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Abstract

Assuming the Continuum Hypothesis, there is a compact first countable
connected space of weight ℵ1 with no totally disconnected perfect subsets.
Each such space, however, may be destroyed by some proper forcing order
which does not add reals.

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. As in [12],

Definition 1.1 A space X is weird iff X is compact and not scattered, and no
perfect subset of X is totally disconnected.

A subset P of X is perfect iff P is closed and has no isolated points. As usual,
c denotes the (von Neumann) cardinal 2ℵ0 . Big weird spaces (of size 2c) were
produced from CH in Fedorchuk, Ivanov, and van Mill [10]. Small weird spaces
(of size ℵ1) were constructed from ♦ in [12], which proved:

Theorem 1.2 Assuming ♦, there is a connected weird space which is hereditarily
separable and hereditarily Lindelöf.
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The weird spaces of [12], [10], and the earlier Fedorchuk [9] are all separable
spaces of weight ℵ1. Our ♦ example is also first countable, because it is compact
and hereditarily Lindelöf. In contrast, the CH weird spaces of [10, 9] have no
convergent ω-sequences. We do not know whether CH can replace ♦ in Theorem
1.2, but weakening hereditarily Lindelöf to first countable we do get:

Theorem 1.3 Assuming CH, there is a separable first countable connected weird
space of weight ℵ1.

This theorem cannot be proved by a classical CH construction. Classical CH
arguments build the item of interest directly from an enumeration in type ω1 of
some natural set of size c (e.g., R, R<ω1 , etc.). The result, then, is preserved
by any forcing which does not add reals. These arguments include any CH proof
found in Sierpiński’s text [15], as well as most CH proofs in the current literature,
including the constructions of the big weird spaces of [9, 10]. In contrast, every
space satisfying Theorem 1.3 is destroyed by some proper forcing order which
does not add reals.

Our proof of Theorem 1.3 uses classical CH arguments to make X weird, but
then, to make X first countable, we adapt the method of Gregory [11] and Devlin
and Shelah [2]. The methods of [11] and [2] are, as Hellsten, Hyttinen, and Shelah
[13] pointed out, essentially the same. We review the method in Section 2, and
use it to prove Theorem 1.3 in Section 4. Although [11] and [2] derive results
from 2ℵ0 < 2ℵ1 , for Theorem 1.3, we need CH; Section 5 explains why.

In Section 3, we show that each space satisfying Theorem 1.3 can be destroyed
by a proper forcing which does not add reals; in V [G], we add a point of uncount-
able character. More precisely, if X is a compactum in V , then in each generic
extension V [G], we still have the same set X with the natural topology obtained
by using the open sets from V as a base. If X is first countable in V , then it must
remain first countable in V [G], but X need not be compact in V [G]. We get the

point of uncountable character in the natural corresponding compact space X̃ in
V [G]. This compact space determined by X was described by Bandlow [1] (and
later in [3, 4, 6]), and can be defined as follows:

Definition 1.4 If X is a compactum in V and V [G] is a forcing extension of V ,

then in V [G] the corresponding compactum X̃ is characterized by:

1. X is dense in X̃.

2. Every f ∈ C(X, [0, 1]) ∩ V extends to an f̃ ∈ C(X̃, [0, 1]) in V [G].

3. The functions f̃ (for f ∈ V ) separate the points of X̃.

In forcing,
�
X denotes the X̃ of V [G], while X̌ denotes the X of V [G].
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For example, if X is the [0, 1] of V , then X̃ will be the unit interval of V [G];
note that in statement (2), asserted in V [G], the “[0, 1]” really refers to the unit

interval of V [G]. If in V , we have X ⊆ [0, 1]κ, then X̃ is simply the closure of X
in the [0, 1]κ of V [G]. If in V , X is the Stone space of a boolean algebra B, then

X̃ will be the Stone space, computed in V [G], of the same B. In general, the

weights of X and X̃ will be the same (assuming that cardinals are not collapsed),
but their characters need not be.

Following Eisworth and Roitman [8, 7], we call a partial order P totally proper
iff P is proper and forcing with it does not add reals.

Theorem 1.5 If X is compact, connected, and infinite, and X does not have a
Cantor subset, then for some totally proper P: �P � “

�
X is not first countable”.

The proof is in Section 3. Observe the importance of connectivity here. Sup-
pose in V that X is the double arrow space, obtained from [0, 1] by doubling the

points of (0, 1). Then in any V [G], X̃ is the compactum obtained from [0, 1] by
doubling the points of (0, 1) ∩ V , and is hence first countable.

2 Predictors

In the following, λωα denotes the set of functions from ωα into λ. Something like
the next definition and theorem is implicit in both of [11, 2]:

Definition 2.1 Let κ, λ be any cardinals and Ψ : κ<ω1 → λ. If f ∈ κω1, g ∈ λω1,
and C ⊆ ω1, then Ψ, f predict g on C iff g(ξ) = Ψ(f�ξ) for all ξ ∈ C. Ψ is a
(κ, λ)–predictor iff for all g ∈ λω1 there is an f ∈ κω1 and a club C such that
Ψ, f predict g on C.

