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Abstract
Given topological spaces X,Y, there is a unique topology 71 on
X XY such that, for all topological spaces Z, a function f : X XY — Z
is continuous with respect to 7, iff f is separately continuous. We
consider situations under which 77 is regular or normal. This is related
to Eberlein compacta in the case that X,Y are compact, and to o-sets
in the case that X,Y are separable metric.

1 Introduction

If X,Y,Z are topological spaces, a function f : X XY — Z is separately
continuous iff the maps y — f(a,y) and z — f(z,b) are continuous for each
a € X and b € Y. Clearly, this is weaker than continuity with respect to the
usual product topology on X x Y. However, separate continuity is equivalent
to continuity with respect to the topology 7., defined by:
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Definition 1.1 If E C X x Y, then E, = {y : (a,y) € E} (fora € X) and
E'={x:(x,b) € E} (forbeY). U C X xY is+open iff U, is open inY
for all a € X and U’ is open in X for allb € Y. The +open topology, T,
15 the collection of all +open sets. X @Y denotes X x 'Y with the topology
T..

The following properties are immediate from the definition:

Proposition 1.2 If X,Y, Z are any spaces, then:

~

. [ X XY — Z is separately continuous iff f is continuous with respect
to T,.

2. E C XQ®Y is closed iff E, is closed in Y for all a € X and E° is
closed in X for allb e Y.

3. Ty as Ty iff X is Ty and Y is Ts.

4. If XY are both Ty and F C X XY is a 1-1 function (that is, |F,| <1
and |F*| <1 for alla € X and b € Y), then F is closed and discrete
n Ty

5. If AC X and B CY, then the closure of A x B in T, is A x B.

6. If A is dense in X and B is dense in'Y, then AX B is dense in X QY.

7. If X and'Y are separable, then X ® Y s separable.

This topology has been mentioned only a few times in the literature.
The terminology “X ® Y” was used by Knight, Moran, and Pym [15, 16],
who called it a “tensor product”, following Isbell [12], p. 53. They proved a
number of basic facts about X ® Y'; in particular, that it will often fail to be
T;. Recently, Velleman [29] used R®R to aid the exposition of several topics
in elementary calculus; he coined the term “4-open” because U C R x R
is +open iff for each (z,y) € U, one can find a small + sign centered at
(x,y) and contained in U. He also pointed out that the +open topology is
the only topology on X x Y for which Proposition 1.2.1 holds for all spaces
Z. Another topology on the product, called X®Y by Knight, Moran, and
Pym [16], is the weak topology determined by the separately continuous
real-valued functions on X X Y; equivalently, this is the weakest topology
for which Proposition 1.2.1 holds for all completely regular spaces Z. The
recent summary by Henriksen [11] contains further information on X®Y
and the functorial relations between X®Y and X @ Y. Since X®Y is clearly
completely regular, it is not directly relevant to our current paper.
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The extensive literature on separately continuous functions on X x Y
(see [23, 24] for references), however, does yield (implicitly) some facts about
X®Y. Non-trivial results on separate continuity go back to Baire [2], and the
fact that R®R is not T3 follows easily from the proof in Sierpiniski [28] (see our
Remark 2.2). Non-regularity of R® R also follows from a cardinal functions
argument: a separable regular space can have weight no more than ¢, whereas
R ® R is separable (by Proposition 1.2.7) and of weight 2° (by Lemma 2.1).
The fact that w(R®R) > ¢ was already pointed out by Popvassilev [25, 26],
who has some more detailed results about such topologies on R".

Other than Lemma 2.1, which is a tool for proving non-regularity, we
do not go into detail on cardinal functions on X ® Y’; this is considered
more carefully in Hart [10]. Rather, we concentrate here on conditions which
ensure the regularity or normality of X ® Y, and relate this question to more
well-known topological notions, such as Eberlein compacta, Sierpinski sets,
and o-sets; terminology not in Engelking [5] will be defined where first used.

Our sharpest results involve the products of two separable metric spaces
(Section 5) and two compact Hausdorff spaces (Section 4). Some general
results, which apply to both situations, are proved in Section 2.

In the compact case: X ® Y cannot be T3 unless either X or Y is finite or
X,Y are both scattered. If they are both scattered, then X ®Y is sometimes,
but not always, T3. X ® X is T3 iff X is a strong Eberlein compactum, in
which case X ® X is also paracompact. Section 3 has some preliminary
remarks on strong Eberlein compacta.

In the separable metric case: X ® Y is not T3 if | X| =Y | =¢ If X is
countable and non-discrete, then X ® Y is T3 iff Y is a o-set (every Borel
subset is a relative F,), in which case X ® Y is also paracompact. Since
X ®Y is trivially paracompact if one of X, Y is discrete, all possibilities are
settled under CH. Under —~C'H, there are some independence results. If
all o-sets are countable (which is consistent by Theorem 22 of Miller [18]),
then X ® Y is T3 iff both are countable or at least one of them is discrete.
Under M A + —=CH, we have some partial results; in particular (Corollary
5.8), X®Y is T, and in fact Ty, if | X| < p and |Y| < p (see Fremlin [7] for a
discussion of M A and the cardinals p, m, ¢, etc.). Note that X ® Y cannot be
paracompact (or even collectionwise Hausdorff) when XY are uncountable
separable metric spaces, since it is separable and has an uncountable closed
discrete set (by (7) and (4) of Proposition 1.2).
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2 Basics

A separable space of weight greater than ¢ cannot be regular, so the following
lemma can sometimes be used to show that X ® Y is non-regular. It applies
immediately to X =Y = R (using Proposition 1.2.7), and with somewhat
more work to all Cech-complete non-scattered spaces (see Theorem 2.7).

Lemma 2.1 Suppose X,Y are Ty. Suppose that w(X) < ¢ and each non-
empty open subset of X has size at least ¢. Suppose that there are disjoint
countable D, C Y for a < ¢ such that each D, is dense in Y. Then
X((p,q), X ®Y) > 2° for all (p,q) € X X Y.

Proof. We shall in fact find F; C X ® Y for 6 < 2° such that each
Fys is closed and discrete, but each countable union J,., F5, is dense (for
distinct d,,). This is sufficient, because if (p,q) had character less than 2°,
we could find a neighborhood W of (p, ¢) and distinct 6, (n € w) such that
each W N (F5,\{(p,q)}) = 0; since |J,, F5, is dense, (p,q) would be isolated,
which is impossible, given the assumptions on X and Y.

By the assumption on X, we can find disjoint B, C X for a < ¢ such that
each | B,| = ¢, and for all non-empty open U C X, there is an « with B, C U.
Since the B, are disjoint and have size ¢, we may fix g5 : X — w for § < 2¢
such that for each «, the sequence (gs | B, : 6 < 2°) is o-independent (see
Engelking — Karlowicz [6]); that is, given distinct d,, < 2° and any k,, € w,
there is an « € B, such that g;, (z) =k, for all n € w.

