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Abstract

We study a variety of loops, RIF, which arise naturally from consid-
ering the inner mapping group, and a somewhat larger variety, WRIF.
All Steiner and Moufang loops are RIF, and all flexible C-loops are
WRIF. We show that all WRIF loops are diassociative, thus generaliz-
ing Moufang’s Theorem.

1 Introduction
A loop is an algebraic system (L; -, \,/, 1) satisfying the equations

- (z\y) =2\(z-y)=(y/z) -z =(y-2)/r=y-1=1-y=y .

See the books [1, 4, 13] for further information. Since loops in general form
too broad a class for detailed study, the literature has focused on various
sub-varieties of loops.

Many of these varieties are defined by some weakening of the associative
law, x-yz = xy - 2. Some obvious weakenings are the flexible laws and the left
and right alternative laws:

FLEX:z-yr=ay-z RALT:z-yy=2zy-y LALT :y-yz=vyy-x .

There is also the wnwverse property, IP. This asserts that there is a permutation
J of order two such that (writing x~* for z.J) left and right division are given
by z\y = 'y and y/z = yx~'. Most of the loops considered in this paper
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have the IP. The IP implies the antiautomorphic inverse property (AAIP),
(ry)~' = y~'z7', so that J provides an isomorphism from the loop (L;-) onto
its opposite loop (L;0) (where x oy = y - x). Thus, in IP loops, the right and
left versions of properties (e.g., RALT and LALT) are equivalent.

In a loop L, the left and right translations by z € L are defined by
yL(z) = xy and yR(x) = yx, respectively. The multiplication group of L
is the permutation group on L, MIt(L) = (R(z),L(z) : * € L), generated
by all left and right translations. The nner mapping group is the subgroup
Mlt; (L) fixing 1. If L is a group, then Mlt;(L) is the group of inner automor-
phisms of L. In an IP loop, the AAIP implies that we can conjugate by .J to
get:

L(z)" = R(z™") R(z)” = L(z™")

where 07 = J=10.J = JO.J for a permutation 6. If  is an inner mapping, then
so is #”7. This leads us to one of the classes of IP loops we study in this paper:

Definition 1.1 A RIF loop is an IP loop L with the property that 67 = 6
for all @ € Mlti(L). FEquivalently, inner mappings preserve inverses, i.e.,

(710 = (x0)~" for all 0 € Mlt,(L) and all x € L.

RIF loops include the Steiner loops, which may be defined to be IP loops of
exponent two (that is, 7! = z, so J is the identity permutation). Steiner loops
arise naturally in combinatorics, since they correspond uniquely to Steiner
triple systems; specifically, the Steiner loop L corresponds to the triple system
{{z,y, 2yt o #y & zy# 1} on L\ {1}.

RIF loops also include what is probably the most well-studied class of
nonassociative loops, namely those satisfying the Moufang laws [11, 12]:

Definition 1.2 A Moufang loop s a loop satisfying the following equations:

M1: (2(y2))e = (oy) (22) M2: (22)(ya) = 2((0)2)
N1: ((zy)2)y = 2(y(zy)) N2: ( =

In fact, by work of Bol and Bruck, each of these equations implies the other
three (see Bruck [1], Lemma 3.1, p. 115). That every Moufang loop is RIF
follows from Lemma 3.2, p. 117, of [1]. It is easily seen that the only loops
which are both Steiner and Moufang are the boolean groups. Thus a direct
product of a nonassociative Steiner loop with a nonassociative Moufang loop
is a RIF loop which is neither Steiner nor Moufang.
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A loop is said to be diassociative if the subloop (z, y) generated by any two
elements is a group. Diassociative loops are always IP loops, and are flexible
and alternative. Steiner loops are obviously diassociative; in fact each (z,y) is
a boolean group (of order 1, 2, or 4). Less obviously, by Moufang’s Theorem,
every Moufang loop is diassociative.

Bruck and Paige [2] defined an A-loop to be a loop in which every inner
mapping is an automorphism. An A-loop need not be an IP-loop, but they
show, by modifying the proof of Moufang’s Theorem, that every IP A-loop is
diassociative. In fact, it turned out later [8] that the IP A-loops form a proper
sub-variety of the Moufang loops. Weakening of the notion of IP A-loop so
that inner mappings preserve inverses, but not necessarily products, we obtain
RIF loops.

The notion “RIF” can be expressed by a finite set of equations (Lemma
2.2). These lead naturally (Lemma 2.4) to a slightly weaker notion, WRIF.

Definition 1.3 A WRIF loop is a flexible loop satisfying the following equa-
tions:

W1: R(z)R(yzy) = R(zyz)R(y)  W?2: L(z)L(yxzy) = L(zyz)L(y)

In fact, a flexible loop satisfying either W1 or W2 has the IP and hence satisfies
both equations (Lemma 2.7). Every WRIF loop of odd order is Moufang
(Corollary 2.14) (whereas non-group Steiner loops are RIF and not Moufang).
Besides RIF loops, WRIF includes another variety of IP loops, namely the
flexible C-loops (Corollary 2.6). C-loops were introduced by Fenyves [6]; see
Section 2. There exist flexible C-loops which are not RIF loops (Example
4.1), and there exist WRIF loops which are neither RIF loops nor C-loops
(see Section 4).

Pronunciation 1.4 “WRIF” and “RIF” both rhyme with “stiff”. “WRIF”
15 to “RIF” as “wrap” is to “rap”.

Acronym 1.5 W = Weak, R = Respects, I = Inverses, F' = Flexible.

Section 3 is devoted to the proof of our main result, a generalization of
Moufang’s Theorem to WRIF loops:

Theorem 1.6 FEvery WRIF loop is diassociative.
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Our inductive proof of this theorem is patterned on Moufang’s proof, but
is quite a bit more complicated than hers, or than the corresponding proof
in Bruck and Paige [2] for IP A-loops. We do not know a simpler proof, but
Example 4.3 shows that the basic lemma on associators developed by Moufang
can fail in a WRIF loop (in fact, in a Steiner loop).