Theorem 2.2 The following are equivalent whenever 2 ≤ κ ≤ c and 2 ≤ λ ≤ c :

1. There is a (κ, λ)–predictor.

2. There is a (c, c)–predictor.

3. 2ℵ0 = 2ℵ1.

Proof. (3) → (1): Let C = ω1 \ω. List λω1 as {gα : α < c}, and choose fα ∈ κω1

so that the fα�ω, for α < c, are all distinct. Then we can define Ψ : κ<ω1 → λ so
that Ψ(fα�ξ) = gα(ξ) for all ξ ∈ C.

(1) → (2): Fix a (κ, λ)–predictor Ψ : κ<ω1 → λ. We shall define Φ : (κω)<ω1 →
(λω) so that it is a (κω, λω)–predictor in the sense of Definition 2.1. For p ∈ (κω)ξ
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and n ∈ ω, define p(n) ∈ κξ by: p(n)(μ) = (p(μ))(n) ∈ κ. Then, for p ∈ (κω)<ω1,
define Φ(p) =

〈
Ψ(p(n)) : n ∈ ω

〉 ∈ λω.
(2) → (3): Fix a (c, c)–predictor Ψ : c<ω1 → c. Let Γ : c<ω1 × c<ω1 → c be

any 1-1 function. If K ⊆ ω1 is unbounded and ξ < ω1, let next(ξ, K) be the least
element of K which is greater than ξ.

For each B ∈ cω1 , choose G(n, B), F (n, B) ∈ cω1 and clubs C(n, B) ⊆ ω1 for
n ∈ ω as follows: Let G(0, B) = B. Given G(n, B), let C(n, B) be club of limit
ordinals and let F (n, B) ∈ cω1 be such that (G(n, B))(ξ) = Ψ((F (n, B)) � ξ) for
all ξ ∈ C(n, B). Then define G(n + 1, B) so that

(G(n + 1, B))(ξ) = Γ
(
F (n, B) � next(ξ, C(n, B)), G(n, B) � next(ξ, C(n, B))

)

for each ξ.
Now, fix B, B′ ∈ cω1 , and consider the statement:

∀n ∈ ω
[
G(n, B)�ξ = G(n, B′)�ξ

]
(✰(ξ))

So, ✰(0) is true trivially, and ✰(ξ) implies ✰(ζ) whenever ζ < ξ. We shall prove
inductively that ✰(1) implies ✰(η) for all η < ω1. If we do this, then ✰(1) will
imply B = B′, so we shall have 2ℵ0 = 2ℵ1 , since there are 2ℵ1 possible values for
B but only 2ℵ0 possible values for the sequence 〈(G(n, B))(0) : n ∈ ω〉.

The induction is trivial at limits, so it is sufficient to fix η with 1 ≤ η < ω1,
assume ✰(η), and prove ✰(η +1) — that is, (G(n, B))(η) = (G(n, B′))(η) for all
n. Fix n. For ξ < η, we have (G(n+1, B))(ξ) = (G(n+1, B′))(ξ), which implies:

a. next(ξ, C(n, B)) = next(ξ, C(n, B′)); call this γξ.

b. F (n, B)�γξ = F (n, B′)�γξ.

c. G(n, B)�γξ = G(n, B′)�γξ.

Applying (a) for all ξ < η: η ∈ C(n, B) iff η ∈ C(n, B′). If η /∈ C(n, B), C(n, B′),
then fix ξ with with ξ < η < γξ; now (c) implies (G(n, B))(η) = (G(n, B′))(η).
If η ∈ C(n, B), C(n, B′), then η is a limit ordinal and (b) implies F (n, B)�η =

F (n, B′)�η; now (G(n, B))(η) = (G(n, B′))(η) = Ψ((F (n, B)) � η). K
The non-existence of a (2, 2)–predictor is the weak version of ♦ discussed by

Devlin and Shelah in [2], where they use it to prove that, assuming 2ℵ0 < 2ℵ1 ,
every ladder system on ω1 has a non-uniformizable coloring. By Shelah [14]
(p. 196), each such coloring may be uniformized in some totally proper forcing
extension.

A direct proof of (3) → (2), resembling the above proof of (3) → (1), would
obtain C fixed at ω1 \ {0}, since one may choose the fα so that the fα(0), for
α < c, are all distinct. Gregory [11] used the failure of (2), with this specific C,
to derive a result about trees under 2ℵ0 < 2ℵ1 ; see Theorem 3.14 below.



