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Abstract

We consider (discrete) structures, 2, for a countable language.
2A# denotes 2 with its Bohr topology. Let Y be a compact Hausdorff
space. Then Y is homeomorphic to a subspace of some A# iff Y is
Talagrand compact.

1 Introduction

1.1 Summary

The results of this paper use the theory of compact function spaces to char-
acterize the possible compact subspaces of topological structures endowed
with the Bohr topology. We begin by reviewing some background on Bohr
topologies, and then explain how this relates to function spaces.
Throughout this paper, a language, L, is a countable (possibly finite) set
of function and constant symbols. Then, a structure 2 for £ is a non-empty
set A, together with actual functions on A and elements of A, corresponding
to the function and constant symbols of £. The language £ is needed when
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we talk about logical formulas being true or false in 2. Homomorphisms are
always between structures for the same language.

X is a topological structure iff X is a structure together with a topology
which makes all the functions of X continuous; then X is a compact structure
iff this topology is compact Hausdorff. A compactification of a structure 2 is
a pair (X, ) such that X is a compact structure and ¢ is a homomorphism
from 2 into X such that ran(y) is dense in X.

Following Holm [17], for every structure 2, there is a largest compactifica-
tion of A, which is now called the Bohr-Holm compactification, and is denoted
by (b2, ®g). Then, A# denotes the topological structure obtained by giving
2 the coarsest topology which makes ®y continuous; equivalently, this is the
coarsest topology which makes ¢ continuous for all compactifications (X, ¢)
of . See [14] for further details.

Every compact Hausdorff space Y is a subspace of b2l for some 2 (in
fact, 2 can be taken to be an abelian group). But not every such Y can be
embedded in an A#. For Y compact Hausdorff, Y is a subspace of some A#
iff Y is Talagrand compact (see Theorem 3.19). The Talagrand compacta are
described in Section 2. Every Eberlein compactum is Talagrand compact, and
every Talagrand compactum is Corson compact. The Corson and Eberlein
compacta can be defined as follows:

Definition 1.1 Fory € R’: supt(y) = {j € J : y(j) # 0} and supt.(y) =
{7 € J:|y(y)| > e}. X(J) is the set of all y € R? such that supt(y) is
countable and X,(J) is the set of all y € R’ such that supt_(y) is finite for
alle > 0. X(J) and X.(J) have the usual product topology.

Definition 1.2 A space Y is Corson compact iff for some set J, Y is home-
omorphic to a compact subspace of X2(J). Y is Eberlein compact iff for some
set J, Y is homeomorphic to a compact subspace of 3. (J).

It is not true in general that a compact subspace of 2# must be an
Eberlein compactum, but this is true if 2 is nice:

Definition 1.3 If 2 and B are structures (for the same language), then
Hom(21,B) is the set of homomorphisms from A into B. If X and Q) are
topological structures, then Hom.(X,9Q)) is the set of continuous homomor-
phisms from X into ).

Definition 1.4 A compact structure X is nice iff there is a single compact
second countable structure M such that Hom (X, M) separates the points of
X. A structure A (without a topology) is nice iff b2 is nice.
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Every group is nice, since 9t can be the product of the unitary groups,
[Ii<p<, U(n), and every boolean algebra is nice, since 91 can be the two-
element algebra. A few other examples are given in [14], but not much
is known in general about which structures are nice. For example, it is
unknown whether every compact semilattice is nice, although the obvious
M = ([0, 1]; A) does not work by Lawson [19]. Actually, as applied to arbitrary
structures, the notion of “nice” is a bit pathological, since a compact group
with an added constant can fail to be nice (Example 3.25).

As we have indicated, requiring the 2 of Theorem 3.19 to be nice gives us
the Eberlein compacta. More precisely, Theorem 3.13 shows that a compact
Hausdorff space Y is Eberlein compact iff Y is homeomorphic to some closed
subspace of some A% for some nice A. The theorem also shows that A can
be taken to be self-bohrifying:

Definition 1.5 If X is a topological structure, then X4 denotes the structure
X stripped of its topology. A compact structure X is self-bohrifying iff its
Bohr-Holm compactification is just the identity map X4 — X.

Equivalently, X is self-bohrifying iff Hom.(X,2)) = Hom(X,9)) for all
compact structures 2).

These notions are considered in their generality in [14], but they occur
much earlier in the literature for the special case of groups. For connected
compact Lie groups, van der Waerden [29] (see also [16], Theorem 5.64)
showed that self-bohrifying implies semisimple, and the converse goes back
to Anderson and Hunter [1]. Also, by Moran [22], some infinite products of
finite groups are self-bohrifying (and, of course, disconnected). It is still not
known exactly which products of finite groups are self-bohrifying.

By Argyros and Negrepontis [2], every Talagrand (in fact, Gul’ko) com-
pactum with the countable chain condition is second countable. This result
applies to every compact subspace of an A#, by Theorem 3.19. In particular,
if X is self-bohrifying and contains a group operation, then X is second count-
able. Some important special cases of this were already known. If X = (X;-)
is just a group, this fact is due to Moran [22], who proved the stronger result
that for each n, X has only finitely many inequivalent irreducible represen-
tations of degree n. When X is a topological ring, the result is due to Ursul
[28]. Comfort and Remus [7] contains further results on self-bohrifying rings.

