A Ramsey Theorem in Boyer-Moore Logic
Kenneth Kunen!
Computer Sciences Department
University of Wisconsin
Madison, WI 53706, U.S.A.

kunen@cs.wisc.edu

January 10, 1995

ABSTRACT

We use the Boyer-Moore Prover, Nqthm, to verify the Paris-Harrington ver-
sion of Ramsey’s Theorem. The proof we verify is a modification of the one given
by Ketonen and Solovay. The Theorem is not provable in Peano Arithmetic, and
one key step in the proof requires €y induction.

§0. Introduction. The most well-known formalizations of finite mathematics are PA
(Peano Arithmetic) and PRA (Primitive Recursive Arithmetic). In both, the “intended”
domain of discourse is the set of natural numbers. PA is formalized in standard first-order
logic, and contains the induction schema, which can apply to arbitrary first-order formulas.
The logic of PRA allows only quantifier-free formulas, which are thought of as being
universally quantified, and PRA has the induction scheme for quantifier-free formulas,
expressed as a proof rule. Also, for each primitive recursive function f, PRA contains a
function symbol for f and has the recursive definition of f as an axiom. Clearly, PRA
is much weaker than PA. In particular, PA can prove the consistency of PRA by simply
proving the statement “all sentences provable from PRA are true”.

The Boyer-Moore theorem prover, Nqthm [2], is a Lisp-based system for computational
logic. It allows the user to define functions recursively and to prove theorems about these
functions. It is, to first approximation, an implementation of PRA, but it extends PRA in
two important ways.

The first way is that it allows the use of symbolic expressions (Lisp S-expressions)
as basic objects, as well as numbers. In theory, this extension is inessential, since these
expressions can be encoded by Godel numbering, but in practice, such a Godel numbering
would be extremely awkward to deal with. By dealing with S-expressions directly, Nqthm
has become a practical verification tool, and has frequently been used to verify statements
in finite combinatorics, as well as theorems about circuit design and algorithm correctness.

The second way s essential; Nqthm allows definition of functions by recursion on the
ordinal €y, and proofs by induction on €;. Until now, the full strength of this extension
has not been utilized. In this paper, we show how to utilize it.

In their book [2], Boyer and Moore point out that ordinals can be used to formalize
double recursions. In many applications, this is only a matter of convenience, since the
function defined is really primitive recursive, and could, with slightly more work, be defined

1 This research was supported by NSF Grant DMS-9100665.

within PRA by a standard primitive recursion. The simplest example which goes beyond
PRA is the Ackermann function, which grows faster than every primitive recursive function.
Here, the recursion step is f(z,y) = f(f(z — 1,y),y — 1) when x,y > 0. One can justify
this double recursion as a simple recursion on the ordinal w? by identifying (z,y) with the
ordinal w - ¥y + . The current Nqthm distribution contains a short Nqthm script, due to
Kunen, which defines the Ackermann function and derives some of its properties.

However, w? is a long way from ¢y. The earliest use of € in proof theory is due to
Gentzen [3], who showed that in PRA plus ¢ induction one can prove the consistency of
PA. It might be an interesting exercise to implement this proof on Nqthm. However, in this
paper, we choose instead a simple combinatorial theorem — namely, the Paris-Harrington
version of Ramsey’s Theorem.

Ramsey’s Theorem states that one can, for each k,n, ¢, find a number R(k,n, ¢) large
enough so that whenever we partition all the n-tuples from the set {0,1,2,... R(k,n,c)}
into ¢ pieces, there is a set of size at least k& which is homogeneous for the partition (that is,
all of its n-tuples are in the same piece of the partition). The Paris-Harrington extension
adds the seemingly harmless extra requirement that the homogeneous set be large, meaning
that its size is at least as big as its first element. For example, {3,5,7} is large but {4,5,7}
isn’t.

Now, it is easy to see that Ramsey’s Theorem can be proved within PRA, and the
n = 2 case has been verified on Nqthm by Matt Kaufmann (see [1]). However, the Paris-
Harrington extension cannot be proved even in full PA [5]. It can be proved in PRA
plus € induction, as was demonstrated explicitly by Ketonen and Solovay [4], and hence,
potentially, can be proved in Nqthm.

We have indeed verified this theorem on Nqthm, and describe the proof in this paper.
In §1, we present the proof, using ordinary mathematical terminology. In §2, we explain
how we formalized it on Nqthm. The complete Nqthm script is available by email from
the author.

The reason we give the proof in §1, rather than just referring the readers to [4], is that
the argument in [4] is a bit more complicated than it needs to be, and introduces a number
of notions which turn out to be irrelevant. Our §1 may be of independent mathematical
interest, since by simplifying the proof, we can pin down exactly where the ¢y induction
takes place. Many of the steps in [4] which appear to use induction on the ordinals can in
fact be formalized in PRA.

The basic idea in the proof is the following: If X is a finite set of natural numbers,
and o < €y, we define what it means for X to be a — large. For finite n, X is n — large iff
| X| = n. Our “w — large” is slightly stronger than “large”, but as a grows above w, the
notion of o — large grows very rapidly; for example, if X is w? — large and z is the first
element of X, then |X| > 22°. We then prove the Ordinal Ramsey Theorem (§1, Lemma
13): For each a, n, ¢, there is an ordinal I'(a, n, ¢) such that whenever X is I'(a, n, ¢) — large,
every partition of the n — tuples from X into ¢ pieces has an « — large homogeneous set.
Actually, [4] proves this just for @ = w, which was sufficient to derive the Paris-Harrington
Ramsey Theorem.