3 SOME TOTALLY PROPER ORDERS 5

3 Some Totally Proper Orders

We consider forcing posets, (P;≤, �), where ≤ is a transitive and reflexive relation
on P and � is a largest element of P. As usual, if p, q ∈ P, then p ⊥ q means that
p, q are compatible (that is, have a common extension), and p ⊥ q means that
p, q are incompatible.

Definition 3.1 Assume that X is compact, connected, and infinite. Let K = KX

be the forcing poset consisting of all closed, connected, infinite subsets of X, with
p ≤ q iff p ⊆ q and �K = X. In K, define p |= q iff p ∩ q = ∅.

Note that p ⊥ q iff p ∩ q is totally disconnected. The stronger relation p |= q
will be useful in the proof that K is totally proper whenever X does not have a
Cantor subset. First, we verify that K is separative; this follows easily from the
following lemma, which is probably well-known; a proof is in [12]:

Lemma 3.2 If P is compact, connected, and infinite, and U ⊆ P is a nonempty
open set, then there is a closed R ⊆ U such that R is connected and infinite.

In particular, in K, if p ≤ q, then we may apply this lemma with U = p \ q to
get r ≤ p with r ⊥ q, proving the following:

Corollary 3.3 If X is compact, connected, and infinite, then KX is separative
and atomless.

We collect some useful properties of the relation |= on K in the following:

Definition 3.4 A binary relation E on a forcing poset is a strong incompatibility
relation iff

1. p E q implies p ⊥ q.

2. Whenever p ⊥ q, there are p1, q1 with p1 ≤ p, q1 ≤ q, and p1 E q1.

3. p E q & p1 ≤ p & q1 ≤ q → p1 E q1.

This definition does not require E to be symmetric, but note that the relation
p E q & q E p is symmetric and is also a strong incompatibility relation.

Lemma 3.5 The relation |= is a strong incompatibility relation on KX .

Proof. Conditions (1) and (3) are obvious. For (2): Suppose that p ⊥ q. Let
F = p∩ q, which is totally disconnected. Then by Lemma 3.2 there is an infinite

connected p1 ⊆ p\F . Likewise, we get q1 ⊆ q\F . K
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Definition 3.6 If P is a forcing poset with a strong incompatibility relation E,
then a strong Cantor tree in P (with respect to E) is a subset {ps : s ∈ 2<ω} ⊆ P
such that each ps�μ < ps for μ = 0, 1, and each ps�0 E ps�1. Then, P has the weak
Cantor tree property (WCTP) (with respect to E) iff whenever {ps : s ∈ 2<ω} ⊆ P
is a strong Cantor tree, there is at least one f ∈ 2ω such that P contains some
q = qf with q ≤ pf�n for each n ∈ ω.

Note that if P has the WCTP, then the set of f for which qf is defined must
meet every perfect subset of the Cantor set 2ω, since otherwise we could find a
subtree of the given Cantor tree which contradicts the WCTP.

Lemma 3.7 If X is compact, connected, and infinite, and X does not have a
Cantor subset, then KX has the WCTP.

Definition 3.8 P has the Cantor tree property (CTP) iff P has the WCTP with
respect to the usual ⊥ relation.

KX need not have the CTP (see Theorem 5.4). A countably closed P clearly
has the CTP. In the case of trees, the CTP was also discussed in [13] (where it
was called “ℵ0 fan closed”) and in [12]. The following modifies Lemma 3 of [13]
and Lemma 5.5 of [12]:

Lemma 3.9 If P has the WCTP, then P is totally proper.

Proof. Define q ≤′ p iff there is no r such that r ≤ q and r ⊥ p. When P is
separative, this is equivalent to q ≤ p.

Fix a suitably large regular cardinal θ, and let M ≺ H(θ) be countable with
(P;≤, �, E) ∈ M , and fix p ∈ P ∩ M . It suffices (see [8]) to find a q ≤ p such
that whenever A ⊆ P is a maximal antichain and A ∈ M , there is an r ∈ A ∩ M
with q ≤′ r. If P has an atom q ≤ p such that q ∈ M , then we are done.
Otherwise, then since M ≺ H(θ), P must be atomless below p. Let {An : n ∈ ω}
list all the maximal antichains which are in M . Build a strong Cantor tree
{ps : s ∈ 2<ω} ⊆ P∩M such that, p() ≤ p, and such that, when n ∈ ω and s ∈ 2n,
ps extends some element of An ∩M . Then choose f ∈ 2ω such that there is some

q ∈ P with q ≤ pf�n for each n ∈ ω. K
Proof of Theorem 1.5. Let P = KX . Working in V [G], let G′ = {p̃ : p ∈ G};

then
⋂

G′ = {y} for some y ∈ X̃ \ X. Since P does not add ω–sequences,⋂
E � {y} whenever E is a countable subset of G′. Thus, χ(y, X̃) is uncountable.