Note that if we write out the definition of diassociativity in the obvious
way, we get an infinite list of equations. The following problem, asked first by
Evans and Neumann [5], is still open:

Question 1.7 Does the variety of diassociative loops have a finite basis?

If the answer is “yes”, which seems unlikely, then inductive proofs of dias-
sociativity could always be replaced by the verification of a finite number of
instances of diassociativity, which could result in a simplification.

Our investigations were aided by the automated reasoning tools OTTER,
developed by McCune [10], and SEM developed by J. Zhang and H. Zhang
[14]. SEM finds finite models of systems of axioms, and was used to produce
the three examples in Section 4. OTTER derives statements from axioms,
and was used to derive enough instances of diassociativity from WRIF for the
pattern to become clear.

2 Basics

Following Bruck [1] (see IV.1), the inner mapping group of any loop is gener-
ated by the inner mappings of the form L(z,y), R(z,y), and T'(x):

Definition 2.1 T(z) = R(x)L(x)™"
L(z,y) = L(x)L(y) L(yx) " R(z,y) = R(z)R(y) R(zy) "

Using this, we can express the notion of RIF by equations.

Lemma 2.2 The following are equivalent for an IP loop L:

1. L is a RIF loop.

2. L is flerible and R(x,y) = L(z Y,y ') for all z,y € L.
3. R(zy)L(xy) = L(y)L(x VR(y) for all z,y € L.

4. L(zy)R(zy) = R(z)R(y)L(y)L(x) for all x,y € L.



2 BASICS 5

Proof. The flexible law can be expressed as R(z)L(x) = L(z)R(z) for all
z. In an IP loop, this is equivalent to L(z™")R(x) = R(x)L(z~ ) that is,
T(z)? = T(x). Also, an easy calculation gives R(z,y)’ = L(z~',y7') in
an IP loop. Thus (1) and (2) are equivalent. Using the IP and Deﬁmtion
2.1, R(z,y) = L(z~',y~') is equivalent to L(zy)R(zy) = L(y)L(z)R(z)R(y).
Since the flexible law is just R(z)L(z) = L(z)R(z), (2) implies (3). Conversely,
if (3) holds, then taking y = 1 gives the flexible law, so that (3) implies (2).
Finally, (3) and (4) are equivalent by the IP. []

Combining 3 and 4 from Lemma 2.2 we obtain the very useful identity

L(y)L(z)R(xz)R(y) = R(xz)R(y)L(y)L(x), which we will frequently appeal to
in our arguments.

Corollary 2.3 In a RIF loop, if we let P(x) = L(z)R(z), then P(xyx) =
P(x)P(y)P(x).

Proof. Applying Lemma 2.2 twice, P(z - yx) = R(z)R(yz)L(yx)L(x) =
R(x) L(z)L(y) R(y) R(x) L(z) = P(z)P(y)P(x). [

The fact that Moufang loops satisfy P(zyz) = P(z)P(y)P(z) is Theo-
rem 5.1, p. 120, of Bruck [1]. The same theorem points out that L(zyx) =
L(z)L(y)L(x) and R(zxyz) = R(x)R(y)R(z) also hold in Moufang loops. But
in flexible loops, these are simply restatements of the Moufang equations
N1, N2 in Definition 1.2, so they do not hold in all RIF loops, since they
fail in any non-group Steiner loop.

Next we show that RIF loops satisfy equations W1, W2 of Definition 1.3.

Lemma 2.4 FEvery RIF loop is a WRIF loop.

Proof. Equations W1, W2 are equivalent in IP loops. To prove W1, start
with R(v)R(y)L(y)L(v) = L(y)L(v)R(v)R(y), which is

v(y(zv)y) = (v(yz)v)y
and set v = ux and z = u~!, so that zv = z. We get

Loux)y .

ux - yxry = (uz - yu~
But R(u™")R(ur)L(ur) = R(x)L(x)L(u) (see Lemma 2.2), so

ur - yry = (u-xyx)y
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which is W1. []

Next we show that every flexible C-loop is a WRIF loop. C-loops, intro-
duced by Fenyves [6], are loops satisfying the equation ((zy)y)z = z(y(yz)).
These have the inverse property (see [6], Theorem 4) and are alternative (see
[6], Theorem 3). They are not necessarily flexible (see Example 4.2). Every
Steiner loop is trivially a C-loop; in fact, Table 1 of [6], a C-loop which is not
Moufang, is just the 10-element Steiner loop.

Theorem 2.5 Every C-loop satisfies
R(zy)® = R(z)R(y(vy)) = R((zy)z)R(y).

Proof. Since the loop is alternative, the C-loop property can be written as
R(a)?R(b) = R(a?b). This gives us:

R(zy)*R(y ') = R((zy)*y ") = R((zy)((zy)y ")) = R((zy)z) .

R(
so R(zy)?> = R((zy)z)R(y). Now, if z = v~! and y = v(uv), we have 1y = uv
and hence R(uv)? = R(u)R(v(u )) ]

Corollary 2.6 FEwvery flexible C-loop is a WRIF' loop.
We now examine basic properties of WRIF loops.

Lemma 2.7 A loop satisfying

W1':  R(x)R((yx)y) = R(z(yz))R(y)
1 an alternative IP loop.

1 1

Proof. Let 27! denote the unique solution to 2 'z = 1. Applying W1’ to z~
gives (yz)y = (x~'(z(yr)))y, and cancelling gives yr = 7! (z(yx)). Replacing
y with (z\y)/z yields x\y = x~ty. In particular 1 = z(z'1) = zz~!, and so
(z71)7" = @. Next apply W1’ to (z(yz))™" to get ((z(yz))~'z)((yr)y) = v,
and thus (yz)y = ((z(yz))~'z)~'y. Cancelling, we have yz = ((z(yz))~'z)~".
Replacing y with y/x gives y = ((zy)~'2)™! and so y~' = (zy)~'x, which
implies (zy)y ' = x. Replacing = with x/y gives zy~! = x/y. Thus the
loop satisfies the IP. Setting y = 1 in W1’ yields the right alternative law
R(z)R(x) = R(xzx), and the right and left alternative laws are equivalent in

IP loops. []
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Corollary 2.8 Fvery WRIF loop is an alternative IP loop.
Lemma 2.9 Every WRIF loop satisfies R(z)R(y*x~")R(x) = R(zy?).

