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ABSTRACT

We 1nvestigate the question of which weakenings of the asso-
ciative law imply that a quasigroup is a loop. In particular, we
completely settle the question for all laws of “Bol — Moufang
type” (those written with four variables, three of which are
distinct).

§1. Introduction. A quasigroup is a system (G, -) such that G is a non-empty set
and - is a binary function on G satisfying Vaez3ly(xy = z) and Vyz3la(ey = 2). A loop is
a quasigroup which has an identity element, 1, satisfying Va(x1 = 1o = ). See the books
[1, 2, 9] for background and references to earlier literature.

A group is, by definition, an associative loop. As is well-known, every quasigroup
satisfying the associative law has an identity element, and is hence a group. In this paper
we consider weakenings of associativity which also imply that a quasigroup is a loop, even
though many of these weakenings do not imply the full associative law.

For example, consider the four Moufang identities:

M1: (2(yz))x = (zy)(zz) M2: (zz)(yz) = =((2y)z)
N1: ((zy)2)y = z(y(zy)) N2: ((y2)y)x = y(z(yx)

As usual, equations written this way with variables are understood to be universally quan-
tified. We showed in [6] that every quasigroup satisfying any of these is a loop; hence, by
much earlier results of Bol and Bruck (see [1], p. 115), these four identities are equivalent in
quasigroups, even though the quasigroups satisfying these identities (the Moufang loops)
are not necessarily groups.

~—

Definition. A weak associative law is an equation of the form a = 3, where for some
variables, V1, V4, ..., V,,, (not necessarily distinct), o and 3 are both associations of the
product ViV, --- V. We call n the size of the equation. The law is non-trivial iff « is not
the same as 3.

For example, the Moufang identities are weak associative laws of size four. All weak
associative laws of size one and two are trivial. For size three, besides the trivial laws
and the full associative law, there are three laws written with two distinct variables — the
flexible law and the right and left alternative laws:

FLEX : x(yx) = (zy)x RALT : x(yy) = (ay)y LALT : y(yx) = (yy)x
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In §2. we point out that none of these three implies that a quasigroup is a loop, although
any two of these together do. We also show that there is a single law of size four with two
distinct variables which implies that a quasigroup is a loop.

Note that we need never consider weak associative laws written with just one variable,
such as (xx)r = x(ax) or (va)(xx) = x((xx)x). It is easy to construct a three-element non-
loop quasigroup which satisfies o = x, and is hence power-associative (that is, satisfies
all one-variable associative laws).

We do not know of a simple criterion for telling which weak associative laws imply
that a quasigroup is a loop, and we do not even know if this problem is decidable. In §3,
we completely settle the problem for what Fenyves [4] called “identities of Bol — Moufang
type”. These are the ones of size four which have three distinct variables. They include the
Moufang laws, as well as the Bol laws and the extra loop identities. After some preliminary
reductions, discussed in §§2.3, there are 20 cases to consider.

As in [6], our investigations have been aided by the automated deduction tool, OT-
TER, developed by McCune [7]. This has been very useful in establishing that one equation
implies another. Then, following the pattern in [5,6], we examined these proofs and con-
verted them to the human-readable form presented here. In addition, we used the tools
FINDER, programmed by Slaney [11], and MACE, programmed by McCune [8], to pro-
duce finite counter-examples. The output to these programs is simply a multiplication
table, although by examining these tables, we have recognized them as isotopes of familiar
groups, and have presented them that way in this paper.

§2. Preliminary results. This section describes some general facts to set the stage
for the detailed analysis in the next section.

In most cases where we show that an equation does not imply that a quasigroup is
a loop, the counter-example will be a group isotope of a particularly simple form. We
introduce some notation for these.

Definition. If p is a prime and 0 < a,b < p, let I(a,b, p) be the structure Z,, with a
product operation o defined by: = oy = ax + by.

2.1. Lemma. I(a,b,p) is a quasigroup, and is not a loop unless a = b = 1.

The search for a counter-example of this form reduces to elementary algebra. For
example, say we want a non-loop quasigroup satisfying ((xx)y)z = x(x(yz)). For this to
be valid in I(a,b, p), the coefficients of x,y, z yield three equations which a,b must satisfy:
aaa + aab = a + ba, ab = bba, and b = bbb. The last two reduce to b = 1, whence the
first becomes a® + a* = 2a, which has the solution a = 3 in Zs, so our counter-example is
I1(3,1,5). We have used this type of example elsewhere [5] to obtain an easily described
class of quasigroups.