Now, the Ordinal Ramsey Theorem is done within PRA. Following Gentzen [3], and
Boyer-Moore [2], each ordinal below €y has a notation, which is a finite symbolic expres-
sion, and everything we need about ordinals is proved using ordinary induction on these
notations. We only step beyond PRA in the proof that a — large sets exist. Here, we define
a number A(a, k) > k and prove that the set of numbers between k and A(a, k) is o —
large (§1, Lemma 14). A(a, k) is defined by transfinite recursion on a < €y. Our R(k,n,c)
is just A(T(w,n,), k).

It is easy to track the use of ¢y in the Nqthm verification. Nqgthm will not use €g
recursion in a function definition unless explicitly told to do so by the user, and Nqthm
will not prove a theorem by €y induction until at least one function has been defined by ¢
recursion. The first (and only) use of ordinal recursion in our Nqthm code occurs in the
definition of A, which is located after the proof of the Ordinal Ramsey Theorem.

§1. The Proof. For simplicity, we start by presenting the proof using ordinary set-
theoretic notation. At the end of this section, we comment on formalizing it in PRA, and
explain the relationship between our proof and the Ketonen-Solovay [4] proof.

Definition. A finite X C w is called large iff X is non-empty and |X| > min(X).
Our goal is to prove:

Theorem. There is a computable function R(k,n,c) such that: Whenever ¢,n > 1
and F is a partition of the n-tuples from {0,1,2,... R(k,n,c)} into ¢ pieces, there is a
large subset of {0,1,2,... R(k,n,c)} of size at least k& which is homogeneous for F.

For notational convenience, we identify ordinals, and in particular natural numbers,
with von Neumann ordinals, so that each ordinal is the set of all smaller ordinals. Then
each ¢ € w i1s an c-element set. With this notation, if 7 : X — ¢ is a function in the usual
mathematical sense, then F is a partition of X into ¢ pieces, labeled 0,1,...,¢ — 1.

First, some ordinal arithmetic. We use + and - to denote the usual ordinal addition
and multiplication. As did Gentzen, we also make use of the the natural sum, a3, which is
obtained by merging the Cantor normal forms. More precisely, we define 0#a = a#0 = a.
If o and # are both non-zero, we may express them as

a:Zw&'m]‘ ; ﬁzzwaj'nj 7
Jj<r j<r
where dgp > 91 > -+ and the m;, n; are natural numbers, possibly 0. Then define
a#p = W (m;+n,)
J<r

Note that # is associative and commutative. If «, # are non-0, then a#/ is larger than «
and 3. Also, a# is a successor ordinal iff at least one of a, 3 is a successor.

For finite n, o x n is obtained by multiplying each coefficient in the Cantor normal
form of o by n. Or, recursively, define a x0 =0 and ax (n + 1) = (a x n)#a.

We say that (o, 3) mesh iff each exponent occurring in the Cantor normal form of «
is at least as large as every exponent occurring in the Cantor normal form of 3. Note that

if (o,) mesh, then a#5 = a + 3, and also (¢, §') mesh for all 5’ < 3.

If o < €g, then o may be written out as a finite symbolic expression, such as w7 4
w? -2+ 8. We now define the norm of a, ||a||, which measures the complexity of this
expression. Of course, there is a lot of choice in the technical details of the symbolism.
Ngthm encodes Gentzen’s notation for « into a Lisp S-expression, and our ||«|| is precisely
the count of this notation (where “count” is the Nqthm measure of the complexity of
S-expressions). By accident, this ||a|| is also precisely the definition of norm chosen by
Ketonen and Solovay.

Definition. For a < €, define the norm of «, |||, by: ||0]] = 0. If 0 < a < €, and
a in Cantor normal form is
o = Zw5j mj o,

J<r
where a > 69 > d; > -- -, and the m; are positive natural numbers, then
loll = > (&1l +1)-m;
J<r

Let E(n) ={a <€ : ||a| < n}.

Lemma 1.

oo+ 1) = fla]l + 1.
|In|| = n for n € w.
E(n) is finite.
o8] = [l + 1[8]]-
||| = [l + 1.

Definition. Let {0}(n) = 0, and, for 0 < o < €, let {a}(n) = max(a N E(]|a||+2n)).

Gk W o

Note, by Lemma 1.2 and 1.3, that we are taking the max of a finite non-empty set here.
The interest in the notion {a}(n) is that we have assigned to each limit o a “canonical” w
— sequence of ordinals converging up to o (Lemma 2.5). The rest of Lemma 2 summarizes
some useful technical details.
Lemma 2. For a, 3 < ¢g and m,n < w:
If o < and ||ef| < ||B]| + 2n, then o < {F}(n).
If o is a limit, then ||[{a}(n)|| = ||o|| + 2n.
{a+1}(n) = 0.
I m < n then {a}(m) < {a}(n) and [{a}(m)] < b,
If o is a limit, then the {a}(n) form a strictly increasing sequence of ordinals converg-
ing to a.

Gk N

6. |lall =1 < |{ai(n)|| < lla|f + 2n

7 (Bl < a5l + 20 < [{akB})] + 20+ 1.

