2j = −r − s − 1, and let â = azi and b̂ = abzj . Then (â)2 = (b̂)2 = 1 and

(âb̂)\(b̂â) = (a · ab)\(ab · a) = ẑ := z−1. Replacing a, b, z by â, b̂, ẑ, we again get the
table for Q0,0.

Likewise, if r is odd and s is even, then Qr,s
∼= Q0,0.

Finally, if r, s are both odd, then Qr,s
∼= Q1,1, since we may let 2i = −r + 1 and

2j = −s + 1 and define â = azi and b̂ = bzj ; then (â)2 = (b̂)2 = z1, so that we get
the table for Q1,1.

Q0,0 and Q1,1 are not isomorphic, since {x : x2 = 1} has size 2 in Q1,1 (namely,
{1, z2}), and size 6 in Q0,0 (namely, {1, z2, a, az2, b, bz2}).
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The loops Qr,s are isomorphic to loop structures defined on Z4×Z2×Z2 as follows:⎛
⎝x1

x2

x3

⎞
⎠

⎛
⎝y1

y2

y3

⎞
⎠ :=

⎛
⎝x1 + y1 + rx2y2 + sx3y3 + 2x2x3y3 + 2x2y2y3 + x3y

2
2

x2 + y2

x3 + y3

⎞
⎠ .

The isomorphism is given on generators by z ↔ (1, 0, 0)t, a ↔ (0, 1, 0)t, and
b ↔ (0, 0, 1)t. The explicit formula was found by making an ansatz that the
Z4-component has the form x1 + y1 + rx2y2 + sx3y3 + f(x2, x3, y2, y3), and then
computing the sixteen values of f using the table. Assuming further that f is a ho-
mogeneous cubic polynomial of the form f(x2, x3, y2, y3) =

∑
0≤i≤j≤k≤1 αijkxixjyk +∑

0≤l≤m≤n≤1 βlmnxlymyn leads to a system of nine linear equations with twelve un-
knowns in Z2, namely the coefficients αijk and βlmn. The particular f chosen here,
namely f(x1, x2, y1, y2) = 2x2x3y3+2x2y2y3+x3y

2
2, maximizes (though not uniquely)

the number of zero coefficients.
Next, we consider Case (2). Let Z = {1, c} and N = {1, c, u, v}. Let Q =

N ∪̇ Na ∪̇ Nb ∪̇ Nab; so N∪̇Na is an 8-element group. Since u, v ∈ N\Z, WLOG
N ∪̇ Na is nonabelian. There are now three subcases:

2.1. N ∼= Z4 and N∪̇Na is the quaternion group.
2.2. N ∼= Z4 and N∪̇Na is dihedral.
2.3. N is an elementary abelian 2-group and N∪̇Na is dihedral.

We shall see that Subcases (2.1) and (2.2) are impossible. Note that in all three
cases, Z(N∪̇Na) = {1, c} = Z(Q), and that all squares in N∪̇Na lie in {1, c}.

By Lemma 5.10, (a, a, b) = (a, b, b) = c. Using LCC, we get a · ba = [(ab)/a] · a2,
so (a · ba) · a = ab · a2. Let ab = dba, with d ∈ N . Then, since a2, c are central,

a2db = dba2 = dba · a · c = ab · a · c = a · ba = a · d−1ab = ad−1a · b · c ;

the last ‘=’ used the fact that (a, d−1b, b) = (a, b, b) = c. Thus, a2d = ad−1ac, so
that ada−1 = d−1c, so d is u or v.

This now refutes Subcase (2.1), since in the quaternions (where c is now −1),
the conjugate of i by any element other than ±1,±i is i−1 = −i, not −i−1. It also
refutes Subcase (2.2). We shall view the dihedral group concretely as the symmetry
group of the square. Here, c is rotation by 180◦, u and v are rotations by 90◦ and
270◦, and a is a reflection, so the conjugate of d ∈ {u, v} by a is d−1, not d−1c.