Unfortunately, such simple examples do not always suffice. For example, the right
alternative law, RALT, is not true in any I(a,b,p) unless a = b = 1, although it is easy to
describe a non-loop quasigroup satisfying RALT (Lemma 2.3 below).

The marror of an equation is obtained by writing it backwards. For example, M1, M2
in the Introduction are mirrors of each other as are N1, N2, and LALT, RALT. It happens
that M1, M2, N1, N2 are all equivalent in quasigroups, but LALT and RALT are not



equivalent, even in loops. The flexible law, FLEX, is its own mirror. Of course, the
mirror of a theorem is a theorem; for example, once we show (see Lemma 2.3) that there
i1s a non-loop quasigroup satisfying RALT, the mirror of this quasigroup is a non-loop
quasigroup satisfying LALT. Applying mirroring, we can often cut in half the number of
cases we need to consider.

First, let us dispense with the laws of size three.

2.2. Lemma. In any quasigroup:

RALT implies there is a right identity.

LALT implies there is a left identity.

FLEX plus either a right or a left identity implies that there is a two-sided identity.
Any two of RALT, LALT, FLEX implies that there is a two-sided identity.

Proof. (4) is immediate from (1 — 3). For (1), assume RALT, and fix a,b with ab = a.
Then a(bb) = (ab)b = ab, so bb = b. Then, for any x, (xb)b = x(bb) = xb, so b = x. Thus,
there is a right identity. The proof of (2) is the mirror of this. For (3), say b is a right
identity. Then, for any x, x(bx) = (xb)x = xx, so bx = x, so b is also a left identity. []

o=

2.3. Lemma. There are non-loop quasigroups satisfying each of RALT, LALT,
FLEX.

Proof. For FLEX  use I(2,2,3). For RALT, use G = (Zg,0), where xoy = .+ f(y),
where f is defined by the following table:

Yy 01 2 3 4 5
fly) 0 4 5 3 1 2
yoy=y+ f(y) 0 51 0 5 1

Since f is a bijection, G is a quasigroup. RALT follows from f(y oy) = f(y) + f(y),
which is easily checked from the table. G is not a loop because 0 is a right identity (since
f(0) = 0), but not a left identity. []

Let us now turn to laws of size greater than three. Informally, one would expect that
the more distinct variables one allows, the stronger a law can be. As pointed out in the
Introduction, we need not consider laws with just one variable. At the other extreme,
consider the case where all variables are distinct, such as (w(2y))z = (wa)(yz).

2.4. Lemma. If a = [ is a non-trivial weak associative law of size n, and with n
distinct variables, then every loop satisfying o = 3 is a group.

Proof. Induct on n. It is trivial for n = 3, and for n > 3, we may always replace one
of the variables by 1, and then apply the Lemma for n — 1. []

This lemma is not true for quasigroups, however.

2.5. Lemma. There are non-loop quasigroups satisfying each of the two mirrors,

(w(zy))z = w(x(yz)) and ((zy)z)w = z((yz)w).
Proof. Use I(1,2,3) and I(2,1,3), respectively. []

Note that these two equations can be weakened to the left and right Bol identities by
setting w = y, and Robinson [10] already showed that neither of the Bol identities implies



that a quasigroup is a loop. It is not hard to see that every other non-trivial four variable
law of size four implies that a quasigroup is a loop, and hence a group by Lemma 2.4.
Now, no two-variable weak associative law of any size can imply that a loop is a group,
since every Moufang loop satisfies all of these laws together (by Moufang’s Theorem).
“Most” single two-variable laws of various sizes fail to imply that a quasigroup is a loop
(e.g., FLEX and RALT and LALT all fail). However there are exceptions, as we show

next. First, a preliminary definition:
Definition. In a quasigroup, define the functions j and k by: x - j(x) = k(z) -« = 2.

2.6. Lemma. If j(x) is a constant, then this constant is a right identity. If k() is a
constant, then this constant is a left identity.

Lemmas about j and/or k turn out to be convenient preliminary steps in proving that
a quasigroup is a loop. Examples of this technique are the next lemma and two of the
proofs in §3. Another example is the proof in [6] that N1 or N2 imply that a quasigroup
is a loop (the proofs from M1 or M2 are trivial exercises).

2.7. Lemma. Every quasigroup satisfying either of the mirrors ((azy)x)y = (xy)(xy)

or (yz)(yr) = y(z(yx)) is a loop.

Proof. We argue from ((zy)z)y = (2y)(zy).