Proof. Start with R(aba)R(b) = R(a)R(bab).

Set b=y and a = 27" (so ab =y) to get R(yz~")R(xy) = R(z~")R(zy?).
Set b =z and a = yz~" (so ab = y) to get R(y*z~ ") R(z) = R(ya: YR(zy).
Putting these together, we have R(y*z ')R(z) = R(z ") R(zy?). [

Corollary 2.10 Every WRIF loop in which each element is a square is a
Moufang loop.

Proof. Now we have R(z)R(yz~')R(z) = R(xy). If we let 2 = yz~' and
y = zx, we get R(x)R(2)R(x) = R(zzx), which (in flexible loops) is the
Moufang equation N1 of Definition 1.2. []

We shall next prove that WRIF loops are power alternative, and hence
power associative. Until we prove this, we let 2" denote the right-associated
product:

Definition 2.11 Define 2" = (1)(L(x))™ for any n € Z.

Thus, 2* = x - zz, and (in an IP loop) 22 = (1)L(z ')} =zt - a ta™ Y
11,1, -1

whereas (z3) ' =212 2

Definition 2.12 A loop G is power associative iff for all x € G, the subloop
(x) generated by x is a group, and power alternative iff L(z%) = (L(z))" and
R(z") = (R(z))® for allx € G and all i,j € Z

It is easily seen that diasociativity implies power alternativity and power
alternativity implies power associativity.

Theorem 2.13 Every WRIF loop is power alternative.

Proof. Whenver n > 0, say that an IP loop G is n—PA iff L(z™) = (L(z))™
whenever 1 < m < n and x € G. So, the 1-PA is trivial and the 2-PA (that
is, xx -y = x - xy) is equivalent to the alternative law. Hence, a 2-PA loop
satisfies 23 = zx -z = z - 2z and 73 = (z%)7".

Note that an IP loop which is n—PA for all n > 0 is power alternative.
Thus, we prove by induction on n > 3 that the WRIF loop G is n—PA. So,
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assume that G is (n — 1)-PA, and we prove that L(z") = (L(x))". Note
that the (n — 1)-PA implies that z* - 27 = ((1)(L(z)”))L(z)* = 2'* whenever
1 <1 <n—1. We consider two cases:

If n = 2k + 1, then set y = z* in Lemma 2.9 to get R(z)R(z**x ) R(z) =
R(zx?F). Since 22zt = (22 1)z~ = 2%~ this reduces to R(x)" = R(z"),
and hence, by the IP, L(x)" = L(x™).

If n = 2k, then 2" = (1)(L(x)%)F = (1)L(2?)* = (z°)* (by the 2-PA), so
that by the k-PA, L(z") = L(2?)* = L(z)*. [

This second case generalizes to show that in any IP loop, the least n such
that the n—PA fails must be prime.

Corollary 2.14 FEwvery finite WRIF loop of odd order is Moufang.

Proof. Apply Corollary 2.10. Since the loop is power alternative, the usual
Lagrange Theorem applies to show that each element has odd order, and hence
is a square. [ ]

3 Diassociativity

Moufang loops are diassociative by Moufang’s Theorem. The proof for WRIF
loops is more complicated. First, a lemma which generalizes Lemma 2.9:

Lemma 3.1 In any WRIF loop:

1. R(ya™)R(z"y~") = R(ya™*) R(z"Fy~!
2. R(z™y)R(y 'a") = R(a™*y)R(y 2™ *
3. L(z™y)L(y 'a") = L(z™**y) Ly 'a"*)
4. L(yz™)L(z"y ') = L(yz™*)L(z™ Fy )

whenever m,n, k € Z and either k is even or m + n s even.
Proof. We focus on (1,2), since (3,4) are equivalent by the IP. Define:

(m,n) ~1 (s,t) <= Va,y[R(yz™)R(z™"y™") = R(yz*)R(z™"y™)]
(m,n) ~y (s,t) «— Vo,y[R(z"y)R(y~ fv”) R(z™"y '
(m,n) ~ (s,t) <— (m,n) ~1 (s,t) and (m,n) ~q (s,
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The sign change in the exponent simplifies the notation somewhat, since now
we have (m,n) ~1 (s,t) «— (m,s) ~y (n,t), so that

(m,n) ~ (s,t) «— (m,s) ~ (n,t) . (A)

It is clear that each of ~q,~y, ~ is an equivalence relation. By (A) and the
fact that ~ is symmetric:

(m,n) ~ (s,t) «— (n,m) ~ (t,s) . (B)
Also, replacing = by ! we have
(m,n) ~ (s,t) «— (—=m, —n) ~ (=s,—t) . ()
Replacing y by yz? we have
(m,n) ~ (s5,t) <= (m+j,n+j)~(s+j,t+]) . (D)

So far, everything we have said holds in any IP power alternative loop. Our
goal is now to prove (m,n) ~ (m+ k,n + k) whenever m,n,k € Z and either
k is even or m + n is even.

In the equations

R(yzy)R(z) = R(y)R(zyz) ; R(zyx)R(y) = R(z)R(yzy) ,
set £ = a® ' and y = ba’. Then, by power alternativity,
zy = a0 b - ba® = a0 (ba®) 7 - ba® = a®t
so that zyz = a***°b~! and yzy = ba®*?°. We get:
R(ba®")R(a®b ') = R(ba ) (a?*+0p1)
R(@® b )R(ba’) = R(a“b~')R(ba®") .

