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ABSTRACT

We use the Boyer�Moore Prover� Nqthm� to verify the Paris�Harrington ver�
sion of Ramsey�s Theorem� The proof we verify is a modi�cation of the one given
by Ketonen and Solovay� The Theorem is not provable in Peano Arithmetic� and
one key step in the proof requires �� induction�

x�� Introduction� The most well�known formalizations of �nite mathematics are PA
�Peano Arithmetic� and PRA �Primitive Recursive Arithmetic�� In both� the 	intended

domain of discourse is the set of natural numbers� PA is formalized in standard �rst�order
logic� and contains the induction schema� which can apply to arbitrary �rst�order formulas�
The logic of PRA allows only quanti�er�free formulas� which are thought of as being
universally quanti�ed� and PRA has the induction scheme for quanti�er�free formulas�
expressed as a proof rule� Also� for each primitive recursive function f � PRA contains a
function symbol for f and has the recursive de�nition of f as an axiom� Clearly� PRA
is much weaker than PA� In particular� PA can prove the consistency of PRA by simply
proving the statement 	all sentences provable from PRA are true
�

The Boyer�Moore theorem prover� Nqthm ��
� is a Lisp�based system for computational
logic� It allows the user to de�ne functions recursively and to prove theorems about these
functions� It is� to �rst approximation� an implementation of PRA� but it extends PRA in
two important ways�

The �rst way is that it allows the use of symbolic expressions �Lisp S�expressions�
as basic objects� as well as numbers� In theory� this extension is inessential� since these
expressions can be encoded by G�odel numbering� but in practice� such a G�odel numbering
would be extremely awkward to deal with� By dealing with S�expressions directly� Nqthm
has become a practical veri�cation tool� and has frequently been used to verify statements
in �nite combinatorics� as well as theorems about circuit design and algorithm correctness�

The second way is essential� Nqthm allows de�nition of functions by recursion on the
ordinal ��� and proofs by induction on ��� Until now� the full strength of this extension
has not been utilized� In this paper� we show how to utilize it�

In their book ��
� Boyer and Moore point out that ordinals can be used to formalize
double recursions� In many applications� this is only a matter of convenience� since the
function de�ned is really primitive recursive� and could� with slightly more work� be de�ned
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within PRA by a standard primitive recursion� The simplest example which goes beyond
PRA is the Ackermann function� which grows faster than every primitive recursive function�
Here� the recursion step is f�x� y� � f�f�x � �� y�� y � �� when x� y � �� One can justify
this double recursion as a simple recursion on the ordinal �� by identifying �x� y� with the
ordinal � � y � x� The current Nqthm distribution contains a short Nqthm script� due to
Kunen� which de�nes the Ackermann function and derives some of its properties�

However� �� is a long way from ��� The earliest use of �� in proof theory is due to
Gentzen ��
� who showed that in PRA plus �� induction one can prove the consistency of
PA� It might be an interesting exercise to implement this proof on Nqthm� However� in this
paper� we choose instead a simple combinatorial theorem � namely� the Paris�Harrington
version of Ramsey�s Theorem�

Ramsey�s Theorem states that one can� for each k� n� c� �nd a number R�k� n� c� large
enough so that whenever we partition all the n�tuples from the set f�� �� �� � � � R�k� n� c�g
into c pieces� there is a set of size at least k which is homogeneous for the partition �that is�
all of its n�tuples are in the same piece of the partition�� The Paris�Harrington extension
adds the seemingly harmless extra requirement that the homogeneous set be large� meaning
that its size is at least as big as its �rst element� For example� f�� �� �g is large but f�� �� �g
isn�t�

Now� it is easy to see that Ramsey�s Theorem can be proved within PRA� and the
n � � case has been veri�ed on Nqthm by Matt Kaufmann �see ��
�� However� the Paris�
Harrington extension cannot be proved even in full PA ��
� It can be proved in PRA
plus �� induction� as was demonstrated explicitly by Ketonen and Solovay ��
� and hence�
potentially� can be proved in Nqthm�

We have indeed veri�ed this theorem on Nqthm� and describe the proof in this paper�
In x�� we present the proof� using ordinary mathematical terminology� In x�� we explain
how we formalized it on Nqthm� The complete Nqthm script is available by email from
the author�

The reason we give the proof in x�� rather than just referring the readers to ��
� is that
the argument in ��
 is a bit more complicated than it needs to be� and introduces a number
of notions which turn out to be irrelevant� Our x� may be of independent mathematical
interest� since by simplifying the proof� we can pin down exactly where the �� induction
takes place� Many of the steps in ��
 which appear to use induction on the ordinals can in
fact be formalized in PRA�

The basic idea in the proof is the following� If X is a �nite set of natural numbers�
and � � ��� we de�ne what it means for X to be � � large� For �nite n� X is n � large i�
jXj � n� Our 	� � large
 is slightly stronger than 	large
� but as � grows above �� the
notion of � � large grows very rapidly� for example� if X is �� � large and x is the �rst
element of X� then jXj � ��

x

� We then prove the Ordinal Ramsey Theorem �x�� Lemma
���� For each �� n� c� there is an ordinal ���� n� c� such that wheneverX is ���� n� c� � large�
every partition of the n � tuples from X into c pieces has an � � large homogeneous set�
Actually� ��
 proves this just for � � �� which was su�cient to derive the Paris�Harrington
Ramsey Theorem�
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Now� the Ordinal Ramsey Theorem is done within PRA� Following Gentzen ��
� and
Boyer�Moore ��
� each ordinal below �� has a notation� which is a �nite symbolic expres�
sion� and everything we need about ordinals is proved using ordinary induction on these
notations� We only step beyond PRA in the proof that � � large sets exist� Here� we de�ne
a number ���� k� � k and prove that the set of numbers between k and ���� k� is � �
large �x�� Lemma ���� ���� k� is de�ned by trans�nite recursion on � � ��� Our R�k� n� c�
is just ������ n� c�� k��

It is easy to track the use of �� in the Nqthm veri�cation� Nqthm will not use ��
recursion in a function de�nition unless explicitly told to do so by the user� and Nqthm
will not prove a theorem by �� induction until at least one function has been de�ned by ��
recursion� The �rst �and only� use of ordinal recursion in our Nqthm code occurs in the
de�nition of �� which is located after the proof of the Ordinal Ramsey Theorem�

x�� The Proof� For simplicity� we start by presenting the proof using ordinary set�
theoretic notation� At the end of this section� we comment on formalizing it in PRA� and
explain the relationship between our proof and the Ketonen�Solovay ��
 proof�

De�nition� A �nite X � � is called large i� X is non�empty and jXj � min�X��

Our goal is to prove�

Theorem� There is a computable function R�k� n� c� such that� Whenever c� n � �
and F is a partition of the n�tuples from f�� �� �� � � � R�k� n� c�g into c pieces� there is a
large subset of f�� �� �� � � � R�k� n� c�g of size at least k which is homogeneous for F �

For notational convenience� we identify ordinals� and in particular natural numbers�
with von Neumann ordinals� so that each ordinal is the set of all smaller ordinals� Then
each c � � is an c�element set� With this notation� if F � X � c is a function in the usual
mathematical sense� then F is a partition of X into c pieces� labeled �� �� � � � � c� ��

First� some ordinal arithmetic� We use � and � to denote the usual ordinal addition
and multiplication� As did Gentzen� we also make use of the the natural sum� ���� which is
obtained by merging the Cantor normal forms� More precisely� we de�ne ��� � ��� � ��
If � and � are both non�zero� we may express them as

� �
X

j�r

��j �mj � � �
X

j�r

��j � nj �

where 	� � 	� � � � � and the mj � nj are natural numbers� possibly �� Then de�ne

��� �
X

j�r

��j � �mj � nj� �

Note that � is associative and commutative� If �� � are non��� then ��� is larger than �

and �� Also� ��� is a successor ordinal i� at least one of �� � is a successor�
For �nite n� � 
 n is obtained by multiplying each coe�cient in the Cantor normal

form of � by n� Or� recursively� de�ne � 
 � � � and � 
 �n� �� � �� 
 n����
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We say that ��� �� mesh i� each exponent occurring in the Cantor normal form of �
is at least as large as every exponent occurring in the Cantor normal form of �� Note that
if ��� �� mesh� then ��� � �� �� and also ��� ��� mesh for all �� � ��

If � � ��� then � may be written out as a �nite symbolic expression� such as ��
��� �

�� � � � �� We now de�ne the norm of �� k�k� which measures the complexity of this
expression� Of course� there is a lot of choice in the technical details of the symbolism�
Nqthm encodes Gentzen�s notation for � into a Lisp S�expression� and our k�k is precisely
the count of this notation �where 	count
 is the Nqthm measure of the complexity of
S�expressions�� By accident� this k�k is also precisely the de�nition of norm chosen by
Ketonen and Solovay�

De�nition� For � � ��� de�ne the norm of �� k�k� by� k�k � �� If � � � � ��� and
� in Cantor normal form is

� �
X

j�r

��j �mj �

where � � 	� � 	� � � � �� and the mj are positive natural numbers� then

k�k �
X

j�r

�k	jk� �� �mj �

Let E�n� � f� � �� � k�k � ng�

Lemma ��
�� k�� �k � k�k� ��
�� knk � n for n � ��
�� E�n� is �nite�
�� k���k � k�k� k�k�
�� k��k � k�k� ��

De�nition� Let f�g�n� � �� and� for � � � � ��� let f�g�n� � max��	E�k�k��n���

Note� by Lemma ��� and ���� that we are taking the max of a �nite non�empty set here�
The interest in the notion f�g�n� is that we have assigned to each limit � a 	canonical
 �
� sequence of ordinals converging up to � �Lemma ����� The rest of Lemma � summarizes
some useful technical details�

Lemma �� For �� � � �� and m�n � ��
�� If � � � and k�k � k�k� �n� then � � f�g�n��
�� If � is a limit� then kf�g�n�k � k�k� �n�
�� f�� �g�n� � ��
�� If m � n then f�g�m� � f�g�n� and kf�g�m�k � kf�g�n�k�
�� If � is a limit� then the f�g�n� form a strictly increasing sequence of ordinals converg�

ing to ��
 � k�k � � � kf�g�n�k � k�k� �n
�� k��f�g�n�k � k���k� �n � kf���g�n�k� �n� ��
�� If � � �� then f���g�n� � ��f�g�n��
!� If ��� �� mesh and � � � then f�� �g�n� � �� f�g�n��
��� f�g�n� � �n� ��
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Proof� ��� � ��� are easy from the de�nitions and Lemma �� � � follows from ���
if � is a limit and from ��� if � is a successor� ��� follows from � � and Lemma ����
For ���� f�g�n� � � implies that ��f�g�n� � ���� so by ���� ��f�g�n� � ����� 	
E�k���k� �n�� ��� now follows from the de�nition of f���g�n�� Now� �!� is immediate
from ��� in the case that � is a successor� so assume that � is a limit� Since � � � � �

and k�k � k�� �k �since � and � agree here�� the de�nition of f� � �g�n� implies that
f� � �g�n� � �� so we can set f� � �g�n� � � � ��� Applying ���� f�g�n� � �� � ��
Applying ��� and Lemma ���� k�k� k��k � k�k� k�k��n� so k��k � k�k��n� but then�
�� � f�g�n� by the de�nition of f�g�n�� Finally� for ����� k�k � k��k � k�k � � � �� so
kf�g�n�k � �n� � �by ����� so f�g�n� � �n� � by Lemma ����

We remark that the 	�n
 in the de�nition of f�g�n� could be replaced by any strictly
increasing function of n� and all the basic results would hold unchanged� The choice of �n�
rather than n� makes the detailed computations� especially Lemma �� somewhat simpler�
Actually� the �n was a compromise between n and the function ��n � �� � �n � ��
n����
which would have made the Ramsey theorem simpler still� at the expense of making the
elementary treatment of � � large sets look a bit ugly and arti�cial� This is discussed
further at the end of this section�

De�nition� If X is a �nite subset of �� and � � ��� we de�ne the notion 	X is
� � large
 by� Every X is � � large� If � � �� X is � � large i� X is non�empty and
Xnfmin�X�g is f�g�min�X�� � large�

We shall usually prove theorems about large X by induction on jXj� but the following
	sequence
 approach may be useful for motivation� Let xi� for i � jXj� list X in increasing
order� Let �� � � and �i�� � f�ig�xi� for i � jXj� so �i is de�ned for i � jXj� Then X

is � � large i� the last one� �jXj� is �� Note that the �Xi decrease strictly as long as they
are non��� Informally� as � gets bigger� the sequence takes longer to reach �� so that the
notion of 	� � large
 gets large very rapidly as � increases� see Lemma � below�

Lemma �� Let X be any �nite subset of ��
�� For n � �� X is n � large i� jXj � n�
�� X is � � large i� X is non�empty and jXj � �min�X� � ��
�� If X is � � large then X is large�

Proof� ��� is by induction on n� For ���� use Lemma ����� Then� ��� is immediate
from ����

Further results on the size of � � large sets are given in Lemma �� Roughly� as �
increases� the property 	� � large
 gets stronger� but this is not strictly true� For example�
f�� �� �� �� �g is � � large but is not  � large� One can sometimes conclude from � � �

plus X � � large that X is � � large� but one needs an additional assumption about the
norm �see Lemma ����� It is always true that every subset of a � � large set is � � large
�Lemma �����

Lemma �� Assume X is non�empty� X is � � large� and x � min�X��
�� If X 
 Y � � � �� and k�k � k�k� �x� then Y is � � large�
�� If X 
 Y � then Y is � � large�
�� If � � �� and k�k � k�k� �x� then X is � � large�
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Proof� ��� and ��� are immediate from ���� which we now prove by induction on jXj�
��� is trivial if � � �� so assume � � �� Let y � min�Y �� Then y � x� We now consider
three cases�

If � � � � � and X is not a singleton� By Lemma ��� f�g�y� � f�g�x� and
kf�g�y�k � kf�g�x�k� Since Xnfxg is f�g�x� � large� the Lemma� applied inductively
to �Xnfxg� Y nfyg�� shows that Y nfyg is f�g�y� � large� so Y is � � large�

If � � � � � and X is a singleton� then f�g�x� � �� so� by Lemma ���� f�g�y� � ��
so Y is � � large�

If � � � � �� then by Lemma ���� � � f�g�x�� Now� Xnfxg is f�g�x� � large� and in
particular non�empty� so let x� � min�Xnfxg�� Then x� � x � �� Applying Lemma �� �

k�k � k�k� �x � kf�g�x�k � � � �x � kf�g�x�k � �x� �

So� the Lemma� applied inductively to �Xnfxg� Y �� shows that Y is � � large�

Lemma 	� If X � A �B and X is ��� � large� then either A is � � large or B is �
� large�

Proof� Induct on jXj� Assume �� � � �� and X has at least two elements� otherwise�
the result is trivial� Let x�� x� be the �rst two elements of X� By symmetry� we may
assume that x� is in B� it may or may not be in A� Note that Xnfx�g is f���g�x�� �
large� Applying Lemma �� f���g�x�� � ��f�g�x��� and

k��f�g�x��k � k���k� �x� � kf���g�x��k� �x� � � � kf���g�x��k � �x� �

so by Lemma ���� Xnfx�g is ��f�g�x�� � large� Applying the Lemma inductively to
Xnfx�g� either Anfx�g is � � large� whence A is � � large �by Lemma ����� or Bnfx�g is
f�g�x�� � large� whence B is � � large�

Lemma 
� If X is � 
 c � large� c � �� and X �
S
i�cAi� then some Ai is � � large�

Proof� Induct on c� using Lemma ��

Lemma  is a Ramsey theorem for ��tuples� To prove a general Ramsey theorem� we
�rst �Lemma �� need to get some rough lower bound estimates on the size of ��large sets�

De�nition� X is below Y i� x � y for all x � X and all y � Y �

Note that this notion is vacuously true if either X or Y is empty�

Lemma �� If ��� �� mesh and X is � � � � large� then X can be partitioned into
disjoint sets P�Q such that P is below Q� P is ��large� and Q is ��large�

Proof� Induct on jXj� Assume X is non�empty and � � �� since otherwise the result
is trivial� Now� apply the lemma inductively to Xnfmin�X�g� using Lemma ��!�

Lemma �� Let X be any �nite non�empty subset of � and x � min�X��
�� For � � n � �� if X is � � n � large then jXj � �n�x � ���
�� If X is �� � large then jXj � �x���x � ���
�� If X is �� � � � large then

jXj � ��
x��

� �x�� �

 



�� If X is �� � � � n � large then

jXj � �n��
x

� �n � �x � �� �

Proof� For ���� we induct on n� the case n � � follows from Lemma �� Assuming
��� for n� let X be � � �n � �� � large� Apply Lemma � with � � � � n and � � �� Let
q � min�Q�� Q is � � n � large� so jQj � �n�q � ��� P is � � large� so jP j � �x � �� so
q � x � jP j � �x� �� So� jQj � �n��x � �� � �n���x � ���

For ���� k��k � � and k� � �x� ��k � �x� � � � � �x� so by Lemma ���� if X is �� �
large� it is also � � �x � �� � large� Now� ��� follows from ��� with n � x� ��

For ���� apply Lemma � with � � � � ��� Let q � min�Q�� ��� for Q implies that
jQj � �q � q� and ��� for P implies that q � jP j � �x��� Now� ��� follows immediately�
Using ��� and the same method� if X is �� � � � n � large� then

jXj � ��
x�n��

� �x�n�� �

and ��� now follows by elementary arithmetic�

Items ��� � ��� of Lemma � give some idea of how large � � large sets get� Item ���
is completely uninteresting� but turns out to be just what is needed for Lemma �� below�
If X is �� � large� jXj must be at least something like the Ackermann function of x� One
might now ask whether one can even produce � � large sets for all � � ��� This is done in
Lemma �� below� First� we show how � � large sets are used in the Ramsey theorem�

De�nition� Let ���� c� � �� � �� � � � k�k� c� Let ���� n� c� be � 
 c if n � � and
������ n � �� c�� c� if n � ��

De�nition� ��
�� is the family of all �nite subsets of �� If F � ��
�� � c� we say
that HOM�V�F � n� holds i� for all S� T 
 V � if jSj � jT j � n� then F�S� � F�T �� Let
PH�Z�F� abbreviate the statement that for all non�empty S 
 Z and all a� b � Z such
that a� b � max�S�� F�S � fag� � F�S � fbg��

Some remarks� The discussion of Ramsey�s Theorem is technically somewhat simpler
if we consider partitions to act on all �nite subsets of �� although the conclusion of the
Theorem involves only the partition being constant on n�tuples from a given set� The basic
Theorem is really Lemma ��� below � that is� ifX is ���� n� c� � large and the n�tuples from
X are partitioned into c pieces� then there is an � � large homogeneous V 
 X� The case
n � � of this was Lemma  � So� we proceed by induction� In one of the standard inductive
proofs of Ramsey�s Theorem� when we wish to obtain a V with HOM�V�F � n � ��� we
�rst �nd a big Z 
 X which is pre�homogeneous � PH�Z�F� � � that is� for S 
 Z� F�S�
doesn�t depend on the last element of S� so that the action of F on the n� ��tuples from
Z can be reduced to a partition on n�tuples� Formally�

De�nition� If F � ��
�� � c and k � �� then the derived partition� �k�F�� is the
G � ��
�� � c de�ned by� G�S� � F�S � fkg��

This notion will be used only in the context of the following Lemma�
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Lemma 
� If F � ��
�� � c� � 
� Z 
 �� PH�Z�F�� n � �� k � max�Z�� V 
 Z� and
HOM�V� �k �F�� n�� then HOM�V�F � n � ��

Thus� we shall get a homogeneous set for n � ��tuples by applying Ramsey�s The�
orem for n�tuples to the derived partition on a pre�homogeneous subset� which is ob�
tained using Lemma �� below� which says that if X is ���� c� � large� then X has an
� � large pre�homogeneous subset� The pre�homogeneous subset is in turn extracted by
induction� but the induction is quite a bit simpler if we obtain a stronger property� 	very
pre�homogeneous
�

De�nition� Let F � ��
�� � c� V PH�Z�F� abbreviates the statement that for all
non�empty S and all a� b � Z� if max�S� � Z and a� b � max�S�� then F�S � fag� �
F�S � fbg�� If x � �� NICE�x�Z�F� abbreviates the statement that for all a� b � Z� and
all �possibly empty� S 
 x� F�S � fx� ag� � F�S � fx� bg��

Lemma ���
�� V PH�Z�F� implies PH�Z�F��
�� If V PH�Z�F�� x � min�Z�� and NICE�x�Z�F�� then V PH�fxg � Z�F��

Note that V PH�Z�F� is true trivially if jZj � �� By applying Lemma ���� repeatedly�
we can build up arbitrarily large pre�homogeneous sets if we can get the 	nice
 hypothesis
to hold� which we do in the next lemma�

Lemma ��� Assume � � � and c � �� Let F � ��
�� � c� and suppose that X is
���� c� � large� Let x � min�X� and "� � f�g�x�� Then there is an N 
 Xnfxg such that
N is ��"�� c� � large and NICE�x�N�F��

Proof� Let d � k�k � c� so that X is ��� � �� � � � d� � large� Since � � ��
���� �� � � � d� mesh� so by Lemma �� we can partition X into P�Q� where P is below
Q� P is ��� � � � d� � large and Q is �� � large� Let q � min�Q�� Applying Lemma ���
q � jP j � �d � �x� �� � d�

x

�
Call a� b � Q equivalent i� F�T � fx� ag� � F�T � fx� bg� whenever T 
 x� Note that

for N 
 Q� NICE�x�N�F� will hold i� all elements of N are equivalent� So� we shall
choose N 
 Q to be some equivalence class� Note that there are at most c�

x

equivalence
classes on Q� Thus� by Lemma  � there is a ��"�� c� � large equivalence class if Q is
��"�� c�
c�

x

� large� Now� we know that Q is �� � large� Since � � �� �� � ��"�� c�
c�
x

�
Also�

k��"�� c�
c�
x

k � �k"�k��� �k"�k�c��c�
x

� ��k�k��x���c��c�
x

� ��d��x����d�
x

� �q �

so Q is indeed ��"�� c� 
 c�
x

� large by Lemma ����

Lemma ��� Let c � �� F � ��
�� � c� and suppose that X is ���� c� � large� Then
there is a Z 
 X such that Z is � � large and V PH�Z�F��

Proof� We induct on jXj� Assume � � �� since otherwise we may take Z to be any
��element subset of X� Applying Lemma ��� let x � min�X�� let "� � f�g�x�� and let
N 
 Xnfxg be such that N is ��"�� c� � large and NICE�x�N�F�� jN j � jXj� so by
induction� we may choose "Z 
 N such that V PH� "Z�F� and "Z is f�g�x� � large� Note

�



that NICE�x� "Z�F�� Let Z � "Z � fxg� Then Z is � � large �by the de�nition of � �
large�� and V PH�Z�F� �by Lemma ���� applied to "Z��

Lemma �� �Ordinal Ramsey Theorem�� Assume c� n � �� F � ��
�� � c� and X is
���� n� c� � large� Then there is a V 
 X such that HOM�V�F � n� and V is � � large�

Proof� For n � �� this is Lemma  � Applying induction� assume the Lemma holds
for n� and assume that X is ���� n � �� c� � large� Since ���� n � �� c� � ������ n� c�� c��
we may use Lemma �� to �x Z 
 X such that Z is ���� n� c� � large and V PH�Z�F��
and hence PH�Z�F�� Let k � max�Z�� Applying the Lemma to the derived partition
�k�F�� we get an � � large V 
 Z such that HOM�V� �k �F�� n�� and hence� by Lemma !�
HOM�V�F � n � ���

The main Theorem is really a special case of this �with � � ��� except that we still
need to verify that a ���� n� c� � large X really exists� This is easy� using �� induction�

De�nition� ���� k� � k� If � � � � ��� ���� k� � ��f�g�k�� k � ��� Let R�k� n� c� �
������ n� c�� k��

Lemma ��� For each � � �� and k � �� k � ���� k�� and the interval �k����� k�
 is
� � large�

Proof� Induct on ��

Proof of Theorem� This is immediate from Lemmas �� and ��� plus the fact that
every � � large set is large �Lemma �����

We comment further on the relationship between our proof and the one in Ketonen�
Solovay ��
� As noted above� our de�nition of k�k� is exactly the same as in ��
 and in
Nqthm� The symbolism f�g�n� is taken from ��
� but we give it a slightly di�erent value�
The key fact about f�g�n� �Lemma ���� is that for limit �� we have chosen a 	canonical

� � sequence of ordinals converging up to �� From a purely set�theoretic point of view� the
de�nition in ��
 seems more natural than ours� For example� their f�g�n� is n� whereas
ours is �n��� However� computations involving both f�g�n� and norms form the bulk of
the proof� and the de�nition in ��
 makes these computations rather complicated� whereas
if we de�ne f�g�n� the way we do� in terms of the norm� the computations are very simple�
Any Ramsey theorem will eventually rely on some pigeonhole principle� Ours� Lemmas �
and  � is exactly what you would expect it to be� whereas there is no simple analogous
result in ��
�

The step of obtaining a pre�homogeneous set is a standard one in Ramsey theory� but
once we have a simple pigeonhole principle� it is easy to produce the pre�homogeneous set
by a simple induction� rather than by a tree argument as in ��
�

Everything in our proof through Lemma �� can be formalized within PRA� This
includes� in particular� the de�nition of � and the fact that it works in a Ramsey theorem�
It is only when we need the existence of � � large sets and the functions � and R that
we have to apply �� induction� Up to this point� all of our theorems about �nite sets X
were done by simple induction on the size of X� Besides that� we used a certain amount of
ordinal arithmetic� dealing with ordinal sum� product� and exponentiation� and the order
on the ordinals� However� if we view this arithmetic as expressing statements about the

!



notations for ordinals� it can all be done in PRA� Several of the results were stated as
existential facts� but these can all be re�stated in purely universal form� by de�ning a
primitive recursive function� For example� Lemma �� says that 	there is
 a homogeneous
set V � when formalized in PRA� the proof de�nes a primitive recursive function which
returns such a V �

As we remarked after Lemma �� if 
 � � � � is any strictly increasing function� then
we may replace 	�n
 by 	
�n�
 everywhere in the theory� In particular� if � � � � ���
de�ne f�g�n� 
� � max�� 	 E�k�k � 
�n���� and say that X is ��� 
� � large i� X is
non�empty and Xnfmin�X�g is �f�g�min�X��� 
� � large� Now Lemma �� says that
k�k � � � kf�g�n� 
�k � k�k � 
�n�� and Lemma ��� says that if X is ��� 
� � large�
� � �� and k�k � k�k� 
�min�X��� then X is ��� 
� � large�

Let I be the identity function on �� Note that X is ��� 
� � large i� 
�X� is ���I�
� large� So� considering various 
 does not add anything essential to the theory� although
our choice of 
�n� � �n simpli�es the arithmetic somewhat�

By a rather arti�cial choice of 
� we may omit a number of ordinal computations
in the proof� This is primarily of interest for the Nqthm veri�cation� Humans would
probably prefer a simple and natural 
� Nqthm doesn�t care about naturalness� and is
optimized to verify complicated facts about arithmetic on the integers� but has to struggle
with 	obvious
 facts about ordinal arithmetic�

In particular� all we really need from Lemma � is the fact that if X is �� � d� 
�
� large then jXj � 
�min�X� � d�� and we can replace the de�nition of � by ���� c� �
�� � � � k�k � c� We do not really need the concept of 	mesh
� and all we need from
Lemma � is the fact that if Z is ��� � � � d� 
� � large� then there is an ���� 
� � large
Q 
 Znfmin�Z�g with min�Q� � 
�min�Z� � d��

To �nd the appropriate 
 for this to work we examine the proof of Lemma �� and
see what 
 we need� namely 
�s� � ��s � �� � �s � ��
s���� In the proof of Lemma ��� let
d � k�k � c and s � z � d� So� Z is ��� � � � d� 
� � large� With Q as above� we have
that Q is ���� 
� � large� and we need that Q is ���"�� c� 
 c�

z

� 
� � large� Our estimates
are now�

k��"�� c� 
 c�
z

k � �k"�k� � � � � k"�k� c� � c�
z

� ��k�k� �
�z� � � � c� � c�
z

�

��s� � � �
�s�� � s�
s

� �
�s� � s�
s

� 
�
�s�� � 
�min�Q�� �

so Q is indeed ���"�� c� 
 c�
z

� � large by the revised Lemma ����
Of course� 
 was simply chosen so that these inequalities would work out� Besides 


being a strictly increasing function� 
 was cooked up so that�


�s� � �s � �


�r� � �r � rr


�s� � �s

�
�s� � s�
s

� �
�s� � 
�s��
s� � 
�
�s��
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x�� The Implementation� The material in x� was implemented and veri�ed on the
Boyer�Moore prover� Nqthm� The script comprises about ��� Kbytes of code� and takes
a standard workstation between �� and �� minutes to verify � a lot quicker than most
humans would be able to digest x�� The script ends with the main Theorem� stated as�

�prove�lemma ramsey�P�H �� �implies

�and

�rangep g c� � g maps into � ��� c��

�not �zerop n�� � we are partitioning n�tuples for some n � �

�numberp k� � k 	 the desired size of the homogeneous set

�equal R �R k n c�� � the Ramsey number

�equal YY �extract�ramsey�P�H g k n c�� �

� YY is the computed homogeneous set

�and

�setp YY�

� YY is a set

�subsetp YY �segment � R��

� YY is a subset of �
 �
 ��� R

�homp YY g n�

� YY is homogeneous for g as a partition of n�tuples

�leq k �length YY��

� YY has size at least k

�largep YY� �

� YY is large in the Paris � Harrington sense

��

It is 	obvious
 from the comments that this expresses the Paris�Harrington Ramsey
Theorem stated in x�� However� as usual in the expression of a mathematical theorem
within a formal system� one must �rst address the issue of whether the formal statement
corresponds to the informal intent of the theorem� For example� although the comment
states that �homp YY g n� means that YY is homogeneous� the actual Nqthm de�nition is
a bit complex� relying on a sequence of preliminary de�nitions� Perhaps the author� either
by design or through stupidity� entered a de�nition which does not correctly capture the
notion of 	homogeneous
� perhaps making the whole theorem trivial� As pointed out in ��
�
since this issue connects the formal and informal notions� it can never be settled formally�
but we shall make a few remarks in an e�ort to convince the reader that our de�nitions are
correct� We take up the notions appearing in the Theorem in order of increasing di�culty�

First� the following notions are built�in to Nqthm� implies� and� not and equal

have the obvious meanings� �numberp k� means that k is a natural number� All Nqthm
functions �either built�in or de�ned by the user� are total� in particular� built�in numeric
functions cast non�numeric input to the number �� Thus� �zerop n� means that either n
is a non�number or n 	 �� so that �not �zerop n�� means that n is a positive natural
number� leq means ��

The function length is not built�in� but we de�ned it in the obvious recursive way�

��



�defn length �lst� �if �listp lst�

�add� �length �cdr lst���

� ��

This is exactly as suggested in ��
�
We have found it convenient to represent sets as increasing lists of natural numbers�

so that each set of numbers has a unique representation� Then �setp YY� says that 	YY
is a standard representation of a set
� This is de�ned by�

�defn setp �s� �if �listp s�

�and

�numberp �car s��

�setp �cdr s��

�or

�equal �cdr s� nil�

�lessp �car s� �cadr s�� ��

�equal s nil� ��

So� for example� �setp NIL� and �setp ��� � 
�� evaluate to T �true�� whereas �setp
��� � 
�� evaluates to F �false�� Also� �subsetp s� s�� is de�ned by recursion on s�

to say that every member of s� is a member of s��

�defn subsetp �s� s�� �if �listp s��

�and

�member �car s�� s��

�subsetp �cdr s�� s���

T ��

Since each set has a unique representation� extensionality holds� that is� we establish�

�prove�lemma extensionality � � �implies

�and �setp s�� �setp s�� �subsetp s� s�� �subsetp s� s���

�equal s� s�� ��

If YY represents a set� then �length YY� is just the size of the set� It is now clear how to
de�ne �largep YY��

�defn largep �set� �and

�setp set� �listp set�

�not �lessp �length set� �car set�����

The function �segment m n� was de�ned so that for m � n� it would return the list of
numbers from m to n in increasing order� which is our representation of the set of numbers
from m to n�

�defn segment �m n� �if

�and �leq m n� �numberp m� �numberp n��

�cons m �segment �add� m� n��

nil �

� � hint

�lessp �difference �add� n� m��

��

The hint is needed here because the recursion goes upward on m�
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Now� the Theorem quanti�es over arbitrary partitions� g� A partition is a special kind
of function� and we follow the standard Lisp convention of representing ��nite� functions
as lists of ordered pairs� called association lists� Then� �funcall g x� is intended to be
the value of the function g on the argument x� Since the function assoc is built�in to
Nqthm� we de�ned funcall simply as

�defn funcall �g x� �cadr �assoc x g���

For example�
� �� 
� �� �� �� �� �

represents the function which takes � to �� � to �� and � to �� If x is not in the 	intended

domain of g �f�� �� �g in this example�� then �funcall g x� returns � �since in Nqthm�
unlike in Common Lisp� the car and cdr of a non�list is ���

It is clear that in this way� we can represent any �nite function� We now de�ne
�rangep g c� to say c is a positive number and that every value� �funcall g x�� is a
number less than c� Since � is the default function value� rangep can be de�ned simply
by recursion on the list g�

�defn rangep �g c� �if �nlistp g�

�lessp � c�

�and

�rangep �cdr g� c�

�numberp �cadar g��

�lessp �cadar g� c����

As in x�� it is technically simpler to think of partitions of n�tuples into c pieces as functions
which map everything into f�� �� � � � � c � �g� Thus� the hypotheses to our statement of
Ramsey�s Theorem do not say anything about g partitioning n�tuples�

The n�tuples occur only inthe notion of homogeneous� �homp YY g n�� which says
that g has the same value on all n�tuples from Y Y � There is no simple way to de�ne this
by recursion� We �rst de�ned �power�set YY� to return a list containing all subsets of
YY� and then de�ned �product lst� lst�� to return a list containing all pairs �x � y�

with x in lst� and y in lst�� Then we de�ned

�defn homp �YY g n� �nlistp �counter�hom YY g n

�product �power�set YY� �power�set YY�� ���

where the function �counter�hom YY g n list�of�pairs� runs down list�of�pairs

and tries to �nd �and return� a pair of sets �S� � S�� on the list such that S�
S� have
size n and �funcall g S�� di�ers from �funcall g S��� If it fails� then it returns �� So�
�homp YY g n� says that there is no counter�example to homogeneity on the list of all
pairs of n�element subsets of YY� Since this is all a bit complicated� there is a danger of a
programming error here� To verify the correctness of our de�nition� we proved a lemma
stating that �homp YY g n� indeed implies that g is constant on all n�tuples from YY�
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�prove�lemma homp�is�sufficient �rewrite� �implies

�and

�homp YY g n�

�subsetp x YY� �subsetp y YY�

�setp YY� �setp x� �setp y�

�equal �length x� n� �equal �length y� n� �

�equal �funcall g x� �funcall g y�� � �

That concludes our justi�cation of the statement of the theorem� Note that we are
not required to justify our de�nitions of the function �R k n c�� which computes the
Ramsey number� and the function �extract�ramsey�P�H g k n c�� which extracts the
homogeneous set for the Paris�Harrington form of Ramsey�s Theorem� We claim that they
were de�ned by implementing the discussion in x�� but even if we are lying here� and have
computed them in some completely di�erent way� we have still proved the theorem�

In fact� the Paris�Harrington Ramsey Theorem is an easy corollary of the Ordinal
Ramsey Theorem �x�� Lemma ���� which we consider to be the main result� This is stated
as�

�prove�lemma ord�ramsey �rewrite� �implies

�and

�ordinalp alpha�

�rangep g c�

�not �zerop n��

�setp ZZ�

�o�largep ZZ �Gamma alpha n c��

�equal YY �extract�ramsey g ZZ alpha n c�� �

�and

�setp YY�

�subsetp YY ZZ�

�o�largep YY alpha�

�homp YY g n�� ��

Here� �o�largep YY alpha� expresses the notion that the set YY is alpha � large� and the
function extract�ramsey extracts the homogeneous set for the Ordinal Ramsey Theorem�

We now make some further remarks on our Nqthm script� as a guide to those readers
who may wish to look at it in detail� Roughly� the script follows the outline of the human�
readable proof presented in x�� However� since computers and humans di�er in what they
�nd di�cult� we departed from this outline somewhat� In particular� x� took for granted
some elementary facts about ordinals� whereas Nqthm contains nothing about ordinals
beyond the de�nitions of ordinalp and ord�lessp� and the ability to de�ne functions by
recursion on ord�lessp� This contrasts with the situation for natural numbers� where the
prover not only contains some basic functions �such as � and ��� but also has a built�in
decision procedure for linear arithmetic� Thus� as a practical matter� it is much easier to
do arithmetic on � than on ��� So� in the implementation� we took the tack described at
the end of x�� using the function 
�s� � ��s��� � �s���
s���� which we called �magic s��
In this way� we avoided having to de�ne ordinal sum and product� and the concept of
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	mesh
� although we did need to de�ne ���� Throughout the script� the notion of � �
large actually means ��� 
� � large in the notation of x��

Our script begins with a section on basic arithmetic� This section veri�es all the facts
about the function magic which get used later in the proof� such as the inequalities at
the end of x�� A human might �nd all this tedious and uninteresting� but the computer
�nds it trivial� This section also contains some other simple arithmetic facts� such as the
associativity of multiplication�

We then proceeded to verify some basic facts about lists� and about our representation
of sets of numbers by lists� Two di�erent notions of 	sublist
 suggest themselves here� One�
�subsetp s� s��� said that every member of s� is a member of s�� The other� �sublistp
s� s��� said that s� can be obtained by deleting � or more elements of s� �but not changing
the order�� We proved these notions to be equivalent on our 	standard
 representations
for sets of numbers�

We then took up ordinals� It was easy to verify the basic facts about successor and
limit ordinals and the fact that ord�lessp is a total order� The de�nition and properties of
��� took more work� As in x�� this is de�ned by merging the Cantor normal forms� which
are easily read o� of the Nqthm representation of the ordinals� so we de�ned �sharp alpha

beta� roughly the way one would recursively de�ne a merge in Lisp� However� we needed
a special case for the coe�cient of ��� which is treated di�erently from the coe�cients of
the other �� in Nqthm� this made all the proofs a bit complicated� We verify here that
��� is commutative and associative� and increasing in each argument�

Next come the notions of norm �k�k� and f�g�n�� Now� �norm x� was simply de�ned
to be �count x�� we only made this de�nition so that later a �disable norm� would not
disable count� The de�nition of f�g�n� as max��	E�k�k�
�n��� required �rst de�ning a
function which represented each E�k� as a list� We then veri�ed Lemmas � and �� de�ned
the notion of � � large ��o�largep YY alpha��� and veri�ed Lemmas � and ��

Lemma �� the 	two�set pigeon�hole principle
 was proved in x� in eight lines� but it
took about ��� lines of Nqthm code to verify it� the proof in x� used without mention some
trivial facts about �nite sets� none of which are known to Nqthm� The c�set pigeon�hole
principle� Lemma  � took about ��� more lines to verify� Although the proof of Lemma  is
just one line in x�� saying� essentially� 	the obvious induction works
� Nqthm must switch
gears here in an essential way� The two�set principle involves one set� X� covered by two
explicitly mentioned sets A and B� whereas the c�set principle involves an indexed family
of c sets� which is implemented as a function which maps X into c� Actually� in our Nqthm
script� the proof of Lemma  does not immediately follow Lemma �� but comes after the
function � 
 c is de�ned �see below��

We then stuck in the de�nitions of 	homogeneous
 �homp� and 	pre�homogeneous

�pre�homp�� These notions are both a bit tedious to formalize on Nqthm� since they are
the form �S 
 X�� � ��� which must be implemented by a function which runs down a list
of all subsets of X� Once the basic properties of these notions were developed� it was fairly
easy to verify the Derived Partition Lemma �Lemma !��

As mentioned above� we never needed to de�ne the notion of 	mesh
� but we did have
to prove� in what we called the Tail Lemma� that part of Lemma � which asserted that if
Z is �� � � � d � large� z � min�Z�� and we apply cdr 
�z � d� times to Z� then we get
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an �� � large set Q 
 Znfzg with min�Q� � 
�z � d�� This took about ��� lines of code
to verify�

At this point� we gave the de�nition and some elementary properties of the functions
���� c� and � 
 n� We then proceeded to prove the Cdr Lemma� which says that the Q
above is ��"�� c� � c�

z

� large� where "� � f�g�z�� This computation� which was simply
embedded in the proof of Lemma ��� took about ��� lines to verify� Then came the c�set
pigeon�hole principle �see above�� and some elementary facts about ranges and segments�

We then proceeded to verify the Ordinal Ramsey Theorem for ��tuples� which is the
basis for the induction to come later� In x�� this was just Lemma  again� but there is a
subtle di�erence� Lemma  involved partitioning the elements of X into c pieces� whereas
now we are partitioning the ��tuples from X� Informally� elements are often identi�ed with
��tuples� but it took about ��� lines of Nqthm code to handle this formally�

After some miscellaneous constructions� we then turned to the Nice Set Lemma� which
formalizes the 	equivalence relation
 part of the argument in Lemma ��� In x�� we simply
assumed the reader understood what it meant for the set Q to be partitioned into c�

x

equivalence classes� and that the pigeon�hole principle would apply to this partition� but
the corresponding Nqthm proof took about ��� lines� We were then able to proceed to
verify Lemma �� �extracting a pre�homogeneous set� and then prove the Ordinal Ramsey
Theorem� Finally� using �� recursion� we de�ned the function � and proved the Paris�
Harrington Ramsey Theorem�

x�� Conclusion� This work demonstrates that one may use Nqthm to verify some
rather complex combinatorial statements� It also demonstrates one of the di�culies in
doing so� Human mathematicians recognize immediately when various representations of
a concepts are essentially the 	same
� For example� if we want to partition a set X into
two pieces� a map g � X � � is 	the same as
 a cover of X by disjoint sets A and B� and
both these are 	the same as
 a partition of the set of ��element subsets of X� We also
recognize� by experience� that these identi�cations are only correct in certain contexts� but
it is not trivial to explain formally what these contexts are� Thus� making use of these
identi�cations is a di�cult challenge for future generations of veri�cation systems�
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