Let B = J,., Ba- Re-index the D, as (D, : x € B), and then index each
D, as {d} : n < w}. Define F5: B — Y by Fs(x) = d%™) Since the D, are
disjoint, Fjs is 1-1, so Fs (i.e., its graph) is closed and discrete in X ® Y by
Proposition 1.2.4.

Now, fix distinct &, for n < w, and let H = J, ., F5,. To show that H is
dense, we fix any non-empty open N C X ® Y, and show that N N H # (.
Fix y € Y such that N¥ # (). We find an z so that (x,y9) € NN H as
follows: First, fix a < ¢ such that B, C NY. Then, choose x € B, such that
gs,(x) =n for all n € w. So, Fs,(x) = d? for each n. Thus, {z} x D, C H,
so{r} xY C H,so (z,y) € NNH.

Remark 2.2 Besides being useful for establishing non-regularity, this lemma,
is of interest because it computes the weight and character of R® R. A more
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constructive proof of non-regularity is obtained by the method of Sierpinski
[28], who does not explicitly mention R® R: Fix D C R x R with D dense
in the usual Tychonov topology. Sierpinski showed that if f : R x R =+ R
is separately continuous and f = 0 on D, then f = 0 everywhere. Since we
may take D to be the graph of a 1-1 function, which is closed and discrete in
R®R (by Proposition 1.2.4), this implies immediately that R®R is not com-
pletely regular. In fact, Sierpinski’s proof establishes that whenever U O D
is +open, U must be +dense in R ® R; hence R ® R is not even regular.
For generalizations of Sierpinski’s result and references to the literature, see
[23, 24]. The proof of Lemma 2.3 below, which refutes regularity by a cate-
gory argument, is close to the original Sierpinski argument. A similar proof
is used also in (3.2) of [15] to derive the non-regularity of some X ® Y.

A Baire space is one in which every countable intersection of dense open
sets is dense. A sequence of sets, (F; : i € I), is point-finite iff {i : y € F;} is
finite for each y.

Lemma 2.3 Suppose that'Y is Baire and contains a point-finite sequence of
closed sets, (F}, : n € w), such that |J,.,, I, is dense in Y for each m € w.
Then (w+1)®Y is not T;.

Proof. (F, : n € w) defines aset F CwxY C (w+1)xY, and F is
closed in the +open topology because each FY is finite and hence closed. Fix
a +open U with FF C U C (w+1) x Y, and let H be the +closure of U. We
shall show that {w} x Y C H. This is sufficient, because if (w+1) ® Y were
T3, we could separate any point in {w} x Y from F by open sets.

Now, B = (,,co Upsm Un is dense in Y because Y is Baire. If y € B,
then w N UY is infinite, so that (w,y) € H. Thus, {w} x B C H, and hence

{w}xY C H.

Frequently, in proving X ® Y is not regular, lemmas such as 2.1 or 2.3
do not apply directly to X,Y, but rather to some subspaces X; C X and
Y; C Y. One then applies the fact that T3 is hereditary, plus:

Lemma 2.4 If X, is closed in X and Y s closed in Y, then the +open
topology on X1 x Y7 is the same as the relative topology it inherits from the
~+open topology on X X Y.

Proof. Every +closed subset of X; x Y] is +closed in X x Y.
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This lemma is also proved in [15], where it is pointed out that, unlike
with the standard Tychonov topology, this lemma might fail if we drop the
assumption that X; and Y; are closed. With the aid of this lemma, we can
prove Theorem 2.7, which generalizes the non-regularity of RQR by replacing
R by any non-scattered space which is Cech-complete — in particular, which
is complete metric or compact Hausdorff. Basic facts about Cech-complete
spaces are in §3.9 of [5]; in addition, we need the following two remarks:

Lemma 2.5 Suppose that X is Cech-complete and not scattered. Then there
is a compact H C X and a continuous irreducible map from H onto [0, 1].

Proof. By assumption, X is a G5 in fX. By the standard tree argument,
we may obtain a closed subset K of X such that K C X and K maps onto
2¢ and hence onto [0,1]. Then, since K is compact, we may find a closed
H C K such that this map onto [0, 1] is irreducible on H.

Lemma 2.6 If X is Cech-complete and scattered but not discrete, then there
1 a closed H C X homeomorphic to w + 1.

Proof. Let I be the set of isolated points, and fix p € X'\ I which is isolated
in X'\/. Since X is regular, there is a neighborhood U of p such that Z =
U C {p}Ul. IfJ=ZnNI, then Z = {p}U.J, and J is open and discrete in Z,
while p is a limit point of J. Since Z is closed in X, it is also Cech-complete,
and hence a G5 in 2. Now, fZ = F U J, where .J is open and discrete
in 57 and F is closed. Since Z is a G5, we may find open U, C (57, with
p € U,, each U, C U, and Mhew Un = Mhcw U, C {p} U.J. Then, if we
choose distinct x,, € U, N.J, the only possible limit point of the z, in 57 is
p, so that {x, : n € w} U {p} is homeomorphic to w + 1.

Theorem 2.7 Suppose X,Y are both Cech-complete and non-discrete, and
X®Y isT;5. Then X and Y are both scattered.

Proof. First, we prove that X ® Y is not 73 in the case that neither X nor
Y are scattered. Applying Lemmas 2.5 and 2.4, we may assume also that X
and Y are compact, and that there are irreducible maps f : X — [0,1] and
g:Y —[0,1]. But now Lemma 2.1 applies. X is compact separable with no
isolated points, so w(X) < ¢ and each non-empty open subset of X has size
at least ¢. To obtain the D, C Y for a < ¢, let the E, be disjoint countable
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dense subsets of [0, 1], and let D, be countable with ¢g(D,) = E,. So, X @ Y
is separable (by Proposition 1.2.7) and of weight larger than ¢, so it cannot
be regular.

Now, assume that X is scattered and Y is not. Again, passing to closed
subspaces (now applying Lemma 2.6) we may assume that X = w + 1 and
that Y is compact separable and has no isolated points. Then, if {y, : n € w}

is dense in Y, we may apply Lemma 2.3 with F,, = {y,}.

Later, we consider in more detail the regularity of X ® Y when they are
both compact scattered (Section 4), and when they are both separable metric
(Section 5). Now, we take up a notion which is relevant to both cases:

Definition 2.8 A space X is k-trite iff whenever (F, : a < K) is a point-
finite sequence of closed sets, there is a point-finite sequence of open sets,
(U : a < k), with each F, CU,. X is trite iff X is k-trite for all k.

