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Abstract
We consider covering ℵ1 × ℵ1 rectangles by countably many smooth

curves, and differentiable isomorphisms between ℵ1-dense sets of reals.

1 Introduction

In this paper, we consider two different issues, both related to the question of ob-
taining differentiable real–valued functions where classical results only produced
functions or continuous functions.

Regarding the first issue, the text of Sierpiński [12] shows that CH is equivalent
to his Proposition P2, which is the statement that the plane “est une somme d’une
infinité dénombrable de courbes”. Here, a “curve” is just the graph of a function
or an inverse function, so P2 says only that R2 =

⋃
i∈ω(fi ∪ f−1

i ), where each fi

is (the graph of) a function from R to R, with no assumption of continuity. The
proof actually shows, in ZFC, that for every E ∈ [R]ℵ1 , there are fi : R→ R with
E2 ⊆ ⋃

i∈ω(fi ∪ f−1
i ), and that this is false for all E of size greater than ℵ1.

Usually in geometry and analysis, “curve” does imply continuity, so it is nat-
ural to ask whether the fi can all be continuous, or even C∞:

Definition 1.1 For n ∈ ω ∪{∞}, call E ⊆ R n–small iff there are Cn functions
fi : R → R such that E2 ⊆ ⋃

i∈ω(fi ∪ f−1
i ). Here, C0 just means “continuous”,

and C∞ means Cn for all n ∈ ω.

Countable sets are trivially ∞–small, and by Sierpiński, |E| ≤ ℵ1 for every
0–small set E, so we are only interested in sets of size ℵ1. Every 0–small set is of
first category and measure 0 (and perfectly meager and universally null). Just in
ZFC, we shall prove the following in Section 2:

∗2010 Mathematics Subject Classification: Primary 03E35, 03E50. Key Words and Phrases:
PFA, MA, ℵ1-dense, curve.

†University of Wisconsin, Madison, WI 53706, U.S.A., kunen@math.wisc.edu

1



1 INTRODUCTION 2

Theorem 1.2 There is an E ∈ [R]ℵ1 which is ∞–small.

The existence of a 0–small set is due to Kubís and Vejnar [9].
But now we can ask whether every E ∈ [R]ℵ1 is n–small for some n. Even

when n = 0, this would imply that every such E is of first category and measure
0 (and perfectly meager and universally null), which is a well-known consequence
of MA(ℵ1). In fact, the following theorem follows easily from results already in
the literature, as we shall point out in Section 2:

Theorem 1.3

1. MA(ℵ1) implies that every set of size ℵ1 is 0–small.

2. PFA implies that every set of size ℵ1 is 1–small.

3. MA(ℵ1) does not imply that every set of size ℵ1 is 1–small.

4. In ZFC, there is an E ∈ [R]ℵ1 which is not 2–small.

We remark that Sierpiński’s use of “curve” is unusual in another way: Usually,
we would call a subset of R2 a curve iff it is a continuous image of [0, 1], and not
necessarily the graph of a function; but with that usage, the plane is always a
countable union of curves by Peano [11].

Our second issue involves the isomorphism of ℵ1-dense subsets of R.

Definition 1.4 E ⊆ R is ℵ1-dense iff |E ∩ (x, y)| = ℵ1 whenever x, y ∈ R and
x < y. F is the set of all order-preserving bijections from R onto R.

By Baumgartner [3, 4], PFA implies that whenever D,E are ℵ1-dense, there
is an f ∈ F such that f(D) = E. By [2, 1], this cannot be proved from MA(ℵ1)
alone. Clearly, every f ∈ F is continuous, but we can ask whether we can always
get our f to be Cn.

For n = 2, a ZFC counter-example is apparent from Theorems 1.2 and 1.3,
since we may take D to be 2–small and E to be not 2–small, and also assume
that D = D + Q = {D + q : q ∈ Q} and E = E + Q. Note that D is 2–small iff
D + Q is 2–small, and the latter set is also ℵ1-dense.

But in fact, even n = 1 is impossible, since the following holds in ZFC, as we
shall show in Section 3:

Theorem 1.5 There are ℵ1-dense D,E ⊂ R such that for all f ∈ F and ℵ1-
dense D∗ ⊆ D and E∗ ⊆ E with f(D∗) = E∗: If p < q and a = f(p) and b = f(q)
then:
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1. Either f is not uniformly Lipschitz on (p, q) or f−1 is not uniformly Lip-
schitz on (a, b); equivalently, whenever 0 < Λ ∈ R, there are x0, x1 ∈ (p, q)
such that either |f(x1)−f(x0)| > Λ|x1−x0| or |x1−x0| > Λ|f(x1)−f(x0)|.