Theorem 3.19 says that the Talagrand compacta are precisely those com-
pact spaces which are contained in some 2%, and that this 2 may be taken
to be self-bohrifying. We do not have a simple characterization of the class
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of spaces which themselves can be made into self-bohrifying structures; call
these the self-bohrable compacta. Observe that this class does not contain all
Eberlein compacta, or even all metric continua. For example, let Y be a Cook
continuum [9, 24]; that is, Y is a metric continuum and the only continuous
functions from Y into Y are the constant functions and the identity function.
It follows that if f : Y™ — Y is continuous, then f is either constant or of the
form f(y1,...,yn) = y;. All these functions extend continuously to 3(Yy).
Thus, if YV is made into a topological structure ), then bQ), will be 5(Yy),
not Y. However, it is true that many of the “common” metric continua, such
as finite polyhedra and countable products thereof, are self-bohrable by our
Corollary 3.22.
The following is a variation on Theorem 4.2 of Comfort [6]:

Proposition 1.6 If X is a compact structure, |X| > 2, and k is infinite,
then X" s not self-bohrifying.

Proof. Let U be any non-principal ultrafilter on x, and for x € X", let
o(z) = U-lim(z, : a < k); equivalently, if z : Kk — X and T: fx — X is the
usual extension of z to the Cech compactification, then o(z) = T(U).

Then ¢ is a homomorphism of X* into X. To see that ¢ is not continuous,
fix a,b in X with a # b, and let Ei,g € X" be the corresponding constant
sequences. Observe that ¢(@) = a, and every neighborhood of @ contains a
sequence z with ¢(z) = b (take = equal to b on all but finitely many « € k).

In the present paper, this proposition is of interest primarily for motiva-
tion. For example, [0,1]“ is self-bohrable by Corollary 3.22, but the proof
of this cannot be by making [0, 1] self-bohrable (Corollary 3.10), and then
just taking an infinite power; one needs to add more functions. Of course,
an uncountable power cannot be made self-bohrifying using any countable
collection of functions, since it is not Corson compact.

1.2 Technical Remarks

Compact structures are Hausdorff by definition, but 2% will fail to be Haus-
dorff whenever distinct points of A get identified by the map ®g : A — b2l.
However, this additional complication can be avoided in this paper, since
we are considering only compact Hausdorff spaces Y contained in A#. For
a,b € A, define a ~ b iff ®y(a) = Py(b) (equivalently, iff p(a) = ¢(b) for all
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compactifications (X, @) of 2A). Then 2# is Hausdorff iff ~ is the identity
relation. One can always replace a structure 20 by the quotient 2/~ and
then consider embeddings of Y into the Hausdorff (24/~)# (see [14], Lemma
2.3.11). Thus, we lose no generality by considering only structures 2 for
which 2# is Hausdorff; so, we may always view 2 as a substructure of b,
with ®g the identity map and 2# the subspace topology. Dropping explicit
mention of &y simplifies the notation somewhat; for example, the fact (see
[14], Lemma 2.3.9) that b2( preserves some of the properties of 2 may be
stated as:

Lemma 1.7 Suppose that X is any compactification of A, with A — X.
Suppose that ¥(vy,...,v,) is a positive logical formula, ay, ..., a, € A, and
Y(ay, ... ay) is true in A. Then P(ay, ..., a,) is true in X also.

Paper [14] also discusses how much freedom one has with the language
of structures in computing their Bohr compactifications; it includes remarks
on excluding relations, as well as details on dropping inessential functions.
For orders, for example, rather than use the relation symbol <, we use the
binary function A. For groups, b(G;-) can be identified with b(G;-, ~!). In
the present paper, we only need the fact, which can easily be checked directly,
that constants can be dropped. Thus, if (A;A) is a semilattice with a 0, we
can identify b(A; A) and b(A; A, 0).

However, the notion of “nice” is very sensitive to the addition or deletion
of constants; see Example 3.25.

1.3 Semilattices

Although in functional analysis, the linear space X, (.J) is the natural object
to consider, for our purposes it will be more convenient to intersect this with
the compact semilattice [0, 1]7. The following variation on Definition 1.2 is
standard (see Corollary 2.9 for a similar proof).

Lemma 1.8 A space Y is Eberlein compact iff for some set J, Y is homeo-
morphic to a compact subspace of ,(J) N [0,1])7.

Now, our first step in embedding an Eberlein compactum into a self-
bohrifying structure will be to embed it into a compact semilattice. Of
course, an arbitrary subspace of [0, 1]7 need not be a semilattice, but we can
just close it downward:
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Definition 1.9 If Z is any partially ordered set and'Y is a subset of Z, then
Yi={:e€Z:FyeY<y|} andYt={z€Z:FyecY[z>y|}.