Clearly, the notion of k-trite gets stronger as x increases, since some of
the F,, may be empty.

Definition 2.9 UA denotes the 1-point compactification of A, where the set
A is given the discrete topology.

Note that if « is an infinite cardinal, then Ok = k + 1 iff K = w; as usual,
if not stated otherwise, ordinals are presumed to have their ordinal topology.

In many cases, if X ® Y is T3, it is also T}, and in fact paracompact. This
holds, for example, if X =Y and they are both compact (see Theorem 4.6);
in fact, then X ® X is actually ultra-paracompact (that is, every open cover
has a disjoint clopen refinement). A simpler example of this phenomenon
follows:

Lemma 2.10 Assume that k is an infinite cardinal, and consider the fol-
lowing properties:

a. Y is k-trite

b. Ok®Y isTy.

c. Ok®Y s Ts.

d. Ok ®Y 1is paracompact.

e. Ok ®Y s ultra-paracompact.
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IfY is Ty, then (a) < (b). IfY is paracompact, then (a) < (b) < (¢) & (d).
If Y is ultra-paracompact, then (a) < (b) < (c¢) < (d) < (e).

Proof. For (b) = (a), if (F, : o < k) is a point-finite sequence of closed sets,
it defines a closed set F' C k x Y C Uk ® Y. Separating F' from {oco} x Y
by open sets will produce the desired point-finite (U, : o < k).

For (a) = (b), suppose that F, H are closed and disjoint in Ox®Y'. First,
consider the special case that ({co} x Y)N F = (. Then (F, : o < k) is
point-finite. Since Y is k-trite and Ty, we can choose open U, C Y such that
(U, : a < k) is point-finite, each F,, C U,, and each H, N U, = (). Then
(U, : o < k) defines an open U such that F C U and HNU = .

As is typical in proofs of normality, we reduce the general case to the
special case as follows. Since Y is Ty, we can find V, W C Y with VN W = (),
Fo CV,and Hy, C W. On each of the two subspaces, Ok ® (Y\V') and
Uk @ (Y\WW), we can apply the special case to separate F, H, and then we
can amalgamate the separations to separate F, H in Uk X Y.

Now, assume that Y is paracompact. To prove (a) < (b) < (¢) < (d), it
is sufficient to prove (¢) = (d), so assume (c¢), and let & be an +open cover of
Uk®Y'. Note first that it is sufficient to find locally finite +-open ¥V, W refining
U such that {oo} xY C W, with W = {We : £ <A}, V = {V:: £ < A}, and
each W C V¢ (here, closures are taken with respect to the +-open topology).
Given V, W, we may, for each o € k, let £, be a locally finite open refinement
of U such that ({a} xY)\U, Ve CUE& C ({a} xY)\U; We. Then VU, &,
is a locally finite open refinement of &/ which covers Ok ® Y.

To get V, W, first apply (c) to get open families {W{ : £ < A} and
{V{ © € < A} refining U, with Wg’ C V¢ and {oo} x Y_g Ue We. Then
apply paracompactness of Y to choose open Q¢, P, with Q¢ C Pr C (W)oo,
such that {P : & < A} is locally finite and |J, Q¢ = Y. Then let W, =
WiN (Ok x Q¢) and Ve = Vi N (Ok x F).

Finally, if Y is ultra-paracompact, we need to prove (¢) = (e). The
argument is similar, but now we must get also that each V; = W, and is
+clopen, and then take the £, to be +clopen families. Choose the Wg’ and
V¢ as before, but now choose disjoint clopen Q¢ with Q¢ C (W{)w, such
that (J Q¢ = Y. For each &, let (W¢)oo = Q¢, and let each (We)o be some

clopen set with (W{)a N Q¢ € (We)a C (V{)a N Q¢. Note that W is +clopen

because for each y € Y, (W)Y is either empty (when y ¢ Q¢) or cofinite
(when y € Q), so that each (W)Y is clopen in Uk.
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Corollary 2.11 IfY is w-trite and Cech complete, then Y is scattered.

Proof. If YV is not scattered, then, by Lemma 2.5, let H be a compact
subspace of Y with no isolated points. Then (w + 1) ® H is not T3 (by
Theorem 2.7). Since H is Ty, Lemma 2.10 applies to show that H, and hence

Y, fails to be w-trite.

We do not know if the converse to this corollary holds for Cech complete
spaces, but it does hold for compact Hausdorff spaces (Corollary 4.2). More-
over, a compact Hausdorff space is trite (that is, s-trite for all &) iff it is
a strong Eberlein compactum (Proposition 3.3). An uncountable separable
metric space Y can never be wi-trite (just take the F, to be distinct points);
Y is w-trite iff Y is a o-set (Lemma 5.4).

When X and Y are totally disconnected, it is easy to see that X ® YV is
as well. But we do not know of any simple analog for X ® Y of the (trivial)
fact that the Tychonov product of 0-dimensional spaces is 0-dimensional.
We do get a special case of this when X is countable and Y is Lindelof.
Then X ® Y is also Lindeldf, so that the topological properties listed in
(), (c), (d) of Lemma 2.10 are trivially equivalent for X ® ¥, and when Y
is O-dimensional, we also get that X ® Y is 0-dimensional (and hence ultra-
paracompact). When Y is just paracompact, we still get equivalences of the
properties of (b), (¢), (d).

Theorem 2.12 Suppose that X is countable and X ® Y is T;.

a. If Y is paracompact, then X ® Y is paracompact.

b. If Y s Lindelof and 0-dimensional, then X ® Y is 0-dimensional, and
hence ultra-paracompact.

Proof. To prove (a), it suffices to show every open cover of X ® Y has a
o-locally finite open refinement. In fact, since X is countable, it suffices to
get, for each x € X, a locally finite refinement covering {x} x Y. So, fix an
open cover Y of X ® Y, and fix x € X. Then {U, : U € U} covers Y, and so
has a locally finite refinement V. For each V' € V, choose Uy € U such that
V C (Uy)g. Now {X xV :V €V}, and thus W= {(X xV)NUy : V € V},
are also locally finite and cover {z} x Y, and W refines U.

To prove (b), it suffices to show that whenever H, K are disjoint closed
subsets of X ® Y, they can be separated by disjoint clopen sets. Then the
clopen sets will constitute a base for X ® Y.
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Assume X is infinite (otherwise (b) is trivial), and list X as {z, : n € w}.
For each n € wand any A C X x Y, let A, abbreviate A, . In what follows,
we use A™ to denote a subset of X ® Y rather than a fiber A® C X.