The first of these equations implies (a + 2§, —a) ~y (0, —2cc — §), while the
second implies (—2a — §,8) ~o (—a,a + 20), s (B) yields (o + 26, —ar) ~
(0, —2a—9). Set a« = —m—2c¢ and d = m+cto get (m, m+2c) ~ (m+-c, m+3c).
Iterating this:

(m,m+2¢) ~ (m+ je,m+ (j +2)c) (E)

for every m, ¢, j € Z. But by (A), we also have (m,m+¢) ~ (m+2¢, m+ 3¢),
and iterating this we get:

(m,m+c) ~ (m+2jc,m+ (25 + 1)c) (F)
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for every m, ¢, j € Z.
Now, in view of (D), the lemma is equivalent to:

n even or k even — (0,n) ~ (k,n+k) . (%)

We prove by induction on n that (x) holds for all £. By (C), it is sufficient to
consider n > 0, and the n = 0 case holds by the IP. Now, fix n > 0.

If n is even, we need to prove (0,n) ~ (k,n + k) for all k. Setting ¢ =
5,m =k in (E) we get (k,n+k) ~ (k+j5,n+k+j5), so it is sufficient to
prove (0,n) ~ (k,n + k) whenever 0 < k < . But since this is the same as
(0,k) ~ (n,n+ k), it follows by applying (*) inductively to k, since n is even.

If n is odd, we need to prove (0,n) ~ (2k,n + 2k) for all k. Setting
c=n,m = 2k in (F) we get (2k,n + 2k) ~ (2k + 2jn,n + 2k + 2jn), so it
is sufficient to prove (0,n) ~ (2k,n + 2k) whenever 0 < 2k < 2n. Now n
is odd, so 2k # n. If 0 < 2k < n, then (0,n) ~ (2k,n + 2k) (equivalently,
(0,2k) ~ (n,n+2k)) follows by applying (x) inductively to 2k. If n < 2k < 2n,
then induction gives us instead (0,2n — 2k) ~ (—n,n — 2k), and hence (by
(A,C)) (0,n) ~ (2k — 2n,2k — n). But also (0,n) ~ (—2n,—n) (by (F) with
c=n,m=0,j=—1),s0 (2k,n+2k) ~ (2k —2n,2k —n) (by (D)), and hence
(2k,n +2k) ~ (0,n). [

We remark that one cannot remove the restriction on m, n, k. For example,
if R(yz)R(y~") = R(y)R(xy™") (that is (1,0) ~ (0, —1)) holds, then the loop
must be Moufang (see the proof of Corollary 2.10). Conversely, Moufang
loops satisfy the lemma for all m,n, k. To see this, note that we now have
(m+1,m) ~ (m,m — 1) for every m, and hence (m + 1,m) ~ (n+ 1,n) for
every m,n. So, (m,n) ~ (m+1,n+ 1) for every m,n, and hence (m,n) ~
(m + k,n + k) for every m,n, k.

The following lemma will be useful in the proof of diassociativity:

Lemma 3.2 In a WRIF loop, suppose that p,a,q satisfy:

prag=pa-q
pa-alq=pa'-ag=pq .

Then pa™ - a™q = pa™ " - a"*q for all m,n, k.

Proof. We first verify

pra~lg=pal-q
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Applying Definition 1.3 twice, R(z)R(y)R(xyx) = R(xyx)R(y)R(z). Let x =
gand y = ¢ 'a” ', so zyr = a"'q. Let 2 = pa. Then

2R(x)R(y) = (pa-q)(¢ 'a™") = (p-ag)(¢ 'a™) =p ,
so zR(z)R(y)R(zyx) = p-a~'q. Also, zR(zyx) = pa-a~'q = pq, so

1

zR(zyz)R(y) =pq-q 'a ' = (pa!

raq)-qta”t =pa”t
so zR(zyr)R(y)R(x) = pa™' - q.

Apply R(¢~'a™')R(a**'q) = R(¢~'a’)R(a’q) to pa® - a'q = pa' - a’q to
get pa’ - a*Tlq = pa' - a®*q whenever s is even. Then apply L(a’p~!)L(pal) =
L(a 'p™1)L(pa'tt) to get pa - a**1q = pa'™' . a®q whenever s,t are even.
Now, the same argument starting from pa® - a !¢ = pa' - a°q results in
pat-a*tlq = pa'~'-a*T?q whenever s, t are even. Applying these with (s, t), (s+
2,t—2), (s +4,t —4),---, we get pa* - a*T1 g = pat7 - a*T' g for all 4,
whenever s, t are even. But this implies that pa™-a"q = pa™**-a"*q whenever
m + n is odd.

Now apply R(q ta ') R(a*Ttq) = R(q¢ ta®)R(a*q) to pa—t-alq = pa®-a’q to
get pa~'-a*t1q = pa®-a®q whenever s is even. Then apply L(a'p™')L(pa'™"') =
L(a’p~")L(pal) to get pat="-a**'q = pa'-a®q whenever s,t are even. The same
argument starting from pa'-a='q = pa® - a’q results in pa’™! - a*~lq = pa' - a’q
whenever s,t are even. Iterating as before, we get pa'*’ - a*~'q = pa'*/ - a*Jq
for all i,7 whenever s,t are even, which implies pa™ - a"q = pa™** - a"*q
whenever m + n is even. [ ]

A special case of this lemma is where p, ¢ are both powers of some element
b. Now, in a flexible power alternative loop,

#'(y2’) = (y)R(x) L(z)" = (y)L(z)'R(z)’ = (a'y)z’
so the notation #’yz’ is unambiguous.
Lemma 3.3 In a WRIF loop, x'y™ - y"a? = z'y™ "7 for all i,j,m,n € Z.

Proof. We apply Lemma 3.2. 2 - y2? = 2%y - 27 holds by power alternativity.
But also _ . _ - o
gyt ya? = (2ly ) (ya " at) =2t

by the IP, and likewise z'y - y~'a7. [
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Remark 3.4 A commutative flexible power alternative loop which satisfies
(zly™)(y"x?) = z'y™ %I for all i,7,m,n € Z is diassociative.