K
These totally proper partial orders yield natural weakenings of PFA:
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Definition 3.10 If P is a class of forcing posets, then MAP(ℵ1) is the statement
that whenever P ∈ P and D is a family of ≤ ℵ1 dense subsets of P, then there is
a filter on P meeting each D ∈ D.

Trivially, PFA → MAWCTP(ℵ1) → MACTP(ℵ1), but in fact MAWCTP(ℵ1) ↔
MACTP(ℵ1) (see Lemma 3.13). Also, MACTP(ℵ1) → 2ℵ0 = 2ℵ1 (see Corollary
3.15), so, the natural iteration of (totally proper) CTP orders with countable
supports must introduce reals at limit stages. By the proof of Theorem 5.9 in
[12], PFA does not follow from MACTP(ℵ1) + MA(ℵ1) + 2ℵ0 = ℵ2, which in fact
can be obtained by ccc forcing over L.

We now consider some CTP trees.

Definition 3.11 Order λ<ω1 by: p ≤ q iff p ⊇ q. Let � = ∅, the empty sequence.

So, λ<ω1 is a tree, with the root � at the top. Viewed as a forcing order, it is
equivalent to countable partial functions from ω1 to λ. We often view p ∈ λ<ω1

as a countable sequence and let lh(p) = dom(p). Then lh(�) = 0.
Kurepa showed that SH is equivalent to the non-existence of Suslin trees. A

similar proof shows that MACTP(ℵ1) is equivalent to the non-existence of Gregory
trees:

Definition 3.12 A Gregory tree is a forcing poset P which is a subtree of c<ω1

and satisfies:

1. P has the CTP.

2. P is atomless.

3. P has no uncountable chains.

It is easily seen that if any of conditions (1)(2)(3) are dropped, such trees may
be constructed in ZFC. However:

Lemma 3.13 The following are equivalent:

1. MACTP(ℵ1).

2. MAWCTP(ℵ1).

3. There are no Gregory trees.
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Proof. (1) → (3): Let P be a Gregory tree. As with Suslin trees under MA(ℵ1),
a filter G meeting the sets Dξ := {p ∈ P : lh(p) ≥ ξ} yields an uncountable chain,
and hence a contradiction, but to apply MACTP(ℵ1), we must prove that each Dξ

is dense in P. To do this, induct on ξ. The case ξ = 0 is trivial. For the successor
stages, use the fact that P is atomless. For the limit stages, use the CTP.

(3) → (2): Fix P with the WCTP and dense sets Dξ ⊆ P for ξ < ω1. We need
to produce a filter G ⊆ P meeting each Dξ. This is trivial if P has an atom, so
assume that P is atomless.

Inductively define a subtree T of 2<ω1 together with a function F : T → P
as follows: F (�) = �P. If t ∈ T and lh(t) = ξ, then t�0 ∈ T and t�1 ∈ T ,
and F (t�0), F (t�1) are extensions of F (t) such that each F (t�i) ∈ Dξ and
F (t�0) E F (t�1); to accomplish this, given t and F (t): first choose two ⊥
extensions of F (t), then extend these to be E, and then extend these to be in Dξ.
If η < ω1 is a limit ordinal and lh(t) = η, then t ∈ T iff ∀ξ < η [t�ξ ∈ T ] and
∃q ∈ P ∀ξ < η [q ≤ F (t�ξ)]; then choose F (t) to be some such q.

T is clearly atomless, and T has the CTP because P has the WCTP. If there
are no Gregory trees, then T has an uncountable chain, so fix g ∈ 2ω1 such that

g�ξ ∈ T for all ξ < ω1, and let G = {y ∈ P : ∃ξ < ω1 [F (g�ξ) ≤ y]}. K

Theorem 3.14 (Gregory [11]) If 2ℵ0 < 2ℵ1 then there is a Gregory tree.

Corollary 3.15 MACTP(ℵ1) implies that 2ℵ0 = 2ℵ1.

4 A Weird Space

We now prove Theorem 1.3. The basic construction is an inverse limit in ω1 steps,
and we follow approximately the terminology in [5, 12]. We build a compact space
Xω1 ⊆ [0, 1]ω1 by constructing inductively Xα ⊆ [0, 1]1+α ∼= [0, 1]×[0, 1]α. Usually,
one has Xα ⊆ [0, 1]α in these constructions, but for finite α, the notation will be
slightly simpler if we start at stage 0 with X0 = [0, 1] = [0, 1]1; of course, 1+α = α
for infinite α.

Definition 4.1 πβ
α : [0, 1]1+β � [0, 1]1+α is the natural projection.

As usual, π : X � Y means that π is a continuous map from X onto Y .
These constructions always have πβ

α(Xβ) = Xα whenever 0 ≤ α ≤ β ≤ ω1. This
determines Xγ for limit γ, so the meat of the construction involves describing
how to build Xα+1 given Xα.
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A classical CH argument can ensure that Xω1 is weird, but by Theorem 1.5,
such an argument cannot make Xω1 first countable. However, the same classical
argument will let us construct a binary tree of spaces, resulting in a weird space
Xg ⊆ [0, 1]ω1 for each g ∈ 2ω1. We shall show that if no Xg were first countable,
then there would be a (c, 2)–predictor Ψ : [0, 1]<ω1 → 2; so CH ensures that some
Xg is first countable.