We shall inductively choose open sets U™ V(™ C X ® Y to construct
disjoint clopen sets U = |J, ., U™ and V = |J,., V™ with H C U and
K C V. To ensure that U,V will be clopen, each U™, V(" will be chosen so
that

i. Un NV =0,
ii. Um C UMY and VW) C VD and
iii. {x,} x Y C Ut yyh+),

First, to ensure that U and V separate H and K, choose U®) V() gatis-
fying (i) with H C U® and K C V(© (X ® Y is T3 and Lindeldf, and hence
Ty). Now suppose U¥) V) have been chosen, for k < n, so that (3), (i), (i)
hold. Since Y is Lindelof and 0-dimensional, there is a clopen subset E,, C Y
such that (U™), C E, € Y \ (V®),. This gives us closed subsets
H) = U0 U ({2,} x E,) and KO = V0 U ({z,} x (Y \ E,)), so we
can choose open U V(1) C X @ V satisfying (i), with H»+1) C y+h)
and K1) C v+,

By (i) and (i), U and V are disjoint, and by (iii), UUV = X ® Y, so
U,V are clopen.

The following generalization of the +open topology will be useful for
simplifying some of the proofs, and may be of interest in its own right. This
notion was also used by R. Brown [4] in defining a number of topologies on
product spaces.

Definition 2.13 Let (Z;T) be a topological space and € any family of sub-
sets of Z. Then Te is the family of all U C Z such that U N E is relatively
open in E for all E € £.

Te is clearly a topology on Z, and the following is easy from the definition:

Proposition 2.14 For any (Z;T):

1. If £ C &', then Ter C Te.

2. Te 2T =Tizy = Tpz)-

3. Suppose that every E € £ is closed in | JE. Let E' be the set of all finite
untons of elements of £. Then Tgr = Tg.
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4. Let 7' = |J€&, and let T be the usual subspace topology Z' inherits from
T. Now we have topologies Te on Z and T on Z'. Then Z' is clopen
in Te, all points of Z\Z' are isolated in T, and T} is the subspace
topology which Z' inherits from Te.

For example, if Z7 = X x Y, T is the usual Tychonov topology, and £ is
the family of all {a} x Y (for a € X) and all X x {b} (for b € V), then T¢ is
the +open topology. Here, assuming X,Y are 77, every E € £ is closed in
Ué==2

As another example, let Z = RxR. Now, rather than the +open topology,
which is not invariant under linear transformations, it might be more natural
to let £ be the family of all lines (or, for that matter, all algebraic curves).
It is easy to modify the proof in Remark 2.2 to establish that 7¢ is not
regular (now choose D to be algebraically independent and dense). However,
by Theorem 5.7, T¢ will be regular (and normal) if we replace R by some
subfield of R of size less than p. A similar example, due to Zeeman [31], is
related to special relativity. Let Z = R* = space-time. Let £ be the family
of all time-like lines, together with all space-like 3-planes. Then the group of
homeomorphisms of (Z; T¢) is precisely the group generated by the Lorentz
transformations plus the translations and dilations.

We now make some remarks on the regularity or normality of 7¢ in gen-
eral. First, note that the assumption that every E € & is closed in (&
is important, even in the case that everything is countable. For example,
let (Z;T) be Q, with the usual topology, let S = {27" : n € w}, and let
E = {E\1, By}, where E; = Q\S and Ey, = Q\{0}. Then (Z; 7g) is one of the
standard examples of a countable non-regular 75 space; S is closed, but 0 is
in the closure of every neighborhood of S.

Next, note that if every E € £ is closed in |J&, and £ is countable, then
separation axioms for 7 can be used directly to prove separation axioms for
Te. For example,

Lemma 2.15 Assume that (Z;T) is Ty and strongly 0-dimensional. Let €
be a countable subset of P(Z) such that every E € £ closed in | JE. Then
(Z;Te) is Ty and strongly 0-dimensional.

Proof. By Proposition 2.14, we may assume that £ is closed under finite
unions and that | J€ = Z. Then, fix E,, € £ for n € w such that F,  Z and
VE € EIn[E C E,]|. Now, let H, K be disjoint and Tg-closed. Inductively
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construct H =Hy C Hi C---and K = Ky C K; C --- so that each H,, K,
are disjoint and Tg-closed, and H, 1 UK, .1 = E,UH UK. Then H and K
are separated by the Tg-clopen sets | J, H, and |, K.

This implies the following, which is also Theorem 7.1 of [16]:

Corollary 2.16 If X and Y are countable and Tz, then X ® Y is ultra-
paracompact.

The lemma may fail when || = N;. For example, let (Z;7) be the
Tychonov product (w; +1) X (wy +1), and let € be the usual family for which
Te is (w1 + 1) ® (wy + 1). Then, by Theorem 4.6, T¢ is not regular.

3 Strong Eberlein Compacta

Theorem 4.6 and Proposition 3.3 imply that for X compact Hausdorff, X ® X
is T3 iff X is trite. Now, for compact spaces, “trite” is equivalent to a number
of other properties. Most well-known is “strong Eberlein compact”, but other
equivalents are related to topological games and topological orders. In this
section, we just discuss those equivalents which do not involve the +open
topology.

Definition 3.1 X 1is a strong Eberlein compactum iff for some k and some
closed F' C 2%: X is homeomorphic to F' and {a : f(a) = 1} is finite for all
fer.

See, e.g., [1, 3, 8, 9, 22|, for more about these and Eberlein compacta in
general. It is well-known that strong Eberlein compacta are scattered, and
we have just shown (Corollary 2.11) that trite compacta are also scattered.

To deal with compact scattered spaces, we use some basic facts and termi-
nology. First, as is easy to see, scattered spaces are hereditarily disconnected,
and hence (see [5]) compact scattered spaces are O-dimensional. For any space
X, one can derive a sequence of subsets of X: X(© = X and X+ is the
set of limit points of X(®. For limit v, X = ﬂa<’y X(©@ Then X is scat-
tered iff some X(® is empty, and one defines the Cantor-Bendixon rank as
follows:

Definition 3.2 If X is compact Hausdorff, scattered, and nonempty, then
rank(X) is the least o such that X+ = (. If v € X, then rank(z, X) is
the least a such that v ¢ X+,
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Equivalently (by compactness) the rank of X is the a such that X (@) g
finite and non-empty, and the rank of x in X is the a such that x is an isolated
point of X(®. Note that since X (@1 is closed and X (®\ X (@+1) is relatively
discrete, each x of rank « has a neighborhood U such that rank(y, X) < «

for all y € U\{z}.
The following lists some easy equivalents to compact trite:

Proposition 3.3 If X is compact Hausdorff, then the following are equiva-
lent:

1. X is trite.

2. There is a point-finite sequence of clopen sets of the form (V,, : p € X),
where p € V,, for each p € X.

3. X s a strong Eberlein compactum.

Proof. (1) = (2): The existence of open V), is immediate from the definition,
and we can shrink them to clopen sets because X is 0-dimensional.