Observe that if Y is closed in the semilattice [0,1]7, then Y| is closed
also; it is thus immediate from Lemma 1.8 that every Eberlein compactum is
contained in an Eberlein compact semilattice; in fact, one of this special form
(aY]) is actually self-bohrable by Lemma 3.12. There is a similar description
of the Talagrand compacta (see Section 2); we use this in Section 3 when we
show how to embed Talagrand compacta into self-bohrifying structures.

1.4 Related Notions

Some properties weaker than self-bohrifying have also been considered in
the literature. A compact structure X is self-compactifying (see [14]) iff its
topology is determined by its algebraic structure; that is, the given topology
is the only one which makes the structure into a compact structure. This
is strictly weaker than self-bohrifying; for example, Lawson [20] showed that
every compact semilattice is self-compactifying, while by [14], the only self-
bohrifying compact semilattices are the ones with no infinite chains. We
shall use Lawson’s methods in Section 3, however, when we make Talagrand
compact semilattices self-bohrifying by adding additional functions to the
structure.

A still weaker property, called the van der Waerden property by Law-
son [20] and Anderson and Hunter [1], holds iff every automorphism of X
is continuous. This is strictly weaker than self-compactifying. For example,
let 3 be the structure (Z U {+o0, —o0}; 5,0, +00, —00). Here, the language
has three constant symbols, 0, +00, —o0, interpreted in the obvious way, to-
gether with a unary “successor” function, interpreted so that S(n) =n + 1,
S(400) = +o0, and S(—o0) = —oo. Because of the constants in the lan-
guage, the only automorphism is the identity, so the obvious compact topol-
ogy trivially has the van der Waerden property. However, there is a second
compact Hausdorff topology, obtained by making +oc a limit of the negative
integers and —oo a limit of the positive integers.

In the case that X is a finite dimensional compact connected group, [1]
shows that it has the van der Waerden property iff it is is self-bohrifying.
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2 Some Classes of Compacta

The literature contains several equivalent definitions of the Eberlein and
Talagrand compacta. In this section, we rephrase these in a form more
suitable to our purpose.

Definition 2.1 C(X, Z) is the set of continuous functions from X to Z.
Co(X,2) is C(X,Z) given the topology of pointwise convergence (that is,
regarded as a subspace of ZX, with the usual product topology). C(X) =
C(X,R) and C,(X) = C,(X,R).

Proposition 2.2 Y is Eberlein compact iff Y is compact and is homeomor-
phic to a subspace of Cp(X) for some compact Hausdorff X .

The equivalence of this with several other standard definitions of the
Eberlein compacta is discussed in Arkhangel’skii [3]; in particular, the equiv-
alence with our Definition 1.2 is the Amir-Lindenstrauss Theorem. Gul’ko
[13] (or see [3].1V.4.12) gave a proof of this theorem which can be generalized
(Mercourakis [21]) to yield similar characterizations of the Talagrand and
Gul’ko compacta. We describe these after a few preliminary remarks.

Definition 2.3 A space 7 is K-analytic iff Z is T3 and is the continuous
image of a Cech-complete Lindeldf space.

We remark that X is Cech-complete Lindel6f iff X is homeomorphic to
a closed subspace of a product of a Polish space and a compact space. For
more on K-analytic spaces, see Rogers and Jayne [25]. In particular, see
[25]52.8 for this particular description of the K-analytic spaces.

Proposition 2.4 Y is Talagrand compact iff Y is compact and is homeo-
morphic to a subspace of C,(X) for some Cech-complete Lindeldf space X .

Proof. Following Arkhangel’skii ([4]§6) and Okunev ([23]§4), Y is Talagrand
compact iff C,(Y") is K-analytic. If Y is Talagrand compact with Z = C,(Y),
then we may identify Y with a subspace of C,(Z). So, assume that ¥ C
C,(Z) and we have a Cech-complete Lindel6f space X and a continuous map
f from X onto Z. Define g : Y — C,(X) so that g(y) = yo f. Then g is 1-1
(since f is onto), and g is continuous.
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Conversely, suppose that Y is a compact subspace of Cyp(X), where X
is Cech- Complete Lindeldf, and hence K-analytic. Then C,(Y) is also K-
analytic (see Arkhangel’skii [3], Theorem IV.2.13), so Y is Talagrand com-

pact. .

To state the appropriate generalization of the Amir-Lindenstrauss Theo-
rem, we extend the notion of X, products (Definition 1.1):

Definition 2.5 For any set J and topological space S, Z(S,J) is the ideal
of subsets E C S x J such that EN (K x J) is finite whenever K C S is
compact. Definem : S x J— S by n(s,j) =s.

Lemma 2.6 The following are equivalent whenever S is Ty and first count-

able and E C S x J:

1. E€ZI(S,J).
2. m(E) is closed and discrete in S and EN({s} x J) is finite for all s € S.

3. Forall s € S, there is a neighborhood W of s such that EN(W x J) is
finite.

Definition 2.7 For any set J and topological space S: ¥.(S, J) is the set of
all y € R such that supt,(y) € Z(S, J) whenever e > 0. ,(S,J) has the
usual product topology. $I(S,J) = X.(S,J) N[0, 1]°*/.

The following is immediate from Theorem 3.2 of Mercourakis [21]:

Theorem 2.8 A compact HausdorffY is Talagrand compact iff for some set
J, Y is homeomorphic to a subspace of ¥,(w®, J).