2. Either f ′ does not exist at some d ∈ D∗ ∩ (p, q) or (f−1)′ does not exist at
some e ∈ E∗ ∩ (a, b).

3. If f ′(d) exists for all d ∈ D∗ ∩ (p, q), then f ′(d) = 0 for all but countably
many d ∈ D∗ ∩ (p, q).

In particular, f cannot be in C1(R), since f ′ cannot be 0 everywhere, so if f ′

were continuous, there would be an interval on which f ′ > 0, contradicting (3).
On the other hand, f ′ can exist everywhere and be 0 on a dense set if f ′ is

not required to be continuous:

Theorem 1.6 Assume PFA, and let D,E ⊂ R be ℵ1-dense. Then there exist
f ∈ F and D∗ ⊆ D such that D∗ is ℵ1-dense and f(D∗) = E and

1. For all x ∈ R, f ′(x) exists and 0 ≤ f ′(x) ≤ 2.

2. f ′(d) = 0 for all d ∈ D∗.

By (1), f satisfies a uniform Lipschitz condition with Lipschitz constant 2.
The “2” is an artifact of the proof, and may be replaced by an arbitrarily small
number; if ε > 0, we can get our f with f ′(x) ≤ 2 so that f(D∗) = (1/ε)E; then
εf ′(x) ≤ 2ε and εf(D∗) = E. In (2), the f ′(d) = 0 is to be expected, in view of
Theorem 1.5(3). We do not know whether we can make D∗ equal D.

The proof of Theorem 1.6 in Sections 4 and 5 actually shows that one can force
the result to hold in an appropriate ccc extension of any model of ZFC + 2ℵ0 =
ℵ1 + 2ℵ1 = ℵ2. Then the result follows from PFA using the same forcing plus the
“collapsing the continuum” trick.

We remark that Theorem 1.6 contradicts Proposition 9.4 in the paper [1]
of Abraham, Rubin, and Shelah, which produces a ZFC example of ℵ1-dense
D,E ⊂ R such that every f ∈ F with f ∩ (D × E) uncountable fails to be
differentiable at uncountably many elements of D. Their “proof” uses ideas
similar to our proof of Theorem 1.5, but insufficient details are given to be able
to locate a specific error. Burke [5] also noticed a problem with this result from
[1] and gave a correct proof of a result similar to our Theorem 1.5; see Proposition
1.2 and Remark 1.4 of his paper.

2 On Smallness

We first point out that Theorem 1.3 follows easily from known results:
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Proof of Theorem 1.3. For (1), fix E ∈ [R]ℵ1 . By Sierpiński, E2 ⊆⋃
i∈ω(fi ∪ f−1

i ), where each fi is the graph of a function and |fi| = ℵ1. Then,
assuming MA(ℵ1), a standard forcing shows that for each i, there are Cantor sets
Pi,n for n ∈ ω with each Pi,n the graph of a function and fi ⊆

⋃
n Pi,n. Now each

Pi,n extends to a function gi,n ∈ C(R,R), so that E2 ⊆ ⋃
i,n(gi,n ∪ g−1

i,n).

For (2), use the fact from [6] that under PFA, every A ∈ [R2]ℵ1 is a subset of
a countable union of C1 arcs. Now apply this with A = E × E, and note that
every C1 arc is contained in a finite union of (graphs of) C1 functions and inverse
functions.

(4) also follows from [6], which shows in ZFC that there is an A ∈ [R2]ℵ1

which is not a subset of a countable union of C2 arcs. So, choose E such that
A ⊆ E × E.

Likewise, (3) follows from [10], which shows that it is consistent with MA(ℵ1)
to have an A ∈ [R2]ℵ1 which is a weakly Luzin set; and such a set is not a subset

of a countable union of C1 arcs. K
Next, to prove Theorem 1.2, we first state an abstract version of the argument

involved:

Lemma 2.1 Suppose that T is an uncountable set with functions fi on T for
i ∈ ω such that for all countable Q ⊂ T , there is an x ∈ T such that Q ⊆ {fi(x) :
i ∈ ω}. Then there is an E ⊆ T of size ℵ1 such that E × E ⊆ Δ ∪⋃

i(fi ∪ f−1
i ),

where Δ is the identity function.

Proof. Note, by considering supersets of Q, that there must be uncountably
many such x. Now, let E = {eα : α < ω1} where eα is chosen recursively so that

eα /∈ {eξ : ξ < α} ⊆ {fi(eα) : i ∈ ω}. K
To illustrate the idea of our argument, we first produce an E ∈ [R]ℵ1 which is

0–small, in which case T can be any Cantor set.

Lemma 2.2 There are fi ∈ C(2ω, 2ω) for i < ω such that for all countable non-
empty Q ⊆ 2ω, there is an x ∈ 2ω such that Q = {fi(x) : i < ω}.