8. If 3 >0, then {a#8}(n) > a#{B}(n).

9. If (o, #) mesh and 8 > 0 then {a + 8}(n) = a + {B}(n).
10. {w}(n) =2n+ 2.

Proof. (1) — (5) are easy from the definitions and Lemma 1. (6) follows from (2)
if @ is a limit and from (3) if a is a successor. (7) follows from (6) and Lemma 1.4.
Ror (8), {8H(n) < § implics that a{3}n) < a#d, so by (7), ad{BH(n) € (adf) N
E(||a#0]|| + 2n); (8) now follows from the definition of {a#3}(n). Now, (9) is immediate
from (3) in the case that (3 is a successor, so assume that 3 is a limit. Since o < o+ 3
and ||af| < |loe +]| (since + and # agree here), the definition of {a + #}(n) implies that
fa +FHn) 2 a, so we can set {a + 7}(n) = a + 7. Applying (8), {3}(n) < §' < .
Applying (2) and Lemma 14, flaf| + |9 = lla]| -+ 3] + 20, 5o |3 = 5]+ 2n: but then,
B" = {B}(n) by the definition of {3}(n). Finally, for (10), ||w| = [J*|| = ||11]| +1 = 2, so
I{w}(n)]] =2n + 2 (by (2)), so {w}(n) =2n+ 2 by Lemma 1.2. m

We remark that the “2n” in the definition of {a}(n) could be replaced by any strictly
increasing function of n, and all the basic results would hold unchanged. The choice of 2n,
rather than n, makes the detailed computations, especially Lemma 8, somewhat simpler.
Actually, the 2n was a compromise between n and the function (3n + 3) - (n + 2)(+2),
which would have made the Ramsey theorem simpler still, at the expense of making the

elementary treatment of o — large sets look a bit ugly and artificial. This is discussed
further at the end of this section.

Definition. If X is a finite subset of w, and § < €, we define the notion “X is
B — large” by: Every X 1s 0 — large. If 3 > 0, X is § — large iff X is non-empty and
X\{min(X)} is {#}(min(X)) — large.

We shall usually prove theorems about large X by induction on |X|, but the following
“sequence” approach may be useful for motivation. Let z;, for i < |X]|, list X in increasing
order. Let By = 8 and f;41 = {Bi}(x;) for i < |X|; so ; is defined for ¢ < |X|. Then X
is # — large iff the last one, 3x|, is 0. Note that the 3% decrease strictly as long as they
are non-0. Informally, as § gets bigger, the sequence takes longer to reach 0, so that the
notion of “3 — large” gets large very rapidly as [increases; see Lemma 8 below.

Lemma 3. Let X be any finite subset of w:
1. For n <w, X is n — large iff | X| > n.
2. X is w — large iff X is non-empty and |X| > 2min(X) + 3.
3. If X is w — large then X 1s large.
Proof. (1) is by induction on n. For (2), use Lemma 2.10. Then, (3) is immediate
from (2). m

Further results on the size of § — large sets are given in Lemma 8. Roughly, as
increases, the property “3 — large” gets stronger, but this is not strictly true. For example,
{1,2,3,4,5} is w — large but is not 6 — large. One can sometimes conclude from o < 3
plus X g — large that X is a — large, but one needs an additional assumption about the
norm (see Lemma 4.3). It is always true that every subset of a 3 — large set is 3 — large
(Lemma 4.2).

Lemma 4. Assume X is non-empty, X is # — large, and @ = min(X).
LIEXCY, o<, and |lo| <||B]| + 2x, then YV is o — large.
2. f X CY, then Y is § — large.
3. f o < 3, and ||o|| < ||B]| + 22, then X is o — large.

S

Proof. (2) and (3) are immediate from (1), which we now prove by induction on | X]|.
(1) is trivial if @ = 0, so assume a > 0. Let y = min(Y"). Then y < 2. We now consider
three cases:

If 0 < a = and X is not a singleton: By Lemma 2.4 {a}(y) < {a}(z) and
I{a}(y)|] < |[{at(x)|]. Since X\{z} is {a}(x) — large, the Lemma, applied inductively
to (X\{z},Y\{y}), shows that Y\{y} is {a}(y) — large, so Y is o — large.

If 0 < o =(and X is a singleton, then {a}(x) = 0, so, by Lemma 2.4, {a}(y) = 0,
so Y is a — large.

If 0 < a < 3, then by Lemma 2.1, o < {f}(x). Now, X\{x} is {#}(z) — large, and in
particular non-empty, so let 27 = min(X\{«z}). Then #; > « + 1. Applying Lemma 2.6,

lall < 18] + 22 < [{BH@)[| + 1+ 22 < [{B}(2)][+ 221

So, the Lemma, applied inductively to (X\{z},Y"), shows that Y is a — large. m

Lemma 5. If X = AU B and X is a# — large, then either A is o — large or B is 3
— large.
Proof. Induct on | X|. Assume «, 3 > 0, and X has at least two elements; otherwise,

the result is trivial. Let xg,x; be the first two elements of X. By symmetry, we may
assume that x¢ is in B; it may or may not be in A. Note that X\{zo} is {a# 8} xo) —

large. Applying Lemma 2, {a#5}(x0) > a#{B}(x0), and
la# {8} (o) || < [la#8] + 2z0 < |[{a#BHwo)ll + 220 +1 < |[{a#FH(wo)l| + 221

so by Lemma 4.3, X\{zo} is a#{8}(xo) — large. Applying the Lemma inductively to
X\{wo}, either A\{xo} is a — large, whence A is o — large (by Lemma 4.2), or B\{zo} is
{B}(xg) — large, whence B is — large. m

Lemma 6. If X is axc—large, ¢ > 1, and X = J
Proof. Induct on ¢, using Lemma 5. m

i<e A;, then some A; is a — large.
Lemma 6 is a Ramsey theorem for 1-tuples. To prove a general Ramsey theorem, we
first (Lemma 8) need to get some rough lower bound estimates on the size of a-large sets.

Definition. X is below Y iff <y for all z € X and all y € Y.
Note that this notion is vacuously true if either X or Y is empty.

Lemma 7. If (o, 3) mesh and X is a + 8 — large, then X can be partitioned into
disjoint sets P, () such that P is below @), P is -large, and @ is «a-large.