We are now left with Subcase (2.3). Again, c is rotation by 180◦, and WLOG,
u is reflection on the y axis, v is reflection on the x axis, and a is reflection on the
line x = y. Then a2 = 1, and we can assume WLOG that d = u, so ab = uba.
Furthermore, if b, u commute then ab, u do not commute. Replacing b by ab, we
may assume WLOG, that b, u do not commute so that N∪̇Nb is nonabelian, and is
thus dihedral, as we have just seen. Since some element of Nb has order 2, we may
assume WLOG that b2 = 1. In the dihedral group N∪̇Nb, all commutators are 1
or c, so that ub = cbu; it follows that u (and also v) commute with ab. We now
can compute a complete table of Q; see Table 2. This table can mostly be filled out
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Q 1 c u v a ca ua va b cb ub vb ab cab uab vab

1 1 c u v a ca ua va b cb ub vb ab cab uab vab

c c 1 v u ca a va ua cb b vb ub cab ab vab uab

u u v 1 c ua va a ca ub vb b cb uab vab ab cab

v v u c 1 va ua ca a vb ub cb b vab uab cab ab

a a ca va ua 1 c v u ab cab vab uab cb b ub vb

ca ca a ua va c 1 u v cab ab uab vab b cb vb ub

ua ua va ca a u v c 1 uab vab cab ab vb ub b cb

va va ua a ca v u 1 c vab uab ab cab ub vb cb b

b b cb vb ub uab vab cab ab 1 c v u ua va ca a

cb cb b ub vb vab uab ab cab c 1 u v va ua a ca

ub ub vb cb b ab cab vab uab u v c 1 a ca va ua

vb vb ub b cb cab ab uab vab v u 1 c ca a ua va

ab ab cab uab vab vb ub cb b ca a va ua v u c 1

cab cab ab vab uab ub vb b cb a ca ua va u v 1 c

uab uab vab ab cab cb b vb ub va ua ca a c 1 v u

vab vab uab cab ab b cb ub vb ua va a ca 1 c u v

Table 2. Subcase (2.3)

using the commutation and association relations already described. To fill out the
lower right 4 × 4, we need to know that ab · ab = v. To see that, use LCC to get
ab · ab = [(ab · a)/(ab)] · (ab · b). But ab · a = c · a · ba = cau · ab, and ab · b = ca, so
that ab · ab = cau · ca = aua = v.

Thus, Case (2) of Lemma 8.2 yields just one non-extra PACC-loop of order 16.
Of course, one must verify that the loop described by Table 2 really is PACC. Unlike
Case (1), this does not follow by the results of Section 7; but it can easily be verified
by a short computer program.

The loop of Case (2) is isomorphic to a loop structure defined on Z2×Z2×Z2×Z2

as follows:⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1

y2

y3

x4

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

x1 + y1 + x3y2 + x3y3y4 + x4y
2
2 + x3x4(y3 + y4)

x2 + y2 + x4y
2
3

x3 + y3

x4 + y4

⎞
⎟⎟⎠ .
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The isomorphism is given on generators by c ↔ (1, 0, 0, 0)t, u ↔ (0, 1, 0, 0)t, a ↔
(0, 0, 1, 0)t, b ↔ (0, 0, 0, 1)t. The term x3y2 in the first component is determined by
assuming it is quadratic in the variables, and then using the equation au = va in
the dihedral group N∪̇Na, the upper left 8 × 8 corner of the table. Analogously
to Case (1), the remaining terms in the first and second components were found
by assuming that they are homogeneous cubic polynomials in x2, x3, x4, y2, y3, y4,
where each term contains at least one x4 or y4. Since u ∈ N , it is clear from the
table that the values of the polynomials are independent of x2. Using the table to
compute values determines some coefficients; the choice above maximizes (though
not uniquely) the number of zero coefficients.