Proof. Fix a,b, and let L = {(a'b™) : i,m € Z}. By commutativity,
(a'b™)(a/b™) = a*+b™*" which implies both that L is a subloop and that
L is associative. [ ]

In particular, every commutative WRIF loop is diassociative. To prove
diassociativity in the non-commutative case, we set up some machinery. We
use standard notation for finite sequences. As usual, if A is a set then A<¥
is the set of finite sequences (or words) from A. |W| is the length of W, so
| ()| =0 and |(a,b,c)| =3. f W,V € A<, then W™V is their concatenation.
If B,C are two subsets of a loop, then B-C ={b-c:be B & c € C}.

Definition 3.5 Define II(()) = {1} and 11((z)) = {x}, and, when |W| > 2:
Hv) =) - 0% : ViVe =W & Vi () &Va# ()

Thus, TI(W) denotes the set of possible products of W under all possible
associations. Among these is the right associated product (W) € II(W):

Definition 3.6 Define mr(()) =1 and 7r((z)) = x, and, when |W| > 1:
mr((2)"W) =z - mr(W)
W associates iff II(W) = {mr(W)}.

Lemma 3.7 A loop is diassociative iff for all a,b in the loop, every W &
{a,b,a™, b= }<¥ associates.

Now, one might try to prove that all such W associate by induction on W,
in which case the following definition and lemma might be helpful:

Definition 3.8 If W = (a1,...a,) and 1 < k < n — 1, then 7F(W) =
7-‘—R(ala .- '7ak) : TR(ak‘Fl) SR an)

Lemma 3.9 If W = (a4, ...a,), then W associates iff:

1. 7F(W) = 79(W) whenever 1 < j,k <n—1, and
2. The words (ay,...,a;) and (agi1,...,a,) associate whenever 1 < k <
n—1.
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In our proof that WRIF loops are diassociative, we induct not on |W|, but
on the number of blocks in W, defined as follows:

Definition 3.10 B(()) = 0 and B((z)) = 1. If W = (z,y)"V, then
B(W)=B((y)"V) ifx € {y,y '}, and B(W) = B((y)"V) + 1 otherwise.

Thus, B(a,a,at,b,b7,b,a) =3 ifa # b and a # b~L.

Definition 3.11 An IP loop L is D — associative iff for all a,b € L, every
W e {a,b,a™",b='}<¥ such that B(W) < D associates.

Lemma 3.12 For any IP loop L:

[ Llis power associative iff L is 1 — associative.
[ Llis power alternative iff L is 2 — associative.
[ Llis diassociative iff L is D — associative for all D.

So, we already know that every WRIF loop is 2 — associative.

Lemma 3.13 Suppose that an IP loop L is (D —1) — associative, and D > 3.
Then L is D — associative iff whenever 2 < ¢ < D — 1, z,y € L, and

n,k,miy, meo,...,mp € 4, the appropriate one of the following equations holds:
k Z, th ] he follow: ] hold.
(™ y™e ™y ™) - (Y Ty ) =
(xml mex e ymi*k) . (yn+kxmi+l e ymD) (1)
A R A N U A e
(@ ry™eg™e g k) (g Ry ) (2)
(@™ y™ 2™ y™) - (YT ) =
(amy™2 g R (R ) (3)
(£ ) (Y )
(xmlyr@x . _xml—k) . (l,n—l—kymi_;,_l . 'l‘mD) (4)

i is even in (1,3) and odd in (2,4), and D is even in (1,2) and odd in (3,4).

Note that by (D — 1) — associativity, the parenthesized expressions in
Lemma 3.13 are unambiguous. Also, note that by power alternativity, it is
not necessary to consider the cases ¢ = 1 and ¢ = D. By Lemma 3.3,

Corollary 3.14 FEvery WRIF loop is 3 — associative.
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Now, in proving D — associativity by induction on D, equations (1,2,3,4)
give us four different cases to consider. Case (4) is handled easily by conju-
gation. First, note that 3 — associativity implies that conjugation commutes
with powers:

Lemma 3.15 In any 3 - associative IP loop, (z 'yx)" = x 'y"z for all
n € .

Proof. This is clear for n = 0 and n = =41, so it is sufficient to prove it
for n > 1, which we do by induction on n. Assume it holds for n. By 3 —
associativity, 2" = a2y -y 12" Let x = u tou =u ? v lu and y = v o,
Then zy = v~ 'w? and 2" = v~ "v"u = v~ v - v" 'y, so y~'2" = v 'u. Hence,
(u™tou)" = 2" =gy -yl = um 0?0y = wm . [

Lemma 3.16 Suppose an IP loop L is (D — 1) — associative, where D > 4,
and assume that 2 < i < D — 1 and D,i are both odd. Then equation (4) of
Lemma 3.13 holds.

Proof. Under the substitution u = ™ yx~™™

reduces to:

Ly = x7™uz™, equation (4)

(umzxms . ,xmi‘i‘ml) . (xn_mlumi+1 - me+ml) —

(umzxms .. _xmi+m1*k) ) (xn*mqukumiH . mD+M1)

..a’,‘ y

which is an instance of (D — 1) — associativity. []

Next, observe that in WRIF loops, Lemma 3.2 implies that we need only
consider (1,2,3,4) in two special cases:

Lemma 3.17 Suppose that a WRIF loop L is (D — 1) — associative, and
D >3. Fixi with2 <:< D-—1, and fix my,ma,...,mi_1,mjy1...,mp € Z.
Fiz x,y € L. Assume that the appropriate equation from (1,2,3,4) in Lemma
3.13 holds in the three special cases m; =k =-n=1, m;, =k = —n = —1,
and m; = k =1; n = 0. Then the same equation holds for all values of
m;, k,n.