Proof. Induct on | X|. Assume X is non-empty and 3 > 0, since otherwise the result
is trivial. Now, apply the lemma inductively to X \{min(X)}, using Lemma 2.9. =

Lemma 8. Let X be any finite non-empty subset of w and # = min(X).
1. For 0 <n < w,if X isw-n —large then | X| > 2"(x 4 1).
2. If X is w? — large then | X| > 2°T1(z +1).
3. If X is w? -2 — large then
|X| > 22“'1 ‘21’—1—1

4. If X is w2-2—|—nflarge then
|X|Z(n)2m-(n—|—2x—|—4))

Proof. For (1), we induct on n; the case n = 1 follows from Lemma 3. Assuming
(1) for n, let X be w-(n+ 1) — large. Apply Lemma 7 with o = w - n and 8 = w. Let
g = min(Q); Q is w-n — large, so |Q| > 2"(¢+ 1). P is w — large, so |P| > 2z + 3, so
g>ax+|P|>3x+3. So, |Q| >2"(3x +4) > 2"+1(:1; +1).

For (2), [|[w?|| = 3 and ||w - (x + 1)|| = 22 + 2 < 3 + 22, so by Lemma 4.3, if X is w? —
large, it is also w - (¢ + 1) — large. Now, (2) follows from (1) with n = = + 1.

For (3), apply Lemma 7 with a = 3 = w?. Let ¢ = min(Q). (2) for Q implies that
|Q] > 29 - ¢, and (2) for P implies that ¢ > |P| > 2*t!. Now, (3) follows immediately.
Using (3) and the same method, if X is w? -2 + n — large, then

X[> 22 et

Y

and (4) now follows by elementary arithmetic. m

Items (1) — (3) of Lemma 8 give some idea of how large o — large sets get. Item (4)
is completely uninteresting, but turns out to be just what is needed for Lemma 11 below.
If X is w® — large, | X| must be at least something like the Ackermann function of x. One
might now ask whether one can even produce o — large sets for all @ < ¢y. This is done in
Lemma 14 below. First, we show how « — large sets are used in the Ramsey theorem.

Definition. Let ¢(a,c) = w® +w?24 ||| + ¢. Let T'(a,n,¢) be axcif n <1 and
e(I'a,n —1,¢),¢) if n > 2.

Definition. [w]<¥ is the family of all finite subsets of w. If F : [w]<¥ — ¢, we say
that HOM(V,F,n) holds iff for all S,T C V,if |S| = |T| = n, then F(S) = F(T). Let
PH(Z,F) abbreviate the statement that for all non-empty S C Z and all a,b € Z such
that a,b > max(S), F(SU{a}) = F(SU{b}).

Some remarks: The discussion of Ramsey’s Theorem is technically somewhat simpler
if we consider partitions to act on all finite subsets of w, although the conclusion of the
Theorem involves only the partition being constant on n-tuples from a given set. The basic
Theorem is really Lemma 13, below — that is, if X is I'(e, n, ¢) — large and the n-tuples from
X are partitioned into ¢ pieces, then there is an a — large homogeneous V' C X. The case
n = 1 of this was Lemma 6. So, we proceed by induction. In one of the standard inductive
proofs of Ramsey’s Theorem, when we wish to obtain a V with HOM(V,F,n 4+ 1), we
first find a big Z C X which is pre-homogeneous (PH(Z,F)) — that is, for S C Z, F(S)
doesn’t depend on the last element of S, so that the action of F on the n + 1-tuples from
Z can be reduced to a partition on n-tuples. Formally,

Definition. If F : [w]<“ — ¢ and k € w, then the derived partition, Ok (F), is the
G : [w]<¥ — ¢ defined by: G(S5) = F(SU{k}).

This notion will be used only in the context of the following Lemma:

Lemma 9. If F: [w]<¥ - ¢,0 # Z Cw, PH(Z,F),n>1,k =max(Z),V C Z, and
HOM(V,0:(F),n), then HOM(V,F,n+ 1)

Thus, we shall get a homogeneous set for n + 1-tuples by applying Ramsey’s The-
orem for n-tuples to the derived partition on a pre-homogeneous subset, which is ob-
tained using Lemma 12 below, which says that if X is ¢(a,c¢) — large, then X has an
a — large pre-homogeneous subset. The pre-homogeneous subset is in turn extracted by
induction, but the induction is quite a bit simpler if we obtain a stronger property, “very
pre-homogeneous”.

Definition. Let F : [w]<* — ¢. VPH(Z,F) abbreviates the statement that for all
non-empty S and all a,b € Z, if max(S) € Z and a,b > max(S), then F(S U {a}) =
F(Su{b}). If « € w, NICE(x,Z,F) abbreviates the statement that for all a,b € Z, and
all (possibly empty) S C z, F(SU{x,a}) = F(SU{x,b}).

Lemma 10.
1. VPH(Z,F) implies PH(Z,F).
2. UVPH(Z,F), v <min(Z), and NICE(x,Z,F), then VPH({z} U Z,F).

Note that VP H(Z, F) is true trivially if |Z| < 3. By applying Lemma 10.2 repeatedly,
we can build up arbitrarily large pre-homogeneous sets if we can get the “nice” hypothesis
to hold, which we do in the next lemma.

Lemma 11. Assume o > 3 and ¢ > 1. Let F : [w]<¥ — ¢, and suppose that X is
o(a,c) — large. Let ¥ = min(X) and & = {a}(x). Then there is an N C X\{xz} such that
N is p(a,¢) — large and NICE(xz,N,F).