Our tree will give us an Xp for each p ∈ 2≤ω1 . We now list requirements
(R1)(R2)(R3)· · · (R17) on the construction; a proof that all the requirements can
be satisfied, and that they yield a weird space, concludes this section. We begin
with the requirements involving the inverse limit:

R1. X� = [0, 1], where � is the empty sequence.

R2. Xp is an infinite closed connected subspace of [0, 1]1+lh(p).

R3. πβ
α�Xp : Xp � Xp�α, and is irreducible, whenever β = lh(p) ≥ α.

When γ = lh(p) ≤ ω1 is a limit, (R2)(R3) force:

Xp = {x ∈ [0, 1]γ : ∀α < γ [πγ
α(x) ∈ Xp�α]} . (❀)

To simplify notation for the restricted projection maps, we shall use:

Definition 4.2 If β = lh(p) ≥ α and r = p�α, define πp
r = πβ

α�Xp : Xp � Xr.

As in [12], each of Xp�0 and Xp�1 is obtained from Xp as the graph of a
“sin(1/x)” curve. We choose hq, uq, and vn

q for n < ω and q ∈ 2<ω1 of successor
length, satisfying, for i = 0, 1:

R4. up�i ∈ Xp and hp�i ∈ C(Xp\{up�i}, [0, 1]) and Xp�i = hp�i.

R5. vn
p�i ∈ Xp\{up�i}, and 〈vn

p�i : n ∈ ω〉 → up�i, and all points of [0, 1] are
limit points of 〈hp�i(v

n
p�i) : n ∈ ω〉.

As usual, we identify hp�i with its graph. So, if α = lh(p), then Xp�i is a subset of
[0, 1]1+α×[0, 1], which we identify with [0, 1]1+α+1. We shall say that the point up�i

gets expanded in the passage from Xp to Xp�i; the other points get fixed. (R3)
follows from (R4) plus (❀). Also, if δ < α, then πp

p�δ : Xp � Xp�δ, and (πp
p�δ)

−1{x}
is a singleton unless x is in the countable set {πp�ξ

p�δ(up�(ξ+1)) : δ ≤ ξ < α}.
We now explain how points in Xg ⊂ [0, 1]ω1 can predict g, in the sense of

Definition 2.1. We shall get Aq and Bq for q ∈ 2<ω1 of successor length, satisfying:
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R6. For i = 0, 1: Ap�i, Bp�i ⊆ Xp and Ap�i = Xp \ Bp�i.

R7. For i = 0, 1 and ξ < lh(p) : Ap�i ⊇ (πp
p�ξ)

−1(Ap�(ξ+1)).

R8. Bp�0 ∩ Bp�1 = ∅
R9. For i = 0, 1: up�i ∈ Bp�i.

Observe that some care must be exercised here in the inductive construction;
otherwise, at some stage (R7) might imply that Ap�i = Xp, so that Bp�i = ∅,
making (R9) impossible.

(R6)(R7)(R9) imply that points in Ap�i are forever fixed in the passage from
Xp to any future Xq with q ≤ p�i; only points in Bp�i can get expanded. Points
which are forever fixed must wind up having countable character, and (R8) lets
us use a point of uncountable character in Xg to predict g:

Lemma 4.3 Assume that we have (R1 – R9), and assume that 2ℵ0 < 2ℵ1. Then
Xg is first countable for some g ∈ 2ω1.

Proof. We shall define Ψ : [0, 1]<ω1 → 2, and prove that Ψ is a (c, 2)–predictor
if every Xg contains a point of uncountable character.

Say lh(p) = α < ω1 and δ < α. If x ∈ Bp�i ⊆ Xp then, by (R6)(R7),
πα

δ (x) ∈ Bp�(δ+1) ⊆ Xp�δ. Applying (R8), if x ∈ [0, 1]1+α and x ∈ Bp�i ∩ Br�j,
then p = r and i = j; to prove this, consider the least δ < α such that p(δ) = r(δ).

Set Ψ(x) = 0 if lh(x) < ω. Now, say x ∈ [0, 1]α, where ω ≤ α < ω1 (so
1 +α = α). If there exist p ∈ 2α and i ∈ 2 such that x ∈ Bp�i, then these p, i are
unique, and set Ψ(x) = i. If there are no such p, i, then set Ψ(x) = 0.