Proof. Let ϕ map ω × ω 1-1 into ω, and let (fi(x))(j) = x(ϕ(i, j)). Now, let
Q = {yi : i ∈ ω}. Since ϕ is 1-1, we may choose x ∈ 2ω such that x(ϕ(i, j)) = yi(j)

for all i, j; then fi(x) = yi. K
So, if T ⊆ R is a Cantor set, then T ∼= 2ω, and the existence of an E ∈ [T ]ℵ1

which is 0–small follows from Lemmas 2.1 and 2.2, and the observation that every
function in C(T, T ) extends to a function in C(R,R).
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Now, if we want our functions to be smooth, as required by Theorem 1.2, we
must be a bit more careful. The fi will be defined on the standard middle-third
Cantor set H , but they will only satisfy the hypothesis of Lemma 2.1 on a thin
subset T ⊂ H .

To simplify notation, H will be a subset of [0, 3] rather than [0, 1]. For
x ∈ [0, 3], x ∈ H iff x has only 0s and 2s in its ternary expansion, so that
x =

∑
n∈ω x(n)3−n, where each x(n) ∈ {0, 2}, and we write x in ternary as

x(0).x(1)x(2)x(3)x(4) · · · . If x, y ∈ H with x 
= y, let δ(x, y) be the least n such
that x(n) 
= y(n), and note that 3−n ≤ |x− y| ≤ 3−n+1.

Fix any Γ : ω → ω such that Γ(0) = 0, Γ is strictly increasing, and Γ(k+1) ≥
(Γ(k))2 for each k. The minimum such Γ is the sequence 0, 1, 2, 4, 16, 256, . . ., but
any other such Γ will do.

We view x in H as coding an ω–sequence of blocks, where the kth block is a
sequence of length Γ(k+1)−Γ(k). Note that Γ(k+2)−Γ(k+1) ≥ Γ(k+1)−Γ(k)
for each k, so the blocks get longer as k ↗.

More formally, for x ∈ H and k ≥ 0, we define Bx
k : ω → {0, 2} so that

Bx
k (j) = x(Γ(k)+j) when j < Γ(k+1)−Γ(k) andBx

k (j) = 0 for j ≥ Γ(k+1)−Γ(k).
Note that x is determined by 〈Bx

k : k ∈ ω〉. Let Bx
k (j) = 0 when k < 0.

Now, we wish each x ∈ H to encode a sequence of ω elements of H , 〈fi(x) :
i ∈ ω〉. We do this using a bijection ϕ from ω × ω onto ω. We assume that
max(i, j) < max(i′, j′) → ϕ(i, j) < ϕ(i′, j′) for all i, j, i′, j′, which implies that
max(i, j)2 ≤ ϕ(i, j) < (max(i, j) + 1)2.

In the “standard” encoding, as in the proof of Lemma 2.2, an x ∈ {0, 2}ω
encodes ω elements of {0, 2}ω, where the ith element is j �→ x(ϕ(i, j)). But here,
for x ∈ K, we apply this separately to each of the ω blocks of x, and we shift
right two places to ensure that the functions are smooth. Define fi : H → H so
that for x ∈ H , fi(x) is the z ∈ H such that Bz

k(j) = Bx
k−2(ϕ(i, j)) for all j; so

Bz
k(j) = 0 when k < 2. There is such a z because

j ≥ Γ(k + 1)− Γ(k) ⇒ ϕ(i, j) ≥ j ≥ Γ(k − 1)− Γ(k − 2) ⇒ Bz
k(j) = 0 .

Let S = {0, 2}<ω. For i ∈ ω and s ∈ S, define f s
i : H → H so that for x ∈ H ,

f s
i (x) is the z ∈ H such that z(n) is s(n) for n < lh(s) and fi(x)(n) for n ≥ lh(s).

Note that most elements of H are not in
⋃{f s

i (H) : i ∈ ω & s ∈ S}, but the
T of Lemma 2.1 will be a proper subset of H .

First, we verify that we get C∞ functions. Following [6], call f : H → H flat
iff for all q ∈ ω, there is a bound Mq such that for all u, t ∈ H , |f(u)− f(t)| ≤
Mq|u − t|q. By Lemma 6.4 of [6], this implies that f can be extended to a C∞

function defined on all of R, all of whose derivatives vanish on H .