9. Order 27

Q 1 a a2 b ab a2b b2 ab2 a2b2 cubes

1 0 0 0 0 0 0 0 0 0 0

a 0 0 α 0 γ
α

+2γ 0 2γ
α

+γ α

a2 0 α α 0
α

+2γ
α

+γ 0
α

+γ
α

+2γ 2α

b 0 θ
2θ
+γ

0 θ
2θ
+γ

β θ+β
2θ+β
+γ

β

ab 0 θ
2θ+α
+γ

2δ
θ

+γ+2δ
2θ+α

+2δ

β

+δ

θ+β
+2γ+δ

2θ+α+β
+2γ+δ

α+β

a2b 0 θ+α
2θ+α
+γ

δ
θ+α

+2γ+δ
2θ+α

+2γ+δ
β

+2δ

θ+α+β
+γ+2δ

2θ+α+β
+2δ

2α+β

b2 0
2θ

+2δ

θ
+2γ+δ

β
2θ+β
+2δ

θ+β
+2γ+δ

β
2θ+β
+2δ

θ+β
+2γ+δ

2β

ab2 0
2θ

+2δ

θ+α
+2γ+δ

β
+δ

2θ+β
+γ

θ+α+β
+γ+2δ

β
+2δ

2θ+β
+2γ+δ

θ+α+β α+2β

a2b2 0
2θ+α
+2δ

θ+α
+2γ+δ

β
+2δ

2θ+α+β
+2γ+δ

θ+α+β
β
+δ

2θ+α+β
+γ

θ+α+β
+γ+2δ

2α+2β

Table 3. Order 27

If Q is a nonassociative PACC-loop of order 27, then |N(Q)| = |Z(Q)| = 3, and
Q/N is an abelian group of exponent 3. Thus Q is an extraspecial CC-loop, and
one may then in principle use Drápal’s description of all extraspecial CC-loops to
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classify the PACC-loops of order 27; see §7 of [11]. Here we adopt a direct approach
based on Lemmas 5.5 and 7.12.

Say N = {1, n, n2} and Q/N has generators Na, Nb. Then Q is determined by
five parameters, θ, α, β, γ, δ ∈ Z3 = {0, 1, 2}, where ba = abnθ, a3 = nα, b3 = nβ ,
(b)Ea = bnγ , and (a)Eb = anδ. Then aibj · akb� = ai+kbj+�nf(i,j,k,�), and Table 3
displays f(i, j, k, �). Likewise, (aibj)3 = ng(i,j), and the table displays g(i, j). The
table is computed using Lemma 5.5, and the loop is PACC by Lemma 7.12.

We now count the number of distinct PACC-loops we have.
Let T = {x ∈ Q : x3 = 1}. By inspection of the table, we see that T is always a

subloop of order either 9 or 27.
Next, let M = M(Q) = {x ∈ Q : Ex = I}, the set of Moufang elements of Q.

Clearly N ⊆ M ⊆ Q. In fact, N � M � Q. First, M �= Q: Q cannot be Moufang
because it is not even WIP by Theorem 6.4 (or, by Chein [5], a Moufang loop of
order 27 is a group). Now, suppose that M = N . Then γ, δ ∈ {1, 2}, so that
γ = ±δ. Referring to the table, we see:

(a · ab) · ab = a2b · ab · nγ = a3b2 · nθ+α+δ = b2 · nθ+2α+δ .

a · (ab)2 = a · a2b2 · nθ+γ+2δ = a3b2 · nθ+α+2γ+2δ = b2 · nθ+2α+2γ+2δ .

(a · a2b) · a2b = a3b · a2b · nα+2γ = b · a2b · n2α+2γ = a2b2 · n2θ+2α .

a · (a2b)2 = a · a4b2 · n2θ+α+2γ+δ = a · ab2 · n2θ+2α+2γ+δ = a2b2 · n2θ+2α+γ+δ .

If γ = δ, then (a · ab) · ab = a · (ab)2, so (a)Eab = a (using tx · x = tx2 → tEx = t
by RAlt= RIP from Lemma 4.1). Since also (ab)Eab = ab, we have Eab = I,
contradicting M = N . Likewise, if γ = −δ, then (a · a2b) · a2b = a · (a2b)2, which
implies Ea2b = I, again a contradiction.