Proof. For example, say D and ¢ are even, so we are considering equation
(1). Let p = a™y™2g™s ...g™mi-1 and let ¢ = 2™+ ---y™P. Then the three
special cases give us py - y~'q¢ = pq, py~' - yq = pq, and py - ¢ = p - yq. But
then Lemma 3.2 yields (1) for all m;, k,n.  []

Actually, we shall combine the first two cases and handle m; = k = —n in
Lemma 3.19. First, a preliminary lemma, which is a variant of Lemma 3.2.
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Lemma 3.18 In a WRIF loop, suppose that p,a,q,s are elements such that:

a. p-a”s=pam-s ; st-amg=s5"'a"-q ; p-a™qg=pa"-q
B. s7tams-s7lq = s7la™yg
y. ps-s ta™qg = pa™s - s tq = pa™q

5. pa™s-s la g = pq
for allm € Z. Then

A. pa™s-sta g = pa™ g

for all m,n € Z.

Proof. Let v = s 'as and u = s '¢q. By (f) and Lemma 3.15, v/u =
s7'a’q and hence u~'v’ = ¢7'a’s for every j. By Lemma 3.1, R(v™"u) =
R(v™=™u) R(u="0™*) R(v~=""%u) whenever k is even or m+n is even. Applying
this to pa™s and using (¢), we have

pa™s-s'aT"q = [pg- ¢ a™ ] - s g

1

But (4) also implies that pqg = pa™**s - s71a™™%¢, so by the IP we have

pa™s - s~la 7" = pa™ s sTla TR
If k equals either —m or —n, then this yields pa™s-s~'a™"q = pa™ "q by (7).
So, let k = —m if m is even and let k = —n if n is even. If m,n are both odd,
then m + n is even and there is no restriction on k, so k£ can be either —m or

-n. []

Lemma 3.19 Suppose a WRIF loop L is (D —1) — associative, where D > 4,
and assume that 1 < i < D. Then the appropriate equation (1,2,3,4) from
Lemma 8.13 holds whenever m; = k = —n.

Proof. First, consider (1). When m; = k = —n, this reduces to:

mi,,ma .m mi_1,,m; —m; oM m _
(:L‘ LyM2gM3 ... M=l z)(y Mty D)_
i ym2xm3 .. .xmi—1+mi+1 ... ymD

If we let u = y~™izy™ and x = y™iuy~™, then this becomes

(ymiuml ymzum:’, .. ,umi—l) . (umi+1 - ymD_mi) —
ymiuml ym2um3 LU LTS R ymD_mi
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which is an instance of (D — 1) — associativity. A similar argument works in
cases (2) and (4) but not in case (3), where D is odd and i is even.

To illustrate case (3), consider D =7 and i = 2, 4, or 6. If i = 6, we must
verify

mi,,ms ..m3, M4 .. M5, ,Me —me ,.m7\ _ ,.M1,,M2,.M3, M4, M5+m7
(aMyMR gy MMy o) - (yT Mo ™T) = My ™Ry My
This is no problem, since it is equivalent to

l‘mlym2$m3ym4l‘m5 me (l‘mlymzxmBym4l‘m5+m7) . ( —mr7, me

y z"Tyme)

which is an instance of 6 — associativity. Likewise, the case i = 2 is no problem.
But, when ¢+ = 4, we must verify

mi,,m2,..m3, m4 —mgq ,.ms5,,Me .7\ __ mi, ma , .m3+ms, me,.mr
(zmryMgmEy™e) - (yT My ™) = 2™y ™y y"ox
This is equivalent to
mi,,m2,m3,m4 __ mi,,ma, .m3+ms, me,.my —mr7,,—mMe,.—Ms5,,M4
gMyMgmay™ = (™Y ymea™mT) - (aT Ty T T ey ™)

which requires 8 — associativity. However, this equation requires only 6 —
associativity in the special case that mz = —ms5, and this case is sufficient
by Lemma 3.18, applied with s = y", a = x, p = ™y™2, and ¢ = y™5x"".
The special case is condition (0) of Lemma 3.18, and conditions (a, 3,7) are
verified using 5 — associativity.

The general situation is handled similarly. We must verify

(Imlymzxms e xmi—lymi) . (y—mixmi+l .. ,ImD) —

mi, ma

€T y fL‘m3 .. xmi71+mi+1 ..

"
where D is odd and ¢ is even. By mirror symmetry, we may assume that
i > (D+1)/2. Fix D,i,z,y. Let H(r) be the assertion that this equation
holds in the special case that m;., = —m;_y whenever 1 < ¢ < r. So, we want
to show H(0). Now, H(r) holds for r large enough by (D — 1) — associativity,
and H(r +1) — H(r) holds by Lemma 3.18, so we are done.

To be more specific, H(r) asserts that

(Imlme e gMimr—2yMi—r—1 ,Mi—r | .Imi—lymi)_
(y—mix—mi—l. oy TMimr gy Mitr41 Mk 42 L, . me) —

rm ym2 cegMi-r—2 4 Mj—p—1+Mijtp41 Mitr+2 ... pMD ,
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where (z,w) is (x,y) if r is odd and (y, z) if r is even. This is of form db = ¢,
which is equivalent to d = ¢b=!. Now, ¢ has D — 2r — 2 blocks and b~! has
D — i + 1 blocks, and ¢ ends with x while b=! begins with z, so that the
expression cb~! has 2D — 2r — i — 2 blocks, so H(r) follows from (D — 1) —
associativity whenever 2D —2r —i—2< D —1,orr > (D —i—1)/2.

Now, assume that r < (D —i —1)/2 — 1 and assume that H(r + 1)
holds. H(r + 1) is the special case of H(r) with m; .1 = —m; , ;. We
conclude H(r) by applying Lemma 3.18, with a = w, s = 2= ... gMi-1y™i
p = a™ym ... M= and g = ZMi+r+2 ... ™0 Condition (0) is H(r + 1),
and the conclusion, (A), is H(r). We must verify that conditions («, f3,7)
require only (D — 1) — associativity. («,~) are easy. For (), the expression
s 'w™ss~!q has no more than

r+D)+14+0r+)+0r+)+(D—-i—r—1)—1=D—i+2r+2
blocks. Since 2r +2 < D —i—1 and 2i > D + 1, we have
D—i+2r+2<2D-2i—-1<D-2 .
[

By this lemma and Lemma 3.17, the requirement for D — associativity
simplifies to Lemma 3.21:

Definition 3.20 W (z,y;my, ma, ms, ..., mp) denotes the word of length D,
(™ y™2 ™ . 2P where z is x if D is odd and y if D is even

Lemma 3.21 Suppose a WRIF loop L is (D —1) — associative, where D > 4.
Then L is D — associative iff W (x, y; my, ma, mg, ..., mp) associates for every
x,y € L and every my, mog, mg3,...,mp € Z.