Proof. Let d = ||o|| + ¢, so that X is (w® + w? 24+ d) — large. Since a > 2,
(WY, w? - 2 + d) mesh, so by Lemma 7, we can partition X into P,Q, where P is below
Q, P is (w? -2+ d) - large and @ is w® — large. Let ¢ = min(Q). Applying Lemma 8.4
qg>|P| > (d—|—2:1;—|—4)-d2m.

Call a,b € Q equivalent iff F(T U{x,a}) = F(T U{x,b}) whenever T' C x. Note that
for N C Q, NICE(x,N,F) will hold iff all elements of N are equivalent. So, we shall
choose N C Q to be some equivalence class. Note that there are at most ¢2* equivalence
classes on). Thus, by Lemma 6, there is a ¢(d&,¢) — large equivalence class if @ is
@(a,c)xc? —large. Now, we know that @ is w® — large. Since a >3, w® > ¢(a,¢)xc? .

Also,
lp(@, e)xe® || < (@)l +1+6+]é+c)-c* < (2llall+4e+T+e)-c* < (2d+4a+8)-d* < 2q

so @ is indeed @(&,c) ¢ — large by Lemma 4.3. m

Lemma 12. Let ¢ > 1, F : [w]<¥ — ¢, and suppose that X is ¢(a,c) — large. Then
there is a Z C X such that Z is a — large and VPH(Z, F).

Proof. We induct on |X|. Assume o > 3, since otherwise we may take Z to be any
a-element subset of X. Applying Lemma 11, let & = min(X), let & = {a}(z), and let
N C X\{x} be such that N is ¢(d&,c) — large and NICE(x,N,F). |N| < |X|, so by
induction, we may choose Z C N such that VPH(Z,f) and Z is {a}(z) — large. Note

that NICE(J},ZA,f). Let Z = Z U {z}. Then Z is a — large (by the definition of a —
large), and VPH(Z,F) (by Lemma 10.2 applied to Z). m

Lemma 13 (Ordinal Ramsey Theorem). Assume ¢,n > 1, F : [w]<¥ — ¢, and X is
(e, n,c) — large. Then there is a V C X such that HOM(V,F,n) and V is o — large.

Proof. For n = 1, this is Lemma 6. Applying induction, assume the Lemma holds
for n, and assume that X is I'(a,n + 1, ¢) — large. Since I'(a,n + 1,¢) = o(I'(a, n,¢), ¢),
we may use Lemma 12 to fix Z C X such that Z is I'(a, n,¢) — large and VPH(Z,F),
and hence PH(Z,F). Let k = max(Z). Applying the Lemma to the derived partition
Ok (F), we get an o — large V C Z such that HOM(V, 0, (F),n), and hence, by Lemma 9,
HOM(V,F,n+1). =

The main Theorem is really a special case of this (with o = w), except that we still
need to verify that a I'(a,n, ¢) — large X really exists. This is easy, using €y induction:

Definition. A(0,k) =k. If 0 < a < €, Ao, k) = A({a}(k),k + 1). Let R(k,n,c) =
A(T(w,n,e), k).

Lemma 14. For each a < ¢p and k < w: k < A(a, k), and the interval [k, Ao, k)] is
a — large.
Proof. Induct on . m

Proof of Theorem. This is immediate from Lemmas 13 and 14, plus the fact that
every w — large set is large (Lemma 3.3). m

We comment further on the relationship between our proof and the one in Ketonen-
Solovay [4]. As noted above, our definition of |||, is exactly the same as in [4] and in
Ngthm. The symbolism {a}(n) is taken from [4], but we give it a slightly different value.
The key fact about {a}(n) (Lemma 2.5) is that for limit «, we have chosen a “canonical”
w — sequence of ordinals converging up to o. From a purely set-theoretic point of view, the
definition in [4] seems more natural than ours. For example, their {w}(n) is n, whereas
ours is 2n + 2. However, computations involving both {a}(n) and norms form the bulk of
the proof, and the definition in [4] makes these computations rather complicated, whereas
if we define {a }(n) the way we do, in terms of the norm, the computations are very simple.
Any Ramsey theorem will eventually rely on some pigeonhole principle. Ours, Lemmas 5
and 6, is exactly what you would expect it to be, whereas there is no simple analogous
result in [4].

The step of obtaining a pre-homogeneous set is a standard one in Ramsey theory, but
once we have a simple pigeonhole principle, it is easy to produce the pre-homogeneous set
by a simple induction, rather than by a tree argument as in [4].

Everything in our proof through Lemma 13 can be formalized within PRA. This
includes, in particular, the definition of I' and the fact that it works in a Ramsey theorem.
It is only when we need the existence of o — large sets and the functions A and R that
we have to apply €y induction. Up to this point, all of our theorems about finite sets X
were done by simple induction on the size of X. Besides that, we used a certain amount of
ordinal arithmetic, dealing with ordinal sum, product, and exponentiation, and the order
on the ordinals. However, if we view this arithmetic as expressing statements about the

notations for ordinals, it can all be done in PRA. Several of the results were stated as
existential facts, but these can all be re-stated in purely universal form, by defining a
primitive recursive function. For example, Lemma 13 says that “there is” a homogeneous
set V; when formalized in PRA, the proof defines a primitive recursive function which
returns such a V.