First, we show that k(z)k(x) = k(z). To see this, fix any «, and then fix ¢ such that
ac = k(a). Then

kE(a) = ac = (k(a) - a)c = ((ac)a)e = (ac)(ac) = k(a) k(a)

Next, we show that k(x) is a constant. To see this, we fix a,b and prove k(a) = k(b).
Fix d such that k(b) = ad. Then

(k(b) a)d = ((ad)a)d = (ad)(ad) = k(b) k(b) = k(b) = ad

By cancelling, we get k(b) a = a. Since also k(a)a = a, we have k(a) = k(b).
So, we have k(x) = e, a left identity. To show that e is a right identity, note that for
any y
(ye)y = ((ey)e)y = (ey)(ey) = yy

We then cancel to get ye =y. []

63. Size Four Laws with Three Distinct Variables. Although we see no general
theorem here, we can organize the presentation somewhat by grouping the laws according
to their syntactic form.

Every term written with four variables (not necessarily all distinct) is of one of three
basic types, which we shall label as follows:

T13: x - v, where v has three variables

T31: ~ -z, where v has three variables

T22: ~ - 4§, where 7,4 each have two variables



At first, it would seem that these lead to nine different forms of equations between four
variable terms, but in fact we need only consider two. We never need to consider equations
of the form T13 = T'13, since in a quasigroup, = - v = « - 4 is equivalent to v = 4, which
has size 3 and has been dealt with in §2. Likewise, we need not consider equations of the
form 731 = T'31, and the only equation of the form 722 = T22 is trivial. So, we need only
consider equations between two different types of terms, and obviously, it doesn’t matter
which one we write on the left of the =, so we have three, not six, forms of equations.
Furthermore, the mirror of an equation of the form 713 = 722 is of form 731 = T22, so
we need only consider equations of the form 731 = 722 and T31 = T'13.

Now, a product of three variables can be associated in two ways, so that the two basic
forms of equations can be organized into six sub-forms as follows:

T31L = T22 (MV)Vs)Vy = (WVa)(VaVa)
T31R = T22 V(VaVa)Ve = (VAVa)(VsVa)
T31L=T13L : ((\Vy)Vs)V, = Vl((VzVs)V4)
T31L=T13R : (iVa)W3)Vi = Vi(Va(VaW))
T3IR=TI13L : (Vi(VaVa)Vi = Vi((VaVa)Vi)
T31R = T13R V(VaVa)Ve = Vi(Va(VsVy))

Since we are looking at equations with three distinct variables, there are six possibilities
for choosing the two variables from {V;, V5, V3, Vy} which are to be identical, so that each
of these sub-forms yields six equations, obtained by replacing Vi, V2, V3, Vy by one of the
following sequences of variables:

TXYZ, TYTZ, TYZT, TYYZ, LYY, TYZZ

Furthermore, we can immediately discard the two sub-forms T31L = T13L and T31R =
T13R by Lemma 2.5. So, we need only consider four sub-forms under each of six substi-
tutions, yielding 24 equations, which we list below. Actually, there are only 20, since the
mirror of a T31L = T13R is of the same sub-form T31L = T13R, and may or may not be
an identical axiom, depending on the variables substituted. Still, to make our table more
readable, we have listed all 24 in Table I. Under the heading “Loop?”, we have listed “yes”
or “no” depending on whether or not it implies that a quasigroup is a loop.

These 24 are all among the “60 identities of the Bol — Moufang type” considered by
Fenyves [4]. Our list is a proper subset of his, since we are discarding some laws which we
have already seen do not imply a quasigroup is a loop, and we are discarding some mirrors.
There seems to be no natural way of numbering these laws, so we have simply copied his
numbers in our table, along with the name of the law if it has one. The only names which
are conspicuously missing are the Bol identities, which have already been discarded.

Some further remarks on our name labels. M1, M2, N1, N2 are the Moufang axioms,

as in the Introduction. Because of our exclusion of mirrors, M2 does not appear here.
E1,E2, F are Fenyves’ Extra Loop Axioms [3.,4]:

El: (z(y2))y = (2y)(zy) E2: (yz)(yr) = y((zy)z)
F: ((zy)z)zr = 2(y(zx))