A similar characterization of the Gul’ko compacta (Theorem 3.3 of [21])
replaces w“ by an arbitrary separable metric space. Thus, every Gul’ko
compactum is Corson compact, a fact due earlier to Gul’ko [13]. In Section
3 we plan to use the following easy corollary of Theorem 2.8:

Corollary 2.9 Suppose that Y s Talagrand compact. Then Y is homeo-
morphic to a subspace of X1 (w®, J) for some J.

Proof. Compressing R, we may assume that Y C 3, (w®, Jo) N (=1, 1)¥* <%,
Let J = Jy x {0,1}. Then, define a 1-1 map f : ¥ — SI(w¥,J) so that

f(y)(s,(4,0)) = max(0,y(s, j)) and f(y)(s, (4, 1)) = max(0, —y(s, j))-
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The point of getting ¥ in XI(w®,J) is that if we view [0,1]*"*/ as a
semilattice in the usual way, then Y| C ©(w®, J), so that we get a Talagrand
compactum which is also a compact semilattice.

Finally, for the nested families of compacta we have mentioned:

Eberlein G Talagrand & Gul'’ko & Corson

the least possible weights are known for examples witnessing that the inclu-
sions are proper:

Remark 2.10 If K is a non-empty class of compacta, let W (K) be the least
weight of a member of K. Then:

W (Corson \ Gul’ko ) = N;.

W (Gul’ko \ Talagrand ) = R;.

W (Talagrand \ Eberlein ) = b.

Proof. By an example of G. A. Sokolov (see [3]8IV.6), there is a Corson
compactum of weight 8; which is not Gul’ko compact. There is also a Gul’ko
compactum of weight N; which is not Talagrand compact. To see this, use
the example of Talagrand [27], but instead of using all well-founded trees,
just choose one tree of each countable rank.

To get a Talagrand compactum of weight b which is not Eberlein compact,
use Talagrand’s example ([26], or [3]§IV.6), but fix an unbounded family
B C w¥, and restrict the adequate family to contain only subsets of B. To
see that there is no example of smaller weight, note that if Y is compact in
Y. (w®, J) and w(Y) < b, then there are compact K; C w* for i < w such

that the projection of Y on X, (|, K, J) is 1-1.

Here, b is the least size of an unbounded family in w*; see van Douwen
[10] or Fremlin [11] for more on such cardinals.

3 Subspaces of Self-Bohrifying Structures

In this section, we shall produce self-bohrifying structures which are compact
semilattices. Observe that a compact semilattice (Z;A) is also a compact
order (i.e., < is closed in Z x Z). Some basic results on compact orders
and semilattices are contained in [12]. In any compact order, the following
relation between the order and the topology is useful; it is easily proved using
Nachbin’s theorem ([12], VI.1.9) that a compact order is locally convex.
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Lemma 3.1 Suppose that (Z;<) is a compact order, (D;C) is any directed
set, and (zq : d € D) is a net in Z. If Vdidy[dy C dy = zq, < 24,], then
limgep zq exists in Z and equals \/ op za. If Vdidy [dy & dy = 24, > 2a,),
then limgep z4 exists in Z and equals /\deD Z4.

In particular, \/,_, 2, exists whenever (z, : a < #) is increasing (i.e.,
a < B = 2o < 23), and A\, _, 2o exists whenever (z, : a < #) is decreas-
ing. Note also that a compact semilattice is a complete semilattice; that
is, A,<g %o exists for all sequences. The following lemma, which is a vari-
ation on Theorem 13 of Lawson [20], will let us prove that a semilattice is
self-bohrifying by just looking at increasing and decreasing sequences.

Lemma 3.2 Let (Z;A) be a compact semilattice and L a sub-semilattice of
Z. Then L is closed in Z iff for all reqular 6 and all -sequences x = (x4, :
a < 0) from L, the following two conditions are satisfied:

1. If x is increasing, then \/,_yTo € L.
2. If x is decreasing, then \,_p %o € L.

Proof. One direction is trivial from Lemma 3.1. For the other direction,
assume (1,2). By a standard argument, closure under decreasing /\s implies
that if £ C L then A E € L (induct on |E]); hence L is a complete sub-
semilattice of Z. Likewise, if E C L and is directed upward (Vx,y € E3dz €
Elr <z&y < z]), then \/ E exists in Z and \/ E € L. So, L is closed under

arbitrary /s and directed \/s. Hence, L is closed by [12], VI.2.9.

Corollary 3.3 Let Q) = (Y; A) be a compact semilattice. Suppose that Yy C
3, where 3 is a compactification of Dg. Then Y = 3 iff for all reqular 6 and
all 0-sequences a = (aq @ a < ) from Y the following two conditions are
satisfied:

1. If a is increasing and ao /b inY) and an ' p in 3, then p =0.
L. If a is decreasing and a, b in Q) and a, \ p in 3, then p = b.

Proof. Apply Lemma 3.2. 3 is a semilattice by Lemma 1.7.

Note that item 1 could fail if b > p, and item | could fail if b < p; then
pe Z\Y.