(2) = (1): Let (F, : @ < k) be a point-finite sequence of closed sets.
Let Uy, = U{V, : p € F,}. Clearly U, is open and F, C U,. To see that
(Uy : @ < k) is point-finite, fix z; then £ = {p : = € V,} is finite, and
{arz €Ut =U,cpla:p € Fol.

(3) = (2): Assume X C 2% and {« : p(a) = 1} is finite for all p € X.
Then let V, = {¢ € X : Valp(a) < q(a)]}.

(2) = (3): Let the V, be as in (2), and let ¢ : X — 2% be such that
¢(z)(p) = 1iff x € V,. Then ¢ is continuous (giving 2% the usual product
topology), and ran(y) is a strong Eberlein compactum (since (V, : p € X)
is point-finite). ¢ might fail to be 1-1. To prevent this, note that X is
scattered (by (2) = (1) and Corollary 2.11), so we may assume also that
Ve € V,\{p}[rank(z, X) < rank(p, X)]. This ensures that we never have
distinct p,q with p € V, and ¢ € V), so that the V), separate points. Now ¢

is 1-1, and hence a homeomorphism.

A deeper result, due to Gruenhage [9], yields an equivalent in terms of a
game he introduced in [8]:

Definition 3.4 If X s any topological space and p € X, the Convergent
Sequence Game, CSG(p, X) is played as follows: Alice and Bob take turns
for w plays, with Alice going first. At her n' turn, Alice must play an open
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neighborhood U,, of p, and then Bob, at his n' turn, must choose a point
xn € U,. Alice wins this play of the game iff the sequence (x, : n € w)
converges to p.

Theorem 3.5 (Gruenhage [9]) If X is compact scattered, then X is a
strong Eberlein compactum iff Alice has a winning strategy in CSG(p, X)
forallp € X.

Yet another equivalent to strong Eberlein compact is in terms of topolog-
ical orders; see, e.g., Nachbin [21], for more information on these.

Definition 3.6 A compact order is a pair (X;<), where X is a compact
Hausdorff space and < is a partial order on X which is closed in X x X (with
the usual Tychonov topology). If S C X, then S| = {x € X : Jy € S[z < y|}
and St ={x € X : Jy € Slz > y]}. If v € X, then x| = {z}| and
vt = (o}

Lemma 3.7 Suppose that (X; <) is a compact order and F is a closed subset
of X. Then F| and F1 are closed.

Note that the product of compact orders is a compact order. In particular,
there is the natural compact product order on 2%, where f < g iff f(«) < g(«)
for all a.. It follows that one may characterize strong Eberlein compacta by:

Lemma 3.8 X is a strong Eberlein compactum iff there is a partial order <
on X such that (X; <) is a compact order satisfying:

a. (X;<) has no infinite chains.
b. {q1:q € X) is point-finite; equivalently, each ql is finite.
c. Fach qt is clopen.

Proof. If X is closed in 2" and {a : ¢(«) = 1} is finite for all ¢ € X, then
the natural product order satisfies (a)(b)(c). Conversely, given such an order,
the V,, = p? satisfy (2) of Proposition 3.3.

In Section 4, it will be convenient to argue directly from (a)(b)(c). We
now make some remarks, not needed for the rest of this paper, on which of
these conditions can be dropped.

Condition (a) is redundant, since if C' is any chain, we may choose ¢ €
Nyec *T and apply (b) to show that C is finite. However, (c) cannot be
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dropped, since if X is an arbitrary compact Hausdorff space and < is the
trivial order (x < y iff x = y), then conditions (a)(b) are satisfied. Also,
a 1-point compactification of a Mréwka ¥ space shows that (b) cannot be
dropped. That is, let A,, for a < wy, be almost disjoint subsets of w. Let
X = wU{ps : @ < wi} U{oo}, where elements of w are isolated, basic
neighborhoods of p, are {p,} together with a tail of A,, and X is the 1-
point compactification of w U {p, : @ < wi}. Order X by placing elements
of w on top and incomparable to each other, placing co on the bottom, and
letting p, < n iff n € A,. Then (a)(c) hold, but this space cannot be a strong
Eberlein compactum, since there is a countable set (i.e., w) with uncountable
closure. However, if the order is induced by a semilattice operation, then (a)
alone is sufficient; see Junnila [14] for a proof and for further results on
Eberlein compacta and compact orders and semilattices.

4 Compact Spaces

We consider here the regularity of X ® Y, where X,Y are both infinite
compact Hausdorff spaces. By Theorem 2.7, this is only an issue when they
are both scattered. We note first that in this case, X ® Y will be T35 whenever
X is countable. By Theorem 2.12, that is equivalent to proving X ®Y is ultra-
paracompact. It turns out that the argument does not require compactness
of X:

Lemma 4.1 Suppose that X is countable and 15, andY is compact scattered
and Ts. Then X ® Y s ultra-paracompact.

Proof. We fix X, and prove that X ® Y is T, and strongly 0-dimensional
by induction on rank(}’). We may assume that rank(}’) = « and that the
result holds for compact scattered spaces of rank less than a. Since Y(®
is finite, we may separate the points of Y(® by clopen sets, so we might as
well assume that Y(®) = {p}. Fix closed disjoint H, K C X x Y. We shall
produce a +clopen U with H C U and K N U = (). Separating H? and K?
by clopen subsets of X, we may assume that H? is empty. Also, to simplify
notation, assume that X (as a set) is just w.

Then the H,, for n € w, are closed subsets of Y with p ¢ H,. Choose
clopen C,, CY withY =Cy D C; D---sothat pe C,, and C,, .y N H,, =
for each n. Then C,\C,1; is compact scattered and of rank less than «,
so w ® (C,\Cry1) is Ty and strongly O-dimensional. Thus, we may choose
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a +clopen U, C w x (C,\Cyy1) such that H N (w x (C,\Cry1)) € U, and
Up N (K U (nxY))=0. Then, let U =, Un.

Corollary 4.2 IfY is compact Hausdorff, then'Y is w-trite iff Y is scattered.

Proof. The = direction is Corollary 2.11. The <« direction follows by
Lemmas 4.1 and 2.10.

It now remains to investigate X ® Y with both X,Y compact scattered
and uncountable. Observe that Lemma 2.10 already gives some negative
results here; for example, Ow; ® (w; + 1) is not T3, since it is immediate from
the pressing-down lemma that w; + 1 is not w;-trite. However, Ow; ® Ow; is
T3; more generally, X ® Y regular, and in fact paracompact, when X,Y are
both strong Eberlein compacta (Theorem 4.5). First, we prove the following
general lemma for deriving paracompactness from a partial order:

Lemma 4.3 Let Z be any Hausdorff space, and assume that < is a partial
order on Z satisfying:

a. (Z;<) has no infinite chains.

b. Fach ql is finite.

c. K1 s clopen whenever K is closed.