As we noted in Conjecture 4.8, we do not think that for arbitrary PACC-loops, the
set of Moufang elements is necessarily a subloop. However, for this particular loop,
M is indeed a subloop of order 9. To see this, use M �= N , and choose a generator
a such that Ea = I (that is, γ = 0). Then Ea2 = E4

a = I, so M ⊇ N ∪ Na ∪ Na2.
If |M | > 9, then we could choose the other generator b so that Eb = I; but then
δ = 0, and then, as above, all Ex = I, so that M = Q, which is false.

Thus, |M | = 9, and as noted, we shall always choose our generators so that
M = N ∪Na∪Na2, and so γ = 0 and δ ∈ {1, 2}. Since N = Z, this shows that M
is a subloop. We now have three cases:

I. T = Q.
II. T = M .

III. |T | = 9 and T �= M .

Furthermore, each case will split into two subcases:

A. ∃x ∈ Q\M ∃y ∈ M\N [xy = yx].
B. ∀x ∈ Q\M ∀y ∈ M\N [xy �= yx].

In Case I, we have α = β = γ = 0, and the generator b can be any element outside
of M . In Case IA, we can choose a and b so that a, b commute, so that θ = 0. Then,
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WLOG δ = 1, since we can always replace n by n2. In Case IB, we see from Table
3 that θ �= 0 and θ + δ �= 0 (in Z3), so that θ = δ ∈ {1, 2}. Again, replacing n by
n2, we may assume WLOG that θ = δ = 1. Thus, Case I yields two loops.

In Case II, we have T = M = N ∪Na∪Na2, so that α = γ = 0 and β, δ ∈ {1, 2}.
In Case IIA, we can choose a ∈ M\N and b ∈ Q\M , so that ab = ba; so θ = 0.

Now b3 = nβ, but replacing n by n2 if necessary, WLOG β = 1. Also, (a)Eb = anδ,
so (a2)Eb = a2n2δ, so replacing a by a2 if necessary, WLOG δ = 1; note that by
θ = γ = 0, ba2 = a2b, so replacing a by a2 will not change our θ = 0.

In Case IIB, note from the table that θ �= 0 and θ + δ �= 0 (in Z3). WLOG
θ = 1, so that also δ = 1; that is, we choose b, n so that ba = abn. From the table,
b2a = ab2n. Also (b2)3 = n2β . Thus, replacing b by b2 if necessary, WLOG β = 1.

Thus, Case II yields two loops.
In Case III, we may choose generators so that M = N ∪ Na ∪ Na2 and T =

N ∪ Nb ∪ Nb2. Then β = γ = 0 and α, δ ∈ {1, 2}.
Now Case IIIA splits into two subcases:

1. ∃x ∈ T\N ∃y ∈ M\N [xy = yx].
2. ∀x ∈ T\N ∀y ∈ M\N [xy �= yx].

In case IIIA1, WLOG θ = 0. Then b commutes with both of a, a2, whereas b2

commutes with neither of a, a2, so b is fixed. WLOG α = 1; that is, we choose a, n
so that a3 = n; then also a2, n2 satisfy (a2)3 = n2. Now δ ∈ {1, 2} is determined
by (a)Eb = (a)nδ; then (a2)Eb = (a2)(n2)δ. Thus, δ is determined from the loop
structure, so that we have two distinct loops. In Case IIIA2, WLOG θ = 1. Then
also δ = 1, since otherwise b2 would commute with a. But then regardless of the
choice of α, neither of a, a2 commute with any element of {b, ab, a2b, b2, ab2, a2b2},
contradicting the assumption in IIIA.

In Case IIIB, WLOG θ = 1; so [b, a] is n, not n2. Then, as in Case IIIA2, we need
δ = 1, and this guarantees that we are in IIIB for either choice of α ∈ {1, 2}. For
each choice, we have ∀x ∈ M\N ∀y ∈ T\N [ [y, x] = x3α ], so there are two distinct
loops here.

Thus, Case III yields four loops, and there are exactly eight nonassociative PACC-
loops of order 27. By Lemma 7.15, the AIP holds in one if these loops iff δ = γ + θ.
Since our loops all had γ = 0, we need δ = θ, which is true of the four “B” loops and
false of the four “A” loops; so there are exactly four nonassociative AIP PACC-loops
of order 27.
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