Equation Loop?” Reason Name
(o)) = (wo)(y=)  mo I(213) 42
(x(2y))z = (z2)(y2) yes 3.1 41, LCa
((za)y)z = x(x(y2)) no I(3,1,5) 48,LCb
(x(2y))z = 2((2y)2) yes ASSOC 47
((zy)x)z = (xy)(xz) yes ASSOC 11
(x(yx))z = (xy)(xz) yes 3.1 12
((zy)r)z = x(y(xz))  yes [6] 17, N2
(x(yx))z = x((yx)2) yes ASSOC 18
((zy)z)x = (zy)(z2) yes ASSOC 1
(2(yz))z = (zy)(za)  yes [6] 2, M1
((zy)z)x = x(y(za)) yes 3.4 6, F
(x(yz))x = x((yz)x) no FLEX 9
((zy)y)z = (vy)(yz)  yes  ASSOC 31
(z(yy))z = (zy)(yz)  yes 3.2 32
((zy)y)z = 2(y(yz)) no 1(2,2,3) 37,C
(x(yy))z = 2((yy)z) yes 3.1 38
((zy)2)y = (zy)(zy)  yes  ASSOC 21
(x(y2))y = (2y)(zy) yes 3.3 22, F1
((zy)z)y = x(y(zy))  yes [6] 27,N1
(2(y2))y = 2((yz)y)  yes ASSOC 28
((zy)z)z = (2y)(22) no RALT 51
(x(yz))z = (2y)(22) no I1(1,2,3) 52
((zy)z)z = x(y(22)) no I(1,3,5) 57,RCb
(x(yz))z = 2((y2)2) yes ASSOC 58

Table I

He shows that these are equivalent in loops. Since each of them implies that a quasigroup
is a loop, they are also equivalent in quasigroups. Observe that E2 is the mirror of E1,
while F' is its own mirror. Fenyves lists three LC' identities, and proves they are equivalent
in loops, but in quasigroups we must list them separately, along with their mirrors, the

RC identities:

LCa: (x(xy))z = (ax)(yz) RCa: (zy)(zzx) = z((yx)x)
LCb: ((zx)y)z = x(x(yz)) RCb: ((zy)a)r = z(y(xx))
LCe:  (o(ey))e = ole(y=)) RCe:  ((zg)a)e = =((ye)e)

Note, from the table, that LC'a implies that a quasigroup is a loop, whereas LC'b does
not; neither does LC'¢, which is of sub-form T31R = T13R, and thus does not appear in
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the table at all. C' denotes Fenyves’ C-Loop axiom; this is its own mirror. He shows that
in a loop, C implies all the LC' and RC identities, but this is not true in quasigroups, since
1(2,2,3) satisfies C, but does not satisfy LC'a or LCb.

Under “Reason”, our table indicates the proof for the “yes” or “no” answer to “Loop?”.
The flag ASSOC means that the law is easily seen to be equivalent to full associativity
in a quasigroup. These are all of the form o - (3 -~v) = (« - ) - v, where o, 3, are terms
which can take on any triple of values. For the same reason, the two flagged as FLEX
and RALT are easily seen to be equivalent to these two laws respectively, but by Lemma
2.3, that implies a “no” answer. For the rest of the “no” answers, we have simply listed a
counter-example, which turns out to always be of the form I(a,b,p) (see §2). The rest of
the “yes” answers seem to require some proof, and we have listed, as a reference for the
proof, either the paper [6] or a theorem number in this paper,

Fenyves points out that besides the equations we have flagged by ASSOC, it is easy
to see that each of the equations 12, 32, and 52 is equivalent to full associativity in loops.
As we see from the table, in quasigroups, this is still true for 12 and 32, but it is false for
52.

In this table, the four mirror pairs are: {48,57}, {47,58}, {17,27}, and {18,28}. The
other equations of the form 731 = T'13 are their own mirror, and the equations of form
T31 = T22 have mirrors of the form 713 = 722, which we did not list.

We now proceed to prove the “yes” results stated in the table. First, we dispense with
three of the equations for which the proof is easy:

3.1. Theorem. Each of the equations numbered 41, 12, 38 implies that a quasigroup
is a loop.

Proof. For 41, (x(zy))z = (zx)(yz): Fix a,b such that ab = b. Then for any =z,
(x(xa))b = (xx)(ab) = (zx)b. Cancelling, xa = a for all z, so a is a right identity. Now,
setting z = a in 41 yields the law LALT, which implies a left identity by Lemma 2.2.

For 12, (z(yx))z = (vy)(xz): Fix a,b such that ab = b. Then for any y, (a(ya))b =
(ay)(ab) = (ay)b. Cancelling, ya = y, so a is a right identity. Setting z = a in 12 yields
FLEX, so apply Lemma 2.2.