As we remarked after Lemma 2, if p: w — w is any strictly increasing function, then
we may replace “2n” by “u(n)” everywhere in the theory. In particular, if 0 < § < e€p:
define {B}(n,) = max(s N E(||B|| + 1(n))), and say that X is (§,p) — large iff X is
non-empty and X\{min(X)} is ({#}(min(X)),p) — large. Now Lemma 2.6 says that
le]l = 1 < |[Hat(n,)|l < Jla|| + p(n), and Lemma 4.3 says that if X is (5, p) — large,
a < 4, and ||a] < [|3] + p(min(X)), then X is (a,p) - large,

Let 7 be the identity function on w. Note that X is (3,) — large iff ©(X) is (8,7)
— large. So, considering various p does not add anything essential to the theory, although
our choice of p(n) = 2n simplifies the arithmetic somewhat.

By a rather artificial choice of y, we may omit a number of ordinal computations
in the proof. This is primarily of interest for the Nqthm verification. Humans would
probably prefer a simple and natural p. Nqthm doesn’t care about naturalness, and is
optimized to verify complicated facts about arithmetic on the integers, but has to struggle
with “obvious” facts about ordinal arithmetic.

In particular, all we really need from Lemma 8 is the fact that if X is (w + d,)
— large then |X| > p(min(X) + d), and we can replace the definition of ¢ by p(a,¢) =
w* +w + ||a]] + ¢. We do not really need the concept of “mesh”, and all we need from
Lemma 7 is the fact that if Z is (w® + w + d, p) — large, then there is an (w®,) — large
Q C Z\{min(Z)} with min(Q) > p(min(Z) + d).

To find the appropriate p for this to work we examine the proof of Lemma 11 and
see what 1 we need, namely ;(s) = (3s +3) - (s + 2)5F?, In the proof of Lemma 11, let
d=|la||+cand s =z +d. So, Z is (W +w + d,u) — large. With @ as above, we have
that Q is (w®, i) — large, and we need that Q is (p(&,¢) * ¢,) — large. Our estimates

are 1ow:

lp(@,e) = |l < (6]l + 1+ 24 [[a] +¢) - ¢ < (2flal +2u(2) +3+¢)- ¥ <
(25 +3+2u(s)) - s* < 3p(s) 57 < p(p(s) < p(min(Q))
so @ is indeed (@(é,¢) %2’) — large by the revised Lemma 4.3.

Of course, p was simply chosen so that these inequalities would work out. Besides p
being a strictly increasing function, 1 was cooked up so that:

10

§2. The Implementation. The material in §1 was implemented and verified on the
Boyer-Moore prover, Nqthm. The script comprises about 280 Kbytes of code, and takes
a standard workstation between 15 and 30 minutes to verify — a lot quicker than most
humans would be able to digest §1. The script ends with the main Theorem, stated as:

(prove-lemma ramsey-P-H () (implies

(and
(rangep g c) ; g maps into 0 ... c-1
(not (zerop n)) ; we are partitioning n-tuples for some n > 0
(numberp k) ; k = the desired size of the homogeneous set

(equal R (R k n c)) ; the Ramsey number
(equal YY (extract-ramsey-P-H g k n ¢)))
; YY is the computed homogeneous set
(and
(setp YY)
; YY is a set
(subsetp YY (segment O R))
; YY is a subset of 0, 1, ... R
(homp YY g n)
; YY is homogeneous for g as a partition of n-tuples
(leq k (length YY))
; YY has size at least k
(largep YY))
; YY is large in the Paris - Harrington sense

))

It is “obvious” from the comments that this expresses the Paris-Harrington Ramsey
Theorem stated in §1. However, as usual in the expression of a mathematical theorem
within a formal system, one must first address the issue of whether the formal statement
corresponds to the informal intent of the theorem. For example, although the comment
states that (homp YY g n) means that YY is homogeneous, the actual Nqthm definition is
a bit complex, relying on a sequence of preliminary definitions. Perhaps the author, either
by design or through stupidity, entered a definition which does not correctly capture the
notion of “homogeneous”, perhaps making the whole theorem trivial. As pointed out in [2],
since this issue connects the formal and informal notions, it can never be settled formally,
but we shall make a few remarks in an effort to convince the reader that our definitions are
correct. We take up the notions appearing in the Theorem in order of increasing difficulty.

First, the following notions are built-in to Nqthm: implies, and, not and equal
have the obvious meanings. (numberp k) means that k is a natural number. All Nqthm
functions (either built-in or defined by the user) are total; in particular, built-in numeric
functions cast non-numeric input to the number 0. Thus, (zerop n) means that either n
is a non-number or n = 0, so that (not (zerop n)) means that n is a positive natural
number. leq means <.

The function length is not built-in, but we defined it in the obvious recursive way:

11

(defn length (Ist) (if (listp 1lst)
(addl (length (cdr 1st)))
0))

This is exactly as suggested in [2].

We have found it convenient to represent sets as increasing lists of natural numbers,
so that each set of numbers has a unique representation. Then (setp YY) says that “YY
is a standard representation of a set”. This is defined by:

(defn setp (s) (if (listp s)
(and
(numberp (car s))
(setp (cdr s))
(or
(equal (cdr s) nil)
(lessp (car s) (cadr s))))
(equal s nil)))

So, for example, (setp NIL) and (setp ’(1 4 5)) evaluate to T (true), whereas (setp
(1 6 5)) evaluates to F (false). Also, (subsetp sl s2) is defined by recursion on si
to say that every member of s1 is a member of s2;
(defn subsetp (sl s2) (if (listp si1)
(and
(member (car s1) s2)
(subsetp (cdr s1) s2))
T))

Since each set has a unique representation, extensionality holds; that is, we establish:
(prove-lemma extensionality () (implies
(and (setp s1) (setp s2) (subsetp sl s2) (subsetp s2 si1))
(equal si1 s2)))

If YY represents a set, then (length YY) is just the size of the set. It is now clear how to
define (largep YY):
(defn largep (set) (and
(setp set) (listp set)
(not (lessp (length set) (car set)))))

The function (segment m n) was defined so that for m < n, it would return the list of
numbers from m to n in increasing order, which is our representation of the set of numbers
from m to n:
(defn segment (m n) (if
(and (leq m n) (numberp m) (numberp n))
(cons m (segment (addl m) n))

nil)
(; hint
(lessp (difference (addl n) m))

))

The hint is needed here because the recursion goes upward on m.