Then Z is ultra-paracompact.

Proof. For any U, let U* = Z\((Z\U)1). By (c¢), U* is clopen whenever U
is open. Also, U* = {x € U : x| C U} for every U, so that U* = U** = U*|.
If FCZ letUj = UUF)\F ={x € U\F : 2]\F C U}. Note that
Up C U\F, and is clopen whenever F' is clopen and U is open. U* = Uj;.

Now, let {U, : @ < k} be an open cover of Z. Define sets V" and E™ for
n < w and a < Kk by:

Er=JH{VI":a<k&m<n} .
Vel = (Ua\Usca V5" )
Observe that this definition, and properties (1 —4) in the following list, only
depend on the order, not the topology:
1. )CE°CE'CE?C ...
2. Vn C Ent\En
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VirnVe#0 = m=n&a=4
atf = VNV CE" .
V! is clopen.

E™ is clopen.

U E" =2 .

Assuming this, the V! form a disjoint clopen refinement of the U,. To prove
(1 -7): (1 —4) are immediate from the definition. Next, we prove (5),(6) by
induction on n. Now (6) for n = 0 is obvious. For any n, (6) for n implies
that each p € Z has a neighborhood U meeting at most one V" (if p € E,,
let U = E,, and if p ¢ E,, let U = p1). Thus, assuming (6) for n, we prove
by induction on « that each V. is clopen, which is (5) for n, and then that
Ertt = E*U,., Vi is clopen, which is (6) for n + 1.

Finally, for (7), if | J,., E" # Z, then by (a), there would be a minimal
element, ¢ € Z\ |J, ., E", and then by (b), we can fix n with ¢/\E™ = {q}.

But then, if ¢ € U,, we would have ¢ € V", a contradiction.

[0}

N Ot W

This applies to topologies of the form T¢ (see Definition 2.13):

Corollary 4.4 Let (Z;T) be a strong Eberlein compactum, with partial order
< satisfying conditions (a)(b)(c) of Lemma 3.8. Let € be any family of closed
subsets of Z such that for each E € £, E| can be covered by finitely many
elements of E. Then (Z;T¢) is ultra-paracompact.

Proof. We verify that < also satisfies conditions (a)(b)(c) of Lemma 4.3.
This is immediate if we can show that if K C Z is Tg-closed, then K1
is also Tg-closed. Thus, we must show that K1 N E is T-closed for each
E e & Say El C FyU---UE,, where each F; € E. Then KTNFE =
(KNE)TU---U (KN E,))M) N E, which is T-closed by condition (c).

In particular, letting Z = X x Y and letting £ be usual family which
generates the +open topology from the Tychonov topology:

Theorem 4.5 If X and Y are both strong Eberlein compacta, then X ® Y
18 ultra-paracompact.

The converse of this theorem is false, since (w+1)®Y" is ultra-paracompact
whenever Y is compact scattered. The converse does hold when X =Y

Theorem 4.6 If X is compact Hausdorff, then the following are equivalent:
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1. X ® X 1sT;.
2. X ® X 1is ultra-paracompact.

3. X s a strong Eberlein compactum.

Proof. (3) = (2) follows by Theorem 4.5, and (2) = (1) is trivial. For
(1) = (3), we apply Theorem 3.5. So, we fix p € X and produce a winning
strategy for Alice in CSG(p, X).

Let A = {(z,z) : x € X\{p}}, and fix a +open W C X x X with
(p,p) € W and ANW = (. We describe Alice’s strategy o: For her opening
move, she chooses Uy = WP, so that Uy x {p} C W. At succeeding moves,
she will always make sure that Uy O U; D ---, so that Bob’s x,, will always
satisfy (z,,p) € W, and hence p € W, . Then Alice will choose U, so that
S Un+1 g UnJrl g Un N Wxn-

To see that Alice has won, suppose that ¢ # p were a limit point of
(zn :n € w). Then ¢ € M,c, U, C MNyew Wa,- Thus, each (z,,q) € W, so

that (¢,q) € W, contradicting A NW = ().

5 Separable Metric Spaces
If we try to copy the proof of Theorem 2.7 in this case, we get:

Theorem 5.1 Suppose that X andY are both non-discrete separable metric
spaces and X ® Y isTy. Then:

1. Either | X| <c or|Y] <c.
2. X and Y are both w-trite.

Proof. For (1), assume that |X| = |Y| = ¢. Passing to closed subspaces,
we may assume also that in X and Y, every non-empty open subset has size
¢. Then, as in the proof of Theorem 2.7, Lemma 2.1 applies to show that
X ®Y is not T3.

For (2), to prove Y is w-trite, we may, passing to closed subspaces, assume
also that X = w + 1, and then apply Lemma 2.10.

Now, for separable metric spaces, “w-trite” is equivalent to “o-set” (see
Lemma 5.4), which has already been studied in the literature.
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Definition 5.2 A o-set is a separable metric space in which every Fy is also
a G5.

This is the same as saying that every Borel set is both an Fj, and a Gj.
The most well-known example is a Sierpinski set; these exist under C'H.
Every Sierpinski set is a o-set by Szpilrajn [27]; see also Theorem 4.1 of
Miller [19], which discusses these and related notions, and also has examples
(under C'H) of o-sets which are not Sierpinski sets. Also, by Miller (Theorem
22 of [18]), it is consistent with ZFC' that all o-sets are countable. By the
following lemma, every o-set is homeomorphic to a set of reals:

Lemma 5.3 FEvery o-set is 0-dimensional.

Proof. Since the continuous real-valued functions separate points from
closed sets, it is enough to note that no continuous function can map a
o-set onto [0, 1]. This is a result of I. Reclaw; see Theorem 17 of Miller [20]

for a proof.

Lemma 5.4 For X a separable metric space, X is a o-set iff X is w-trite.

Proof. If X is a o-set and (F,, : n < w) is a point-finite sequence of
closed sets, fix open V)i for m,i € w such that |J,-,, Frn = <, Via- Let
U, =({V,. :m,i <n}. Then F, C U,, and (U, : n < w) is point-finite.
Conversely, assume X is w-trite, and let £ be an F,. Note first that F is of
the form  J,,_, F», where each F;, is closed and (F}, : n < w) is point-finite. To
see this, say F = Un<w C,,, where each C,, is closed and ) # Cy C C; C ---.
Let K! = {zx € C,,; ,\Cp : 1/(i + 1) < d(x,C,) < 1/i}, forn < w,0 < i < w.
Then E = Co U, ; K%, and no point is in more than two different K}, so,
re-indexing, we get the F,. Now, if (U, : n < w) is a point-finite sequence of
open sets with each F;, C Uy, then £ = (), _,[U,<m Fn UU,5m Unl- Finally,
note that for each m < w, J, ., Fn is a closed subset of a metric space, and

hence is a G, so that E itself is a Gj.