By Corollary 3.3, if (Y; A) is a compact semilattice with no infinite chains,
then it is self-bohrifying (since 1 and | are vacuous); this was proved in [14]
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by a different argument. The converse also holds [14], because every chain in
(Y; A) is closed and discrete in Y#. Adding extra functions to (Y A) yields
a much wider class of self-bohrifying structures. Also, adding a subtraction
function allows us to simplify Corollary 3.3 to Lemma 3.8 by shifting all the
monotonic convergent sequences of ) to sequences decreasing to 0.

Definition 3.4 LetQ) = (Y; A) be a compact semilattice. Suppose that)q C
3. A bad sequence in Y (with respect to 3) is a decreasing 6-sequence a =
(ag : v < B) from Y, where 0 is reqular and aq N\ 0 in Q) but as, \yp > 0 in
3. The element a € Y is bad iff there is a bad sequence a with ay = a.

Note that p € Z\Y. If a is bad and a < b in ), then b is bad also. This
“bad” notion is useful in semilattices to which we have added a subtraction:

Definition 3.5 A subtraction semilattice is a structure (A;A,—=,0) such
that (A; A, 0) is a semilattice and = is a binary function on A satisfying:

1. z-0=2z

2. (@Nhz)~y=(@ -y A(z-y)
8 (y-(@A)N(y-2)=y-=z
{oy-(y—x)=yAx

The unit interval gives us a natural example of these structures:

Definition 3.6 J denotes the subtraction semilattice ([0, 1]; A, =,0), where
r =~y =max(z — y,0).

It is easily verified that J is a topological subtraction semilattice; hence,
so is any substructure of any J”/ which contains 0 and is closed under A
and . In particular, any ) C J”/ with Y = Y| is a topological subtraction
semilattice. When discussing these structures, the A and - will always denote
coordinate-wise A and —. In any semilattice, = V y denotes lub(x,y) when
this lub exists.

Lemma 3.7 Suppose (A; A, =,0) is a subtraction semilattice. Then:

A z<z=(r-y) < (z-y)
B x<z=(y-z)>(y-—==2)
C.y>(y—2)
D . y=-y=0



3 SUBSPACES OF SELF-BOHRIFYING STRUCTURES 12

E z<y&y-zxz=0=>zx=y
Foy=(ynz)=y-ua

G xz>2ysy-—x2=0

H. Fach al is a distributive lattice.

Proof. Apply Definition 3.5: (A) and (B) follow from (2) and (3), (C)
follows from (B) and (1), and y — y =y — (y — 0) = 0 from (1) and (4).
(E) follows from (4) and (1). For (F'), apply (4) and then (C) to get

y=WhAe)=y=(y=-(y-2)=yAly-z)=y-z .

For (G): use (F), (D) for =; and (E) (replacing x by y A z), (F) for <.

For (H), fix a, and define ~x = a = z. By (4), ~~x = z, so that (using
(B)) ~ is an order-reversing bijection of al onto al. Hence (al;A,V) is a
lattice, with x V 2z = ~(~x A ~2).

To prove distributivity, it is sufficient (see Birkhoff [5], p. 39) to fix
c1,C2,d € al, assume that c; Ad = coAd =pand c;Vd =cVd=q,
and prove that ¢; = ¢3. We may also assume that ¢ = a (if not, work in
the lattice ¢|). Then 0 = ~a = ~(ca Vd) = (a = ¢3) A (a = d), and hence
(¢1 = o)A (e; = d) =0 (applying (A)). But by (F),c; ~d=c¢; = (c1Ad) =
1 = p > ¢ = ¢ (applying (B)). Hence, ¢; = ¢, = 0, s0 ¢; < ¢3 by (G).
Likewise, ¢o < ¢1, S0 ¢1 = c¢o.

In this paper, we shall not pursue further the study of the variety of
subtraction semilattices. All of our examples are of the form ¥V = Y| C
[0,1]”, for which (A-H) are obvious. The point of deriving these facts from
the equations in Definition 3.5 is only to guarantee (via Lemma 1.7), that
(A-H) also hold in every compactification of Y.

We remark that in (H), the proof of distributivity is patterned on the
proof (see [5], p. 294) that lattice-ordered groups are distributive. Also,
in any lattice-ordered abelian group, 07 is a subtraction semilattice, with
r=—y=(x—y)VO0.

Lemma 3.8 Let = (Y; A, =,0) be a compact subtraction semilattice. Sup-
pose that Pg C 3, where 3 is a compactification of Y. Then ) = 3 iff there
are no bad elements in Q) (with respect to 3).

Proof. Assume that there are no bad elements.
To verify condition | of Corollary 3.3, suppose a, b in ) and a, \(p
in 3;s0 b <p. Let ¢, =a, = b €Y. Then ¢, > cs for « > 3, by Lemma
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3.7(A). In 3, let ¢ = lim, cq = A, ¢o (see Lemma 3.1). Then ¢ =p = b by
by continuity of =. So, ¢, \( (p = b) in 3, and, likewise, ¢, \, (b = b) =0,
in ). Since ¢ is not bad, p = b =0, so b = p by Lemma 3.7(E).