12

Now, the Theorem quantifies over arbitrary partitions, g. A partition is a special kind
of function, and we follow the standard Lisp convention of representing (finite) functions
as lists of ordered pairs, called association lists. Then, (funcall g x) is intended to be
the value of the function g on the argument x. Since the function assoc is built-in to
Nqgthm, we defined funcall simply as

(defn funcall (g x) (cadr (assoc x g)))
For example,

((15) (28) (30))
represents the function which takes 1 to 5, 2 to 8, and 3 to 0. If x is not in the “intended”
domain of g ({1,2,3} in this example), then (funcall g x) returns 0 (since in Nqthm,
unlike in Common Lisp, the car and cdr of a non-list is 0).

It is clear that in this way, we can represent any finite function. We now define
(rangep g c) to say cis a positive number and that every value, (funcall g x), is a
number less than c. Since 0 is the default function value, rangep can be defined simply
by recursion on the list g:

(defn rangep (g c) (if (nlistp g)
(lessp 0 c)
(and
(rangep (cdr g) c)
(numberp (cadar g))
(lessp (cadar g) c))))

Asin §1, it is technically simpler to think of partitions of n-tuples into ¢ pieces as functions
which map everything into {0,1,...,¢ — 1}. Thus, the hypotheses to our statement of
Ramsey’s Theorem do not say anything about g partitioning n-tuples.

The n-tuples occur only inthe notion of homogeneous, (homp YY g n), which says
that ¢ has the same value on all n-tuples from YY. There is no simple way to define this
by recursion. We first defined (power-set YY) to return a list containing all subsets of
YY, and then defined (product 1lstl 1lst2) to return a list containing all pairs (x . y)
with x in 1st1 and y in 1st2. Then we defined

(defn homp (YY g n) (nlistp (counter-hom YY g n
(product (power-set YY) (power-set YY)))))

where the function (counter-hom YY g n list-of-pairs) runs down list-of-pairs
and tries to find (and return) a pair of sets (S1 . S2) on the list such that S1,52 have
size n and (funcall g S1) differs from (funcall g S2). If it fails, then it returns 0. So,
(homp YY g n) says that there is no counter-example to homogeneity on the list of all
pairs of n-element subsets of YY. Since this is all a bit complicated, there is a danger of a
programming error here. To verify the correctness of our definition, we proved a lemma
stating that (homp YY g n) indeed implies that g is constant on all n-tuples from YY:

13

(prove-lemma homp-is-sufficient (rewrite) (implies
(and
(homp YY g n)
(subsetp x YY) (subsetp y YY)
(setp YY) (setp x) (setp y)
(equal (length x) n) (equal (length y) n))
(equal (funcall g x) (funcall g y))))

That concludes our justification of the statement of the theorem. Note that we are
not required to justify our definitions of the function (R k n ¢), which computes the
Ramsey number, and the function (extract-ramsey-P-H g k n c), which extracts the
homogeneous set for the Paris-Harrington form of Ramsey’s Theorem. We claim that they
were defined by implementing the discussion in §1, but even if we are lying here, and have
computed them in some completely different way, we have still proved the theorem.

In fact, the Paris-Harrington Ramsey Theorem is an easy corollary of the Ordinal
Ramsey Theorem (§1, Lemma 13), which we consider to be the main result. This is stated
as:

(prove-lemma ord-ramsey (rewrite) (implies

(and

(ordinalp alpha)

(rangep g c)

(not (zerop n))

(setp ZZ)

(o-largep ZZ (Gamma alpha n c))

(equal YY (extract-ramsey g ZZ alpha n c)))
(and

(setp YY)

(subsetp YY ZZ)

(o-largep YY alpha)

(homp YY g n))))

Here, (o-largep YY alpha) expresses the notion that the set YY is alpha — large, and the
function extract-ramsey extracts the homogeneous set for the Ordinal Ramsey Theorem.

We now make some further remarks on our Nqthm script, as a guide to those readers
who may wish to look at it in detail. Roughly, the script follows the outline of the human-
readable proof presented in §1. However, since computers and humans differ in what they
find difficult, we departed from this outline somewhat. In particular, §1 took for granted
some elementary facts about ordinals, whereas Nqthm contains nothing about ordinals
beyond the definitions of ordinalp and ord-lessp, and the ability to define functions by
recursion on ord-lessp. This contrasts with the situation for natural numbers, where the
prover not only contains some basic functions (such as + and %), but also has a built-in
decision procedure for linear arithmetic. Thus, as a practical matter, it is much easier to
do arithmetic on w than on €. So, in the implementation, we took the tack described at
the end of §1, using the function u(s) = (3s+3)-(s+ 2)(3"'2), which we called (magic s).
In this way, we avoided having to define ordinal sum and product, and the concept of

14

“mesh”, although we did need to define a#/3. Throughout the script, the notion of o —
large actually means (a,) — large in the notation of §1.

Our script begins with a section on basic arithmetic. This section verifies all the facts
about the function magic which get used later in the proof, such as the inequalities at
the end of §1. A human might find all this tedious and uninteresting, but the computer
finds it trivial. This section also contains some other simple arithmetic facts, such as the
associativity of multiplication.