Now, assume that for each g, we can find z = zg ∈ Xg with χ(z, Xg) = ℵ1. Let
C = ω1\ω. We shall show that Ψ, z predict g on C. For ξ ∈ C, let p�i = g�(ξ+1).
Then z�ξ = πg

p(z) ∈ Xp, and z�ξ must be in Bp�i, since if it were in Ap�i, then

(πg
p)

−1(πg
p(z)) = {z}, so that χ(z, Xg) = ℵ0. Thus, Ψ(z�ξ) = i = g(ξ). K

Since every Xg clearly has weight ℵ1, we are done if we can make every Xg

weird. Since points in Ap�i are forever fixed, we must make sure that Ap�i has no
Cantor subsets. Conditions (R6)(R8) say that Ap�0 ∪ Ap�1 = Xp, so Ap�0 and
Ap�1 must be Bernstein sets. Note that Condition (R7) may present a problem
at limit stages. When lh(p) = α we have Ap�i ⊇

⋃
ξ<α(πp

p�ξ)
−1(Ap�(ξ+1)). Points

in Ap�(ξ+1) are forever fixed, so each (πp
p�ξ)

−1(Ap�(ξ+1)) will have no Cantor sub-
sets. Without further requirements, though,

⋃
ξ<α(πp

p�ξ)
−1(Ap�(ξ+1)) may contain

a Cantor subset. So, we make sure each such union is disjoint from some set in a
tree of Bernstein sets:
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Definition 4.4 For any topological space Y and p ∈ 2<ω1, a Bernstein tree in Y
rooted in p is a family of subsets of Y , {Dq : q ≤ p}, satisfying:

1. For each q, neither Dq nor Y \Dq contains a Cantor subset.

2. Each Dq�0 ∩ Dq�1 = ∅.
3. If r ≤ q then Dr ⊆ Dq.

Note that if Y itself does not contain a Cantor subset, then (1) is trivial, and
we may take all Dq = ∅ to satisfy (2) and (3).

Now, in our construction, we also build Dq
p for q ≤ p ∈ 2<ω1 satisfying:

R10. For each p ∈ 2<ω1: {Dq
p : q ≤ p} is a Bernstein tree in Xp rooted in p.

R11. If q ≤ p ≤ r and π = πp
r : Xp � Xr and x ∈ Xp with π−1(π(x)) = {x},

then x ∈ Dq
p iff π(x) ∈ Dq

r .

R12. For each p ∈ 2<ω1 and i ∈ 2: Bp�i = Dp�i
p and Ap�i = Xp \ Dp�i

p .

Of course, (R12) simply defines Ap�i in terms of the Dq
p, and then (R10)

guarantees that no Ap�i has a Cantor subset, but we need to verify that the
conditions (R1 – R12) can indeed be satisfied. First, three easy lemmas about
Bernstein trees. A standard inductive construction in c steps shows:

Lemma 4.5 If Y is a separable metric space, then there is a Bernstein tree in
Y rooted in �.

Using the fact that every uncountable Borel subset of the Cantor set contains
a perfect subset, we get:

Lemma 4.6 Assume that Y is any topological space, Z is a Borel subset of Y ,
and {Dq : q ≤ p} is a family of subsets of Y satisfying (2)(3) of Definition 4.4.
Then {Dq : q ≤ p} is a Bernstein tree in Y iff both {Dq ∩ Z : q ≤ p} is a
Bernstein tree in Z and {Dq\Z : q ≤ p} is a Bernstein tree in Y \Z.

Combining these two lemmas:

Lemma 4.7 If Y is a separable metric space, Z is a Borel subset of Y , and
{Eq : q ≤ p} is a Bernstein tree in Z rooted in p, then there is a Bernstein tree
{Dq : q ≤ p} in Y rooted in p such that each Dq ∩ Z = Eq.

Returning to the construction:
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Lemma 4.8 There exist Xp for p ∈ 2≤ω1 satisfying Conditions (R1 – R12).

Proof. We start with X� = [0, 1], and we obtain the Dq
�

by applying Lemma 4.5.
If α = lh(p) > 0 and we have done the construction for p�ξ for all ξ < lh(p),

then Xp is determined either by (R4) when lh(p) is a successor or by (❀) when
lh(p) is a limit. If α < ω1, we construct the Dq

p to satisfy (R10)(R11) as follows:

For ξ < α, use πξ for πp
p�ξ. Let Zξ = {x ∈ Xp : π−1

ξ (πξ(x)) = {x}}, and let
Z =

⋃
ξ<α Zξ. Observe that Z and all the Zξ are Borel sets. Let {Eq

p : q ≤ p}
be the Bernstein tree in Z rooted in p defined by saying that for x ∈ Zξ: x ∈ Eq

p

iff πξ(x) ∈ Dq
p�ξ. Note that, by (R11) applied inductively, this is independent of

which ξ is used. To obtain the Dq
p from the Eq

p , apply Lemma 4.7. Note that, by
(R11) applied inductively once again, these Dq

p work for Xp.
The Ap�i and Bp�i (for i = 0, 1) are now defined by (R12), and we must