To verify condition 1 of Corollary 3.3, suppose a, /b in Q) and a, ~p
in3;s0b>p Letc, =0-=a, €Y. Again, ¢, \( (b = b) =0 in ), and
hence ¢, N\, 0 in 3. But, in 3, ¢, \( (b = p), so that b = p = 0, which implies
b = p, since b > p.

Lemma 3.9 Suppose that Q) = (Y; A, =), where Y = Y| is closed in [0,1]”.
If a €Y is bad with respect to some compactification of g, then supt(a) is
infinite.

Proof. Following the notation of Definition 3.4, let a be a bad #-sequence
with ap = a. Assume F = supt(a) is finite (so # must be w). By passing
to a subsequence, we may assume that for all «, supt(a,) = F and a,(j) >
aa+1(7) for all j € F. Then for each a, there is a 3 such that ag < a, — aq41;
hence p < a, — aq4+1. Taking the limit in Z, we have p < p = p =0, a
contradiction.

In particular, if all elements of Y have finite support, then Y is self-
bohrifying.

Corollary 3.10 7 s self-bohrifying.

Likewise, J" is self-bohrifying for each finite n. J“ is not self-bohrifying
(Proposition 1.6), but we shall now (Lemma 3.12) make the Hilbert cube
self-bohrifying by adding another function to (Y;A,=). The same method
handles Eberlein compacta in general.

Definition 3.11 Ify € [0,1]7 and L C J, let (y | L)(j) be 0 for j ¢ L and
y(j) for j € L.

Lemma 3.12 Assume that Y = Y| is closed in [0,1]7. Then there is a
continuous f : Y? =Y such that if Y = (YA, =, f), then

1. 9 s nice.
2. If a € Y 1s bad with respect to some compactification of g4, then for
some € > 0, supt,(a) is infinite and a | supt,(a) is bad.
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Proof. Assume |Y| > 1 (otherwise the result is trivial), so we may assume
that J contains the element 0 and that y(0) > 0 for some y € Y. Rescaling
coordinate 0, we may assume that sup{y(0) : y € Y} = max{y(0):y € Y} =
1, and then let ¢ € Y be the element such that ¢(0) = 1 and ¢(j) = 0 whenever
j # 0. Define f(y,2)(j) = y(j) = 2(0).

For (1): Let M = ([0, 1]%} A, =, for), where 2 = {0,1} and fy is defined as
was f. For j # 0, define ¢;(y) = (y(0),y(j)). Then the ¢; are homomor-
phisms and separate points of Y.

For (2): Note that f(y,ec)(j) = y(j) = ¢, so supt_(y) = supt(f(y,ec)).
Now, assume that a is bad with respect to some compactification Qj) =
(Y5 A, =, f) of 9. We shall show that f(a,ec) is bad for some £ > 0, so we
are done by Lemma 3.9, since (a [ supt_(a)) > f(a,ec). Let a = (a, : a < 0)
be a bad sequence from Y, with agp = a and a, 0 in 9 but a, \p > 0 in
9.

For each (fixed) ¢ € [0,1], we have f(aq,cc) N\, f(p,ec) in 9. To
see this, note that the sequence (f(aq,ec) : a < ) is decreasing because
Va,y, z[f(z,2) A f(y, z) = f(z Ay, 2)] is true in ) and hence in ). Then, by
continuity, the limit of the sequence must be f(p,ec).

If f(a,ec) is not bad, then f(p,ec) = 0. Now, ¢ is not bad (by Lemma
3.9),50 ¢ — 0 in 9) as n — co. But f(p,0) = p # 0, since Vz[f(z,0) = ] is
true in 2) and hence in Qj) Hence, there must be an n such that f(p, %c) #0,

so that f(a, Lc) is bad.

Theorem 3.13 For Z compact Hausdorff, the following are equivalent:

1. Z s Eberlein compact.

2. Z 1is closed in some nice self-bohrifying compact structure for a finite
language.

3. 7 1is closed in some nice self-bohrifying compact structure for a count-
able language.

4. For some nice structure 2 for a countable language, Z is homeomorphic
to a closed subset of A*.

Proof. (1) — (2) is by Lemmas 1.8 and 3.12. For (4) — (1): The whole A
is contained in C), of some compactum (see §2.10 of [14]), so Z is Eberlein

compact by Proposition 2.2.

We now proceed to embed every Talagrand compactum into a self-bohr-
ifying structure. This is accomplished by a continued study of bad elements.
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Lemma 3.14 Let Y = (Y; A, =) be a compact subtraction semilattice and
let P 2 Ya be a compactification of Pq. Fiz a € Y. Then a is bad (with
respect to ) ) iff al (computed in Q) is not a subset of Y.

Proof. Let %,% be the substructures al computed in @,Qj) respectively.
For the non-trivial direction, assume that X # X. Observe that X is a
compactification of X, since if ¢ € X, then ¢ is a limit of a net, (y; : d € D)
from Y, but then ¢ = g A a is also a limit of the net (ys Aa :d € D) from
X. Hence, by Lemma 3.8 applied to X, %, there is bad sequence in X, which
yields a bad sequence below a in 9).