This lets us decide the regularity of the product of a countable metric
space with a separable metric space:

Theorem 5.5 Suppose that X is a countable non-discrete metric space and
Y is a separable metric space. Then the following are equivalent:
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1. X ®Y s ultra-paracompact.
3. Y is a o-set.

Proof. (1) = (2) is trivial, and (2) = (3) follows from Theorem 5.1 and
Lemma 5.4.

For (3) = (1): Since Y is 0-dimensional (by Lemma 5.3), it is sufficient
to prove that X ® Y is T3 (by Theorem 2.12), but it is just as easy to prove
normality. So, fix closed disjoint H, K C X ® Y. We shall partition X ® Y
into clopen U,V with H C U and K C V. To do this, inductively construct
H, and K,, with

o H=HyCH CHy,C---and K=K CK; C Ky C---.
6. H, and K, closed and disjoint.

- V$3n[(Hn)x U (Kn)x = Y]

0. VeInVylr € ((Hyp)Y)° or x € ((K,)Y)°].

Assuming this construction can be done, set U = |J, H, and V = |, K,;
items (/3),(y) and (0) imply that each U, and each UY is clopen.

Since X is countable, to do the construction, it suffices to fir x € X,
assume we have H,_; and K,_;, and then define appropriate H, and K,.
By (), we can partition the strongly 0-dimensional Y into clopen A, B with
(Hyp 1)z € A and (K, 1), € B. For each ¢ > 0, since X is countable, the
set {yeY :1d(x,(K,1)Y) <et={yeY ' e (K,1) [dx2)<e]}=
U{Ky : 2" € XAd(z,2") <e}isan F,. So E. ={y € A:d(z,(K,-1)Y) > €}
is a G, and hence an F, (since Y is a o-set). Since the E, cover the closed
set A, we may find closed A; C A for j < w such that A = Uj A, and
each inf{d(z, (K,-1)Y) : v € A;} > 0, and we may then find clopen R;
containing x such that each (R; x 4;) N K,_y = 0 and diam(R;) < 1/j.
Likewise, choose closed B; C B for j < w and clopen S; containing x such
that B = {J; B;j and each (S; x Bj) N H,—1 = () and diam(S;) < 1/j. Let
H, = H,—1 UJ;(R; x 4;) and let K, = K,—1 UJ;(S; x Bj). Regarding
item (), we have (H,), U (K,), = AUB =Y. Regarding item (¢), we have
z € ((Hp)?)° for y € A and = € ((K,)Y)° for y € B.

In particular, since countable metric spaces are o-sets, X ® Y is T3 when
both X,Y are countable, but this is true for non-metric X,Y as well (see
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Corollary 2.16). By the results so far, we have a simple criterion for the
regularity of X ® Y in some models of set theory:

Corollary 5.6 Let X,Y both be separable metric and not discrete.

1. If CH, then X ® Y s T3 iff one is countable and the other is a o-set.
2. If all o-sets are countable, then X ® Y s 15 iff both are countable.

The hypothesis of (2) is consistent by Theorem 22 of Miller [18]. However,
every set of reals of size less than p is a o-set, so one may consider what
happens in models of ZFC' in which p > N;. Now, the product of two o-sets
need not be T3 in the 4+open topology; for example, this fails if they both
have size ¢ by Theorem 5.1. However, X ® Y is T3 when | X |, |Y| < p. This
follows easily from the following lemma, which generalizes the result to a 7¢
(see Definition 2.13). The proof uses the method of Juhdsz and Weiss [13];
see also Theorem 7.1 of Weiss [30].

Theorem 5.7 Suppose that (Z;T) is a separable metric space, £ C P(Z),
IE] <p, and ||JE| < p, and every E € € is closed in \|JE. Then (Z;7T¢) is

normal and strongly 0-dimensional.

Proof. We may assume that | JE = Z, by Proposition 2.14.4, so that each
E € € is closed in Z. Now, fix disjoint Tg-closed sets, H, K. We show how
to separate them with 7e-clopen sets.

Let B be a countable family of 7 -clopen sets such that B is closed under
finite boolean combinations and B forms a base for 7. If B € Band Q, R C
Z, we say that B separates Q, R iff Q C B and RN B = (). Let P be the set
of all pairs (@, R) such that @), R are T-closed subsets of Z, some element of
B separates @, R, and (HU Q) N (K UR) = 0. Define (@', R") < (Q, R) iff
(Q',R) 2 (Q, R), so that (0,0) € P is the largest element. P is o-centered
because {(Q, R) € P : B separates ), R} is centered for each B € B.

For S C E, let intg(S) be the interior of S computed in the relative
topology 7 induces on E. Whenever z € E € £, let D, p = {(Q,R) € P:
z €intg(QNE)Uintg(RNE)}. To prove D, g is dense, fix any (Q, R) € P.
Since (HUQ)N (K UR) = (), assume that x ¢ (K UR) (the case z ¢ (HUQ)
is similar). Since (K N E)U R is T-closed, fix B € B with z € B and
BN((KNE)UR)=0. Let @ = QU (BNE). Then (Q',R) < (Q, R) and
x € intp(Q' N E), so we need to show that (Q', R) € P. Now (HUQ')N
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(KUR)=BnNEN(KUR), which is empty by choice of B. Also, if B; € B
separates (Q, R, then B; U B separates ', R.

Let G C P be a filter meeting all D, 5. Let U = [ J{Q : 3R[(Q, R) € G|}
and V = |J{R : IQ[(Q,R) € G]}. Then U,V partition Z into disjoint
Te-open (and hence Tg-clopen) sets, and H C U and K C V.

Corollary 5.8 Suppose that X,Y are both separable metric spaces of size
less than p. Then X ® Y is normal and strongly 0-dimensional.

Note that for separable metric X,Y, we have settled all cases for the
regularity of X ® Y under CH (Corollary 5.6), but not under MA. Left
open is the situation where Xy < |X| < ¢ = |Y| and Y is a o-set. As a partial
result (Theorem 5.16), we prove regularity, and normality, in the case where
Y is a generalized Sierpinski set.

We first note that for |X| < p, Silver’s theorem says that X is a Q-
set — that is, every subset is a relative G5 and F,. We need the following
generalization of Silver’s result:

Lemma 5.9 Suppose that X is a separable metric space, with |X| < p, and
f: X — 2% Then there are closed F,, C X forn € w with F,, /X and
each f | F, continuous.