For 38, (x(yy))z = x((yy)z): Fix d = (ce) for some ¢; so (xd)z = x(dz) for all z, z.
Now, fix a such that ad = d. Then dz = a(dz) for all z. Since every element is of the form
dz for some z, the element «a is a left identity. By the mirror of this argument, there is also
a right identity. []

Equation 38 simply states that all squares are in the middle nucleus, and our proof
just shows that any quasigroup with a non-empty middle nucleus is a loop.

3.2. Theorem. The equation 32, (x(yy))z = (2y)(yz), implies that a quasigroup is
a loop.

Proof. Fix any e,b such that eb = b. Then for any z, (x(ee))b = (xe)(eb) = (xe)b.
Cancelling, ee = e. Then, for any x,z, (ze)z = (x(ee))z = (xe)(ez), so, by cancelling,
ez = z, so ¢ 1s a left identity.



Now, to show that e is a right identity, fix an element ¢, and we show ce = ¢. First,
fix d such that d(cc) = e. Then (d(cc))z = ez = z for any z, so equation 32 implies

(de)(ez) = = (o)
By (), followed by (32) (with @ = dc), e(cc) = cc = ((de)(ce))e = ((de)e)(ec), so e = (de)e.

Since («) implies e = (dc)(ce) also, we cancel to get ce =e. []

The next two theorems use the method of proof of Lemma 2.7, utilizing the definitions

3.3. Theorem. The equation 22, (x(yz))y = (zy)(zy), implies that a quasigroup is
a loop.

Proof. First, we verify that j(x) = k(x). To see this, fix a, and let b = j(a), so
ab = a. Then (ba)a = (b(ab))a = (ba)(ba), so, cancelling yields a = ba, so b = k(a). Now,
we have x - j(x) = j(x) - @ = « for all .

Next, we show that j(z) is always an idempotent. To see this, apply equation 22:

Je)e == (j(2) (3(x)2) j(z) = ((2) 3(2)) (2 j(z)) = (G(2) 3(x)) @

and cancel to get j(x) = j(@) j(x).
Finally, we show that j(x) is a constant, which must then be an identity element. To
see this, fix ¢,d, and we show j(¢) = j(d). First, fix b such that bd = j(c¢). Applying

equation 22, we get
(zj(c))b = (xb)(db) (8)

Applying (8) with & = ¢ yields ¢b = (¢b)(db), and hence db = j(c¢b). Thus, db is an
idempotent, so applying (3) with @ = d yields (dj(¢))b = db, so d j(¢) = d, which implies
that j(c) = j(d). O

3.4. Theorem. The equation 6, ((zy)z)x = x(y(zx)), implies that a quasigroup is a
loop.

Proof. This equation is its own mirror, so that each time we prove a result, we also
have the mirror of the result. First note that

10 () Gila)a) = @ V25 (e k(a) k(a) = @

To prove (v1), use equation 6 to get xx = ((xj(x))j(z))r = x(j(«) (j(x)x)), and cancel.
Next note that

$1: () j(x) = k() 52 k() hx) = (o)
To prove (81), apply (v1) and equation 6 to get ((j(x)j(z)) ) j(z) = j(x) (j(z) (xj(x))) =
x = (k(x)z)j(x), and cancel.

Next, we show that j(x) = k(). To see this, fix a, and let b = j(a) and ¢ = k(a), so
ab = ca = a. Applying equation 6 (with z = ac and * = y = ¢), along with (42) and (62),

(b(ac))e = ((cc)(ac))e = c(e((ac)e)) = ¢(eca) = a = (ac)c

8

we get



and we cancel to get b(ac) = ac. Thus, k(ac) = b = j(a); squaring both sides and applying
(61) and (02) yields j(ac) = k(a) = ¢. Thus, ac = (ac) - j(ac) = (ac)e = a (by (72)), so
¢=j(a)=0.

We now have j(z)j(x) = j(x) by (61), and we proceed to prove the mirrors

el: j(@)(yi(x)) =y 2: (J(x)y)i(z) =y

For (€2), use equation 6 and idempotency of j(z) to get
(z)2)g(x) = ((U(x)j(2)) 2) 5(x) = j(x) - (j(2) (2 j(x))) (*)

(j(x)z)j(x)) - j(x). Putting these
zj(x))]) - j(z). Now, in a quasigroup,

Now, using (el), (€2) in (%), we get z = j(x) - z, so j(z) = j(x), so j(x) is a constant,
which is then the identity element. []
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