Lemma 3.15 In the notation of Lemma 3.14, assume that a is bad (with
respect to ) and that a = a; V as in Q). Then at least one of ay,as is bad.

Proof. Let X, X be exactly as in the proof of Lemma 3.14. Fix q € )N(\X
Then, applying distributivity (see Lemma 3.7), ¢ = g Aa = ¢ A (a1 V as) =
(g ANay) V(g Aaz). Since ¢ ¢ X, at least one of (¢ A ay), (¢ A ag) fails to be
in X, so by Lemma 3.14, at least one of a1, as is bad.

The version of this lemma for infinite joins is false, but adding some
functions gives a structure where it s true:

Lemma 3.16 Suppose that Y =Y is closed in [0,1]7, and J is partitioned
into {J, : n € w}. Then there are continuous f,g : Y? — Y such that
9(y,2) <y for all y,z, and such that Y = (Y; N\, =, f,g) has the property
that whenever a € Y is bad with respect to a compactification i) of g4, then
there is an n € w such that a | J, is bad with respect to 2).

Proof. We may fix ¢ € Y with supt(c) infinite. If there is no such ¢, then
the lemma is trivial by Lemma 3.9. We may now assume that w C J and
that supt(c) = w. Also, since Y = Y|, we may assume that c(n) N\, 0 as
n — oo. Let f be any function which guarantees that whenever y € Y is bad
with respect to some compactification of )4, then for some £ > 0, supt,(y) is
infinite (see Lemma 3.12). In particular, we know that ¢ is not bad, so that,
by Lemma 3.14, ¢/ is the same in ) and QT) Thus, if ¢, = ¢ [ {0,1,...,n},
then in @ as well as in 9), ¢, — c as n — oc.

Now, define g(y, 2)(j) = y(j)-(2(n)Ac(n))/c(n) for j € J,. Then g(y,c) =
y, and g(y,c,) =y [ (JoUJy U---UJ,). By Lemma 3.15, it is sufficient to
assume that a is bad and prove that some g(a, ¢,) is bad.
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Let aq N\ 0 in Y, with ag = a, and a, N\ p > 0 in Y. Then (as in the
proof of Lemma 3.12), g(aq, ¢n) ¢ 9(p, ¢n) in Y. If no g(a,c,) is bad, then
each ¢g(p,c,) = 0. But then, letting n — oo, we have p = ¢(p,¢) = 0, a
contradiction.

Lemma 3.17 IfY is Talagrand compact, then there is a compact self-bohr-
ifying structure ) for a finite language such that X is a subspace of Y.

Proof. By Corollary 2.9, we may assume that X C YV C XI(w¥ J) C
[0,1]°"*7, where Y is compact and Y = Y|. For each i € w, partition w®
into {S! : n € w}, where S = {s: s(i) = n}.

We first get 9 = (YA, =, f, 90, 91,92, ---) with a countable language.
Applying Lemma 3.12, let f have the property that whenever y € Y is bad,
there is an € > 0 such that supt_(a) is infinite and y [ supt,(a) is also bad.
Applying Lemma 3.16, let g; guarantee that whenever y is bad, some y [ S¢ is
bad (it is clear from the proof that the same f works with each g;). Now, if Q)
is not self-bohrifying, we can fix a bad a € Y (with respect to b)), and then
fix € > 0 so that b = a [ supt_(a) is bad also. Note that supt(b) = supt,(b),
so by Lemma 2.6, supt(b) N ({s} x J) is finite for every s € w*, and 7 (supt(b))
is closed and discrete in w®. Now, inductively choose b; € Y with by = b and
each b 1 = b; | (S}z x J), where n; is chosen so that b;,; is bad. We now
have defined an s € w®, where s(i) = n; for each 7. Since 7(supt(b;11)) is
infinite (by Lemma 3.9), this s is a common accumulation point of all the
m(supt(b;y1)), which is impossible since 7(supt (b)) is closed and discrete.

Finally, to get a finite language, we show how to code all the g; by one
function. By Lemma 3.16, we can have g;(y, z) < y for all y, so that g;(y, z) =
y— (y = gi(y,2)). Fixd € Y with supt(d) = {u, : n € w} C w® x J, such
that each d(u,) = 1/r,, where ry < r; < --- are all positive integers and
Yo d(u,) < 1. Let h(y,z,2) = > (x(un) Ad(un))(y = gn(y, 2)). Then the
structure (Y; A, =, f, h) is self-bohrifying. To see this, we show that each g; is
defined by a finite composition of the functions h and —. Let supt(d;) = {u;}
and d;(u;) = 1/r;. Then h(y, z,d;) = (y = ¢i(y,2))/ri, so that g;(y,z) =

y () h(y, z,d;), where y (2) z =y and y (=) 2 = (y (=)' 2) = =

Lemma 3.18 If A is any structure for a countable language, and Z 1is a
compact subset of A*, then Z is Talagrand compact.