To aid in proving this associativity:

Lemma 3.22 Suppose a WRIF loop L is (D —1) — associative, where D > 4,
and W = W (x,y; my, my, ma, ...,mp). Then 78(W) = 75T2(W) (see Defini-
tion 3.8) whenever 1 <k < D — 3.

Proof. Say k is even; the argument for odd k is the same. Then we must
prove

(xmlymme?) - ymkkaHymkw) . (xmk+3 - ZmD) —

(xml Y ymk) . (xmk+lymk+2xmk+3 .. .ZmD)
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We apply Lemma 3.2, with p = x™y™2x™3 ... ¢y™k q = g"k+3 ... 2P and
a =y ™+22"™+1 Now p - aq = pa - q follows by (D — 2) — associativity, and
pa-a~'q = pa~'-aq = pq follows by (D — 1) — associativity plus Lemma 3.19.
So, p-atq=pa!-q follows by Lemma 3.2. []

Lemma 3.23 Suppose a WRIF loop L is (D — 1) — associative, where D > 5
and D is odd. Then L is D — associative.

Proof. If W = W (z,y;my,...,mp), then Lemma 3.16 implies that 7*(1W) =
73(W). Thus, applying Lemma 3.22, the 75(W) (for 1 < k < D — 1) are all
the same. It follows by Lemma 3.9 that W associates, so L is D — associative
by Lemma 3.21. []

Lemma 3.24 Suppose that a WRIF loop L is (D — 1) — associative, where
D >4 and D is even. Then L is D — associative.

Proof. Again, we must show that each W (x,y; my,...,mp) associates. Let
H(r) be the assertion that W (z,y;my,...,mp) associates for all z,y € L and
my,...mp € Z with m; = 1 whenever r < ¢ < D. So, our lemma is equivalent
to H(D). Let H*(r) be the assertion that W (x,y;mi,..., mp) associates for
all z,y € L and mq,...mp € Z with m; = 1 whenever r < ¢ < D. So, our
lemma is also equivalent to H*(D — 1). We shall in fact prove:

1. H(1).

2. H(k—1) — H(k) whenever 2 <k < D — 1.

3. HD—1) — H™(1).

4. H"(k — 1) — H* (k) whenever 2 <k < D — 1.

Applying these items in order yields H"(D — 1) and hence the lemma.

First, note that, as in the proof of Lemma 3.23, W = W (z,y; m1,...,mp)
associates if 7%(W) = 7**1(W) for some k with 1 < k < D — 2.

To prove H(1): Let W = W (x,y;m,1,1,...,1). We prove that W asso-
ciates by showing that 7t (W) = 72(W); that is, 2™ - yxy - -y = 2™y -2y - ¥.
Letting v = xy so y = x'u, this reduces to z™(x tu - uP 1) = 2™ 1y - uP 1
which is true by 2 — associativity.

To prove H(k — 1) — H(k) when 2 < k < D and k is odd: W
is now (x™ y™m2 g™ . y™-t g™ gl yl) and we shall prove that
Y W) = a*(W). Let p = a™ym™2a™s ...yt and ¢ = ylat- -yl =
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y(xy)PF=D/2 We need to show that p-z™ ¢ = pz™ -q. When m;, = 1, this

is true by H(k —1). But also pz-z~'q = pz~' - zq = pg by Lemma 3.19. H (k)
now follows by Lemma 3.2.

The proofs for H(k—1) — H(k) for k odd and for H*(k —1) — H* (k)
are the same.

Finally, we assume H(D — 1) and prove H*(1). Let p = 2™ (yz)P~4/2,
We prove that W = W(z,y;mq,1,1,...,1,mp) associates by showing that
P2 (W) = 7P~ (W); that is, py - zy™? = pyx - y™». By Definition 1.3
applied twice, we have R(aba)R(b)R(a) = R(a)R(b)R(aba). In particular, if
a=1y !and b= yry™*! then aba = zy™P, so we get:

R(zy™)R(yzy™" R(y ") = R(y ") R(yzy™ ) R(zy™?) .

We apply this equation to py~™rz~!:

Now, py~"2z~!.2y™P is a product of a word with D blocks, and by Lemma
3.19, this is equal to p . Thus, applying Lemma 3.22 and power alternativity:

(py ™"z " R(zy™P)R(yzy™ " TRy ) = (p-yzy™P )y =
(pyz - y™" Yyt = pyz - y™?

Likewise, py ™Pz ! -y ! is a product of a word with D blocks, of form

W(z,y;mq,1,---,1,—mp,—1,—1). This word associates by H(D — 1), since
it is the same as W (z,y~';my,—1,---,1,mp, —1,1). Thus,

1 1

=py-y "y

-mp ,.—1 _ ,—1

py Pty Tt =py Py

the second “=" is obtained by applying Lemma 3.2, with a = y and ¢ =
x'y~!. We thus have

(py™"a ™ )Ry~ ) R(yay™ ) R(xy™) =
[(py -y~ ™y ) (yay™ )] (wy™) = py - (ay™?)
and hence H*(1). []
Proof of Theorem 1.6 Use Lemmas 3.23 and 3.24. []

4 Examples

Figure 1 depicts the sub-varieties of diassociative loops discussed in this paper.
All claimed inclusions have already been proved. All regions shown are non-
empty, as can easily be inferred from results in the literature plus Example 4.1:
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DIASSOCIATIVE
WRIF

RIF

N—

Figure 1: Some Varieties of Loops

The loops which are both Moufang and Steiner are the boolean groups and
clearly are a proper sub-variety of the extra loops, which are the loops which
are both Moufang and (flexible) C (see Fenyves [6]), and these in turn are
properly contained in the Moufang loops. If A is, say, the 10-element Steiner
loop, then it is not a group and hence not Moufang. The product of A and
any non-boolean group will be a RIF flexible C-loop which is not Moufang
and not Steiner. The product of A and any Moufang loop which is not an
extra loop will be a RIF loop which is not a C-loop. Example 4.1 is a flexible
C-loop which is not a RIF loop. Crossing this with a non-extra Moufang loop
yields a WRIF loop which is neither C nor RIF. Finally, for every odd prime
p, there is a diassociative loop of order p* which is not a group; see, e.g., the
proof of Theorem 5.2 in [7]. Such loops cannot be Moufang by Chein [3], and
hence not WRIF by Corollary 2.14.