verify that this definition satisfies (R7): Assume that ξ < lh(p) = α and x ∈ Xp

and πξ(x) ∈ Ap�(ξ+1). We must show that x ∈ Ap�i; equivalently, by (R12), that
x /∈ Dp�i

p . Now πξ(x) ∈ Ap�(ξ+1) implies that π−1
ξ (πξ(x)) = {x} (using (R4 – R9)

inductively), so that x /∈ Dp�i
p iff πξ(x) /∈ Dp�i

p�ξ . By (R10) for p�ξ and Definition

4.4(3), Dp�i
p�ξ ⊆ D

p�(ξ+1)
p�ξ . So Ap�(ξ+1) = Xp�ξ \ D

p�(ξ+1)
p�ξ gives us (R7).

Since the Bp�i are nonempty, there is no problem choosing the up�i, vn
p�i,

and hp�i to satisfy (R4)(R5)(R9), and then the Xp�i are defined by (R4). K
Finally, we must make each Xg weird. Observe:

Lemma 4.9 Conditions (R1 – R5) imply that if F ⊆ Xp is closed and connected
then (πq

p)
−1(F ) is connected for all q ≤ p.

Now, we shall make sure that whenever F is a perfect subset of Xg, there
is some α < ω1 such that (πg

g�(α+1))
−1({ug�(α+1)} × [0, 1]) ⊆ F (recall that our

construction gave us {ug�(α+1)} × [0, 1] ⊂ Xg�(α+1) ⊂ Xg�α × [0, 1]) . By Lemma
4.9, this implies that F is not totally disconnected. The argument in [12] obtained
this α by using ♦ to capture F . Here, we replace this use of ♦ by a classical CH
argument. First, as in [12], construct Fp for p ∈ 2<ω1 so that:

R13. Fp is a countable family of uncountable closed subsets of Xp.

R14. If F ∈ Fp and q ≤ p then (πq
p)

−1(F ) ∈ Fq.

R15. For each F ∈ Fp, either up�i /∈ F , or up�i ∈ F and vn
p�i ∈ F for all but

finitely many n.

R16. {up�i} × [0, 1] ∈ Fp�i.
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We may satisfy (R13)(R14)(R16) simply by defining

Fp =
{
(πp

p�ξ)
−1{up�(ξ+1)

}
: ξ < lh(p)} .

Requirements (R4)(R14)(R15) imply:

Lemma 4.10 πq
p : (πq

p)
−1(F ) � F is irreducible whenever F ∈ Fp and q ≤ p.

Then, we use CH rather than ♦ to get:

R17. Whenever p ∈ 2<ω1 and F is an uncountable closed subset of Xp, there is a
β with lh(p) < β < ω1 such that for all q < p with lh(q) = β and for each
x ∈ {uq�0, uq�1} ∪ {vn

q�i : n ∈ ω & i ∈ 2}, the projections π = πq
p satisfy

π(x) ∈ F and |π−1(π(x))| = 1.

Proof of Theorem 1.3. Assuming that we can obtain (R1 – R17), note that
each Xg is separable, because each πg

�
: Xg � X� is irreducible. Then, to finish,

by Lemma 4.3, it suffices to show that each Xg is weird. Fix a perfect H ⊆ Xg;
we shall show that it is not totally disconnected. First, fix α < ω1 such that, if
we set p = g�α and F = πg

p(H), then F is perfect (the set of all such α form
a club). Then, fix β > α as in (R17), let q = g�β, and let i = g(β), so that
q�i = g � (β +1). Let K = (πq

p)
−1(F ). Then πg

q (H) ⊆ K, and this inclusion may
well be proper. However, uq�i ∈ πg

q (H) and vn
q�i ∈ πg

q (H) for each n ∈ ω because
π(uq�i) ∈ F and π(vn

q�i) ∈ F and |π−1(π(uq�i))| = |π−1(π(vn
q�i))| = 1. It follows

(using (R5)) that E := {uq�i} × [0, 1] ⊆ πg
q�i(H). Since E ∈ Fq�i by (R16) and

H maps onto E, Lemma 4.10 implies that (πg
q�i)

−1(E) ⊆ H . Since (πg
q�i)

−1(E)
is connected by Lemma 4.9, H cannot be totally disconnected.

Next, to obtain conditions (R1 – R17), we must augment the proof of Lemma
4.8: Fix in advance a map ψ from ω1\{0} onto ω1×ω1, such that α < β whenever
ψ(β) = (α, ξ). Now, given Xp, use CH and let {F p

ξ : ξ < ω1} be a listing of all
uncountable closed subsets of Xp. Whenever 0 < β < ω1 and ψ(β) = (α, ξ) and
lh(q) = β, we may set p = q�α and F = F p

ξ ⊆ Xp. It is sufficient to show how to
accomplish (R17) with these specific α, β, p, q, F .