Proof. Following the notation of §2.10 of [14], let P = P, = [[,., Fs be
the space of all compact L-structures whose domain is the Hilbert cube, Q.
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Here Fy = C(Q", Q) (with the uniform metric) whenever s € £ is a function
symbol of arity n > 1, and F; = ) whenever s is a constant symbol. So,
P is a Polish space. Then, Homq(2A), the set of all (p,) € P x Q4 such
that ¢ is a homomorphism into the structure p, is closed in P x Q*, and
hence is a Cech-complete Lindelsf space. Now, define ® : A — QHoma(®) hy
®(a)(p, v) = ¢(a). Then the Bohr compactification of A is (b2(, ®), where
b2 = cl(ran(®)) C Q™I Elements of b2 will not in general be con-
tinuous functions from Homgq(2) into @, but ran(®) C C,(Homgq(2A), Q) —
C,(H,[0,1]), where H = Homq() x (w + 1) is also Cech-complete Lin-
delof. Thus, Z C A# < C,(H) (see [14], Lemma 2.10.4), so Z is Talagrand
compact by Proposition 2.4.

The last two lemmas yield:

Theorem 3.19 For Z compact Hausdorff, the following are equivalent:

1. Z s Talagrand compact.

2. Z s closed in some self-bohrifying compact structure for a finite lan-
quage.

3. Z s closed in some self-bohrifying compact structure for a countable
language.

4. For some structure 2 for a countable language, Z is homeomorphic to
a closed subset of A¥.

Next, we make a few remarks on the following notion:

Definition 3.20 A compact Hausdorff space Z is self-bohrable iff Z itself
can be made into a self-bohrifying structure 3 with finitely many functions.

As pointed out in the Introduction, Cook compacta show that not every
metric compactum is self-bohrable. However, Eberlein compacta of the form
Y = Y| are self-bohrable by Lemma 3.12. This includes the Hilbert cube,
represented as [],[0,27"]. Also, the Hilbert cube, along with many other
metric compacta, such as compact manifolds, are self-bohrable, by Corollary
3.22 below.

Lemma 3.21 Let X C Y be compact Hausdorff, and suppose that X is a
retract of Y and that there is continuous map from X onto Y. If X is self-
bohrable, then so is'Y .
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Proof. Let p : Y — X be a retraction. Let X = (X; f1,...,fa) be a
self-bohrifying L-structure. By using p, we can get a structure 2) with
base set Y such that X is a substructure of 2); that is, extend f; to YV
by defining f;(y1,v2,...) = fi(p(y1), p(y2),...). Likewise, if fo maps X onto
Y, we may extend fy to map Y to Y by letting fo(y) = fo(p(y)). Let
V= (V5 fo, frr- - fu). Now, let 95 € bYF = (V5 fo, f1,..., fn). We shall
show that Y =Y: B

Let X be the closure of X in Y. Then (X fl, ..., fn) is a compactification
of X, so that X = X. Hence, Y = fo(X) = fo(X) is both closed and dense
in Y, so that Y =Y.

Corollary 3.22 Suppose that Y is compact Hausdorff, [0,1] C Y, and there
is a continuous map from [0,1] onto Y. Then Y is self-bohrable.

Lemma 3.21 extends easily to products:

Lemma 3.23 Let X, X5 C Y be compact Hausdorff, with X, Xo retracts
of Y, and assume that there is continuous map from X; x Xy onto Y. If
X1, Xy are self-bohrable, then so is'Y .

Corollary 3.24 If X, X, are self-bohrable, then so is X; X Xs.

We conclude with an example to show that the notion of “nice” is not
very nice. Simply adding a particular constant symbol to a nice group yields
a self-bohrifying structure which fails to be nice.

Example 3.25 There is a compact group X with an element ¢ € X such
that the structure (X;-,c) (where the language has a binary function and a
constant) is not nice.

Proof. Let X = T“', where T is the circle group. Fix ¢ € X such that
{c" :n € w} is dense in X (see [18], §4). Let 9 = (N;*,d) be any other
compact structure for the same language. If ¢, € Hom.(X,N), then ¢,
must agree on {¢" : n € w} (because they are homomorphisms); it follows by
continuity that ¢ = . Thus, Hom.(X, M) is either a singleton or empty, so

it cannot separate the points of X if N is second countable.
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4 Questions

Note that the self-bohrifying structures into which we have inserted Eber-
lein compacta (Theorem 3.13) and Talagrand compacta (Theorem 3.19) are
somewhat artificial. We do not know if there is a “natural” class of structures
which can be used in these theorems.

If Z is Eberlein compact, then there is a group G such that Z is homeo-
morphic to a subset of G#, but G cannot in general be taken to be self-
bohrifying, since self-bohrifying groups are second countable. If 7 is a
metric compactum, then Z can be embedded in []7, SO(n), which is self-
bohrifying. See [15] for details.

We do not know a good criterion for a totally disconnected compact (i.e.,
profinite) group to be self-bohrifying, even in the following special case:

Question 4.1 (Comfort and Remus [8]) Suppose that (G, : n € w) is a
list of finite nonabelian simple groups, with no group listed infinitely often.

Is T1,, Gn self-bohrifying?

The proviso that no group be listed infinitely often is necessary by Propo-
sition 1.6.
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