We then proceeded to verify some basic facts about lists, and about our representation
of sets of numbers by lists. Two different notions of “sublist” suggest themselves here. One,
(subsetp sl s2), said that every member of s1 is a member of s2. The other, (sublistp
sl s2), said that s1 can be obtained by deleting 0 or more elements of s2 (but not changing
the order). We proved these notions to be equivalent on our “standard” representations
for sets of numbers.

We then took up ordinals. It was easy to verify the basic facts about successor and
limit ordinals and the fact that ord-lessp is a total order. The definition and properties of
a# 3 took more work. Asin §1, this is defined by merging the Cantor normal forms, which
are easily read off of the Nqthm representation of the ordinals, so we defined (sharp alpha
beta) roughly the way one would recursively define a merge in Lisp. However, we needed
a special case for the coefficient of w®, which is treated differently from the coefficients of
the other w® in Nqthm; this made all the proofs a bit complicated. We verify here that
a# [is commutative and associative, and increasing in each argument.

Next come the notions of norm (||a||) and {a}(n). Now, (norm x) was simply defined
to be (count x); we only made this definition so that later a (disable norm) would not
disable count. The definition of {a}(n) as max(aNE(||«|| 4 p1(n))) required first defining a
function which represented each E(k) as a list. We then verified Lemmas 1 and 2, defined
the notion of o — large ((o-largep YY alpha)), and verified Lemmas 3 and 4.

Lemma 5, the “two-set pigeon-hole principle” was proved in §1 in eight lines, but it
took about 750 lines of Nqthm code to verify it; the proof in §1 used without mention some
trivial facts about finite sets, none of which are known to Nqthm. The ¢-set pigeon-hole
principle, Lemma 6, took about 700 more lines to verify. Although the proof of Lemma 6 is
just one line in §1, saying, essentially, “the obvious induction works”, Nqthm must switch
gears here in an essential way. The two-set principle involves one set, X, covered by two
explicitly mentioned sets A and B, whereas the ¢-set principle involves an indexed family
of ¢ sets, which is implemented as a function which maps X into ¢. Actually, in our Nqthm
script, the proof of Lemma 6 does not immediately follow Lemma 5, but comes after the
function « * ¢ is defined (see below).

We then stuck in the definitions of “homogeneous” (homp) and “pre-homogeneous”
(pre-homp). These notions are both a bit tedious to formalize on Nqthm, since they are
the form V.S C X(---), which must be implemented by a function which runs down a list
of all subsets of X. Once the basic properties of these notions were developed, it was fairly
easy to verify the Derwed Partition Lemma (Lemma 9).

As mentioned above, we never needed to define the notion of “mesh”, but we did have
to prove, in what we called the Tail Lemma, that part of Lemma 7 which asserted that if
Z is w* +w + d — large, z = min(Z), and we apply cdr p(z + d) times to Z, then we get

15

an w® — large set @ C Z\{z} with min(Q) > u(z + d). This took about 850 lines of code
to verify.

At this point, we gave the definition and some elementary properties of the functions
e(a,c) and o *n. We then proceeded to prove the Cdr Lemma, which says that the @
above is @(d,¢) - ¢? — large, where & = {a}(z). This computation, which was simply
embedded in the proof of Lemma 11, took about 300 lines to verify. Then came the c-set
pigeon-hole principle (see above), and some elementary facts about ranges and segments.

We then proceeded to verify the Ordinal Ramsey Theorem for 1-tuples, which is the
basis for the induction to come later. In §1, this was just Lemma 6 again, but there is a
subtle difference. Lemma 6 involved partitioning the elements of X into ¢ pieces, whereas
now we are partitioning the 1-tuples from X. Informally, elements are often identified with
1-tuples, but it took about 300 lines of Nqthm code to handle this formally.

After some miscellaneous constructions, we then turned to the Nice Set Lemma, which
formalizes the “equivalence relation” part of the argument in Lemma 11. In §1, we simply
assumed the reader understood what it meant for the set @ to be partitioned into ¢*”
equivalence classes, and that the pigeon-hole principle would apply to this partition, but
the corresponding Nqthm proof took about 375 lines. We were then able to proceed to
verify Lemma 12 (extracting a pre-homogeneous set) and then prove the Ordinal Ramsey
Theorem. Finally, using €y recursion, we defined the function A and proved the Paris-
Harrington Ramsey Theorem.

63. Conclusion. This work demonstrates that one may use Nqthm to verify some
rather complex combinatorial statements. It also demonstrates one of the difficulies in
doing so. Human mathematicians recognize immediately when various representations of
a concepts are essentially the “same”. For example, if we want to partition a set X into
two pieces, a map g : X — 2 is “the same as” a cover of X by disjoint sets A and B, and
both these are “the same as” a partition of the set of 1-element subsets of X. We also
recognize, by experience, that these identifications are only correct in certain contexts; but
it 1s not trivial to explain formally what these contexts are. Thus, making use of these
identifications is a difficult challenge for future generations of verification systems.

References

[1] Basin, D. and Kaufmann, M, The Boyer-Moore Prover and Nuprl: An Experimental
Comparison Technical Report #58, Computational Logic, Inc., 1990.

[2] Boyer, R. S. and Moore, J. S., A Computational Logic Handbook, Academic Press,
1988.

[3] Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische An-
nalen 112 (493 — 565) 1936.

[4] Ketonen, J. and Solovay, R., Rapidly Growing Ramsey Functions, Annals of Math
113 (1981) 267 — 314.

[5] Paris, J. and Harrington, L., A Mathematical Incompleteness in Peano Arithmetic,
in Handbook of Mathematical Logic, J. Barwise, ed., North-Holland, 1978, pp. 1133 —
1142.

16