Proof. Let A be a countable clopen base for X, closed under finite boolean
combinations. Call U C X x 2“ a pre-function iff U = Uj<l A; x Bj, where
¢ < w, each B; is a non-empty clopen subset of 2¥, each A; € A, and
{A; - j < (} is a partition of X. Let P be the set of all p = (U?, 0% : n € w)
such that:

a. Bach U? is a pre-function.

b. UP = X x 2¢ for all but finitely many n.

c. op Cof Cofh---C X and |, oF is finite.

d. Each f[o? C UP.
Define p < ¢ ift U? C U} and o? D ol for each n.

Let G be a filter. Define g, = ({U? : p € G} and X,, = J{o? : p € G}.
Note that XO g X1 g X2 LN

If G meets the dense set {p : Vz(diam(UP) < 2=™)} for each m,n, then
each g,, will be (the graph of) a continuous function, and g, [ X,, = f [ X,,, so
that f [ X,, will be continuous. If G also meets the dense set {p : In(x € o2)}
for each x € X, then X,, " X.
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Now, let F,, = X,,. The fact that f [ F), is continuous follows from the
fact that X,, 7 X.

Corollary 5.10 (Silver) Suppose that X is a separable metric space, | X| <
p, and S C X. Then S is an F, in X.

Proof. Apply Lemma 5.9 to the characteristic function of S.

We may now modify the standard hyperspace construction and use this
to study +closed sets:

Lemma 5.11 Suppose that X,Y are separable metric spaces, with | X| < p,
and suppose that H C X x Y, with each H, closed in Y. Then there are
closed F, C X for n € w with each HN (F,, X Y') closed in F,, x Y (in the
usual Tychonov topology) and F,, /X .

Proof. Let B be a countable base for YV, and define f : X — 2% so that
f(z)(B)is1if H,NB # ( and 0 if H, N B = (. Apply Lemma 5.9 to get
closed F,, /X such that each f [ F}, is continuous. To prove HN(F, xY) is
closed, fix (z,y) € (F,xY)\ H. Now, fix B € Bwithy € Band BNH, = 0,
so that f(z)(B) = 0. By continuity, there is a neighborhood U of x in F,
such that f(z')(B) = 0 for all 2’ € U, so that U x B is a neighborhood of

(z,y) in F, x Y and (U x B)N H = (.

We now prove versions of these results for generalized Sierpinski sets.

Definition 5.12 A generalized Sierpinski set with associated measure pu is
a separable metric space of size ¢ on which u is a finite reqular Borel measure
and each p-null set has size less than c.

Generalized Sierpinski sets can easily be proved to exist from MA (al-
though not just from p = ¢). Under M A, such sets are o-sets by the following
lemma. The key observation in the proof is that every set of size less than ¢
is covered by a null Fj.

Lemma 5.13 If M A holds, Y is a generalized Sierpinski set, and E CY 1is
in the < c-algebra generated by the open sets, then E is an F, set.
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Proof. Let p be the associated measure. We first consider the special
case where F is a p-null set (and hence |E| < c¢). Let B be a countable
base for the topology, closed under finite unions. Let P be the set of triples
p = (ny, €p, 5p) such that n, € w, e, € [E]<¥, s, € B", and pu(Y\s,(j)) <277
for each j < n,. Define p < ¢ iff n, > ny, €, D ey, s, 2 54, and s,(j)Ne, =0
whenever n, < j < n,. A filter in P which meets the obvious dense sets
yields U; € B for j < w such that if D =(;_, Uy, U, then DN E = () and
p(Y\D) = 0. Then E C (Y\D), and Y\D is an F, set. Also, |[Y\D| < «,
since Y is generalized Sierpiniski, so that Y\D is Q-set. Hence, E is F, in
Y\D, and hence in Y.

Now, to prove the lemma in the general case, note that E must be u-
measurable by M A, so let F' be an F;, set such that FF C E and p(E\F) = 0.
Then, applying the special case, we have E as the union of the two F, sets,
F and E\F.

We remark that unlike for ordinary Sierpinski sets, one cannot prove in
ZFC that generalized Sierpinski sets are o-sets. For example, assume that
V E CH and V[G] adds a set S of Ry random reals, which we view as
contained in [0, 1]. Then, by Solovay (see [17]), in V[G], S is a Sierpinski set.
Hence S = SU(V' N0, 1]) is a generalized Sierpinski set, because ¢ = Ry and
any null subset of S" N (V' N[0, 1]) still has size at most X;. But S’ is not a
o-set, since QN [0, 1] is a relative F, which is not a Gj.

Lemma 5.14 Assume MA. Assume that X,Y are 0-dimensional separable
metric spaces, with X compact and Y a generalized Sierpinski set, with as-

sociated measure . Let f Y — X be p-measurable. Then there are closed
F, CY forn € w with f | F, continuous and U, Fn=Y.

Proof. Just by using the measure, we can get closed A, such that f[ A,
is continuous and Y™\ |J, A4, is a null set, and hence of size less than ¢, and
hence an F, by Lemma 5.13. Say Y \ U, A» = U, Bi, where each B; is
closed. Applying Lemma 5.9 to each B;, we get closed C;; C B; with each
f1Ci; continuous and |J; C;; = B;. List {A, :n € w}U{C;:4,j € w} as

{Dy, :n € w},and let G, = U,,<, D
Lemma 5.15 Assume MA. Suppose that X,Y are separable metric spaces,

with | X| < ¢, and 'Y a generalized Sierpiriski set. Suppose that H C X XY,
with each HY closed in X. Then there are closed G,, CY forn € w with
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each HN (X x Gy,) closed in X x G,, (with the usual Tychonov topology) and
Gn /Y.

Proof. Exactly as in Lemma 5.11. We use |X| < ¢ to prove that the f in
that proof is measurable, so that Lemma 5.14 applies.

Theorem 5.16 Assume MA. Suppose that X,Y are separable metric, with
| X| <¢, and Y a generalized Sierpiriski set. Then X ® Y is T, and strongly
0-dimensional.

Proof. Suppose H, K are closed and disjoint. Let 7 be the usual Tychonov
topology. Applying Lemmas 5.11 and 5.15, there are closed F,, C X and
closed G,, C Y such that all of the HN(F,, xY), HN(X xG,) KN (F, xY),
and K N (X x G,) are T-closed. Let & be the family of all F,, x Y and all
X X Gy. Note that T C Te C T, and H, K are Tg-closed. Now, 7¢ is normal
and strongly 0-dimensional by Lemma 2.15, so that we may separate H, K
by Te-clopen sets, and these sets remain clopen in the finer topology 7. .
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