Choose a perfect K ⊂ F which is disjoint from {π(q�ζ)
p (uq�(ζ+1)) : α ≤ ζ < β}.

Then πq
p is 1-1 on (πq

p)
−1(K), so choosing all uq�i and vn

q�i in (πq
p)

−1(K) will ensure
(R17). Now fix i ∈ 2, and write u and vn for uq�i and vn

q�i. To ensure (R15) and
(R9), we modify the argument of [12]. Let {Qn : n ∈ ω} list Fq. Let d be a metric
on (πq

p)
−1(K). For each s ∈ 2<ω, choose a perfect Ls ⊆ (πq

p)
−1(K). Make these

into a tree, in the sense that each Ls�0 ∩ Ls�1 = ∅, each diam(Ls) ≤ 2−lh(s), and
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Ls�0 ⊆ Ls and Ls�1 ⊆ Ls. Also make sure that whenever lh(s) = n + 1 we have
either Ls ⊆ Qn or Ls ∩Qn = ∅. Let v[s��] be any point in Ls��\Ls. For f ∈ 2ω,
let {u[f ]} =

⋂
n Lf�n. For any f ∈ 2ω, if we set u = u[f ] and vn = v[f � (n + 1)],

then (R15) will hold. Now, (R9) requires u ∈ Bq�i. Since Bq�i is a Bernstein set

and {u[f ] : f ∈ 2ω} is a Cantor set, we may choose f so that u[f ] ∈ Bq�i. K
If H ⊆ Xg is closed and for some initial segment p = g�α the projection

πg
p(H) ∈ Fp, then, by irreducibility, H = (πg

p)
−1(πg

p(H)), so that H is a Gδ. To
make Xg hereditarily Lindelöf, it suffices to capture projections for each closed
H ⊆ Xg this way, but it is not clear whether this can be done without using ♦.

5 Remarks and Examples

One cannot replace “CH” by “2ℵ0 < 2ℵ1” in the statement of Theorem 1.3, since
by Proposition 5.3, it is consistent with any cardinal arithmetic that every non-
scattered compactum of weight less than c contains a copy of the Cantor set. As
usual, define

Definition 5.1 cov(M) is the least κ such that R is the union of κ meager sets.

Note that cov(M) is the least κ such that MA(κ) for countable partial orders
fails. Using this, we easily see:

Lemma 5.2 If κ < cov(M) and Eα ⊂ [0, 1] is meager for each α < κ, then
[0, 1] \ ⋃

α<κ Eα contains a copy of the Cantor set.

Proposition 5.3 If X is compact and not scattered, and w(X) < cov(M), then
X contains a copy of the Cantor set.

Proof. Replacing X by a subspace, we may assume that we have an irreducible
map π : X � [0, 1]. Let B be an open base for X with |B| < cov(M) and ∅ = B.

Whenever U, V ∈ B with U ∩ V = ∅, let EU,V = π(U) ∩ π(V ). Then EU,V ⊂
[0, 1] is nowhere dense because π is irreducible. Applying Lemma 5.2, let K ⊂
[0, 1] be a copy of the Cantor set disjoint from all the EU,V . Note that |π−1{y}| = 1

for all y ∈ K. Thus, π−1(K) is homeomorphic to K. K
Note that one can force “cov(M) = c” by adding c Cohen reals, which does not

change cardinal arithmetic, but in the statement of Proposition 5.3, “cov(M)”
cannot be replaced by “c”. If CH holds in V , then one may force c to be arbitrarily
large by adding random reals, and any random real extension V [G] will have
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a compact non-scattered space of weight ℵ1 which does not contain a Cantor
subset. In fact, Dow and Fremlin [4] show that if X is a compact F-space in V ,

then in a random real extension V [G], the corresponding compact space X̃ has
no convergent ω–sequences, and hence no Cantor subsets.

The weird space constructed in [12] also failed to satisfy the CSWP (the
complex version of the Stone–Weierstrass Theorem). Using the method there, we
can modify the proof of Theorem 1.3 to get:

Theorem 5.4 Assuming CH, there is a separable first countable connected weird
space X of weight ℵ1 such that X fails the CSWP and KX fails the CTP.

Proof. First, in the proof of Theorem 1.3, replace [0, 1] by D, the closed unit
disc in the complex plane, so that we may view X as a subspace of the ℵ1–
dimensional polydisc. Then, as in [12], by carefully choosing the functions hp�i,
one can ensure that the restriction to X of the natural analog of the disc algebra
refutes the CSWP of X. To refute the CTP, construct in D a Cantor tree {ps :
s ∈ 2<ω} ⊆ KD such that each ps is a wedge of the disc with center 0 and
radius 2−lh(s); then each

⋂
n∈ω pf�n = {0}. Then, since we may assume the point

0 is not expanded in the construction of X, the inverse images of the ps yield a

counterexample to the CTP of KX . K
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