Example 4.1 There is a flexible C-loop which is not a RIF loop.

Proof. Consider the loop in Table 1. The nucleus is N = {0, 1,2}, and all
squares are in N, so that L/N is the 8-element boolean group. This is not
RIF because (3-12)-(15-(3-12)) # (3-((12-15) - 3)) - 12, so that (3) of
Lemma 2.2 fails. []

Example 4.2 There is a C-loop which is not flexible.
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/012345678 91011121314151617181920212223
0|01 2345678 91011121314151617181920212223
11 2045378 610119 131412161715192018222321
220153486 711910141213171516 201819232122
313 45012910116 7 8181920212223121314151617
414 5312010119 7 8 6192018222321131412161715
5534201119108 6 7201819232122141213171516
6|6 7 8 910110 1 2 3 4 5151617121314212223181920
7|7 8610119 1 2 0 4 5 3161715131412222321192018
88 6 7119102 01 5 3 4171516141213232122201819
91910116 7 8 3 4 5 0 1 2212223192018171516121314
10(1011 9 7 8 6 4 5 3 1 2 0222321201819151617131412
11111 9108 6 7 5 3 4 2 0 1 232122181920161715141213

12|11214131820191517162123220 2 1 6 8 7 3 5 4 9 1110
13(131214191820161517222123 1 0 2 7 6 8 4 3 5109 11
14|141312201918171615232221 2 1 0 8 7 6 5 4 311109
15|11517162123221214131918206 8 7 0 2 1109113 5 4
16|161517222123131214201918 7 6 8 1 0 211109 4 3 5
171171615232221 1413121820198 7 6 2 1 0 911105 4 3
18/1820191214132123221716153 5 411109 0 2 1 6 8 7
19(191820131214222123151716 4 3 5 911101 0 2 7 6 8
202019181413122322211615175 4 3109112 1 0 8 7 6
211212322151716182019121413 9 11103 5 4 6 8 7 0 2 1
221222123161517191820131214109 114 3 5 7 6 8 1 0 2
23|123222117161520191814131211109 5 4 3 8 76 2 1 0

Table 1: A Flexible C non-RIF Loop

Proof. Consider the loop in Table 2. The nucleus is N = {0, 1,2}, and all
squares are in N, so that L/N is the 4-element boolean group. This is not
flexible because 3 - (6-3) # (3-6) - 3. [

The three examples in this section were found using the program SEM [14].
We do not see a really simple way of checking that Examples 4.1 and 4.2 are
both C-loops, with the first one also flexible. However, the reader can easily
write the obvious computer program (entering each loop as an array) to check
these facts; it is not necessary to verify that the code for SEM itself is correct.
Likewise, a program easily checks that the nucleus is {0, 1,2} for both loops.
On the other hand, Example 4.3 below is a Steiner loop, and we shall verify
its claimed properties directly from known facts about triple systems.
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/012345678 91011
0|01 234567891011
1112045378 610119
2120153486 711910
3|13 4501210119 86 7
414 53120119106 7 8
9534201910117 86
6|6 7 8119100 1 2 4 5 3
7|7 86 910111 2 0 5 3 4
88 6 710119 2 01 3 4 5
9/910117 8 6 53 401 2
10110119 8 6 7 3 4 51 20
111119106 7 8 4 5 3 2 0 1

Table 2: A non-Flexible C-Loop

The proof of diassociativity of WRIF loops in Section 3 is by induction
on the number of blocks, as is Moufang’s proof for Moufang loops in [11, 12],
but her proof is quite a bit shorter than ours. She first shows that whenever
(vu)w = v(uw), the same equation holds if the elements u, v, w are permuted
or replaced by their inverses ([12], pp. 420-421). Using this fact, the step from
3 — associativity to full diassociativity is quite easy (the details are in [11]§1).
Actually, as Bruck pointed out, by using this fact one can give a somewhat
simpler “maximal associative set” argument which avoids mentioning blocks
at all (see [1], §VIL.4). However, as the following example shows, this fact
does not hold in all WRIF loops, or even in all Steiner loops:

Example 4.3 There is a Steiner loop of order 1/ with elements u,v,w such
that (vu)w = v(uw) but (uv)w # u(vw).

Proof. Let L = Z3 U {e}. Here, e is the identity element of the loop, so
xe = ex = v and xz = e by definition. Products xy for distinct elements x, y of
Zy3 = {0,1,...12} are computed in the usual way from a Steiner triple system
S on Zis3; that is, S is a set of 3-element subsets of Z3, and zy = yr = 2z,
where z is the (unique) element of Z;3 such that {z,y,z} € S.

For S, we take one of the standard examples of a triple system (see, e.g.,
Example 19.12 of [9]): S contains blocks of the form A, = {n,n+ 2,n + 8}
and B, = {n,n+ 3,n+ 4}, where n € Z3.

So, for example 1-0 = 10 (since By = {10,0,1}), 10-5 = 12 (using Ayp),
0-5 =7 (using As,), and 1-7 = 12 (using A;5). Thus, (1-0)-5 = 1-(0-5) = 12.
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However, (0-1)-5=12# 3 =0-(1-5), since 1 -5 = 4 (using B;) and

0-4 =3 (using By). []
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