Lemma 2.3 Each f s
i is flat.
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Proof. Fix x, y in H with x 
= y. Let n = δ(x, y). Fix k ∈ ω so that Γ(k) ≤
n < Γ(k+1). Assume that f s

i (x) 
= f s
i (y). Then Γ(k+2) ≤ δ(f s

i (x), f s
i (y)). Now

|x− y| ≥ 3−n ≥ 3−Γ(k+1), and |f s
i (x)− f s

i (y)| ≤ 3−Γ(k+2)+1, so

|f s
i (x)− f s

i (y)|/|x− y|q ≤ 3−Γ(k+2)+1+qΓ(k+1) ≤ 3−(Γ(k+1))2+1+qΓ(k+1) ,

which is bounded, and in fact goes to 0 as k ↗∞. K
Now, we define T ⊂ H : For x ∈ H and k ∈ ω, let �xk be the least � ∈ ω such

that ∀j ≥ � [Bx
k(j) = 0]. So, �xk ≤ Γ(k + 1)− Γ(k).

Call ψ : ω → ω tiny iff limk→∞(ψ(k)n)/k = 0 for all n ∈ ω. Note that tininess
is preserved by powers and shifts. That is, if ψ is tiny, then so is k �→ ψ(k)r and
k �→ r + ψ(k + r) for each r > 0.

Proof of Theorem 1.2. Let T be the set of x ∈ H such that k �→ �xk is tiny.

Then T is an uncountable Borel set, and we are done by Lemma 2.4: K

Lemma 2.4 If yi ∈ T for i ∈ ω, then there is an x ∈ T and si ∈ S for i ∈ ω
such that f si

i (x) = yi for all i.

Proof. Fix any ψ : ω → ω such that ψ(k) ≤ Γ(k + 1) − Γ(k) for all k. Then
we can define x ∈ H so that Bx

k (ϕ(i, j)) = Byi

k+2(j) whenever ϕ(i, j) < ψ(k); let
Bk

x(m) = 0 for m ≥ ψ(k). Then x ∈ T provided that ψ is tiny.
For each i, the function k �→ (i + �yi

k+2)
2 is tiny. Now, fix a tiny ψ such that

ψ(k) ≤ Γ(k + 1)− Γ(k) for all k ∈ ω and ψ ≥∗ (k �→ (i+ �yi

k+2)
2) for each i; this

is possible by a standard diagonal argument.
Now fix i. Then fix r ∈ ω such that ψ(k) ≥ (i + �yi

k+2)
2 for all k ≥ r. Let

si = yi�Γ(r + 2). Let z = f si
i (x). We shall show that z = yi. So, fix n ∈ ω,

and we show that z(n) = yi(n). This is obvious if n < Γ(r + 2), so assume that
n ≥ Γ(r+ 2). Then fix k ≥ r+ 2 and j < Γ(k+ 1)−Γ(k) with n = Γ(k) + j. We
must show that Bz

k(j) = Byi

k (j).
By definition of f si

i , Bz
k(j) = Bx

k−2(ϕ(i, j)), whereas we only know that
Byi

k (j) = Bx
k−2(ϕ(i, j)) when ϕ(i, j) < ψ(k−2). So, assume that ϕ(i, j) ≥ ψ(k−2);

we show that Bz
k(j) = 0 and Byi

k (j) = 0.
Now Byi

k (j) = 0 because otherwise j < �yi

k , and then ϕ(i, j) ≤ (i + j)2 <
(i+ �yi

k )2 ≤ ψ(k − 2), a contradiction.
Also, Bz

k(j) = Bx
k−2(ϕ(i, j)) = 0 by the definition of x, since ϕ(i, j) ≥ ψ(k−2).

K
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3 Non-Isomorphisms

Here we prove Theorem 1.5. First,

Lemma 3.1 There are Cantor sets H,K ⊂ R such that

∀ε > 0 ∃δ > 0 ∀x0, x1 ∈ H ∀y0, y1 ∈ K[
0 < |x1 − x0| < δ ∧ 0 < |y1 − y0| < δ −→

(y1 − y0)/(x1 − x0) ∈ (−ε, ε) ∪ (1/ε,∞) ∪ (−∞,−1/ε)
]
.

Proof. We obtain H,K by the usual trees of closed intervals:

1. H =
⋂

n∈ω

⋃{Iσ : σ ∈ n2} and K =
⋂

n∈ω

⋃{Jτ : τ ∈ n2}.
2. Iσ = [aσ, bσ] and Jτ = [cτ , dτ ].

3. aσ = aσ�0 < bσ�0 < aσ�1 < bσ�1 = bσ.

4. cτ = cτ�0 < dτ�0 < cτ�1 < dτ�1 = dτ

5. Whenever lh(σ) = lh(τ) = n: bσ − aσ = pn and bτ − aτ = qn.

Informally, assume that lh(σ) = lh(τ) = n. Then Iσ×Jτ is a box of dimensions
pn × qn. It will be very long and skinny (pn � qn). Inside this box will be four
little boxes, of dimensions pn+1 × qn+1, situated at the corners of the pn × qn
box. These little ones are much smaller; that is, pn � qn � pn+1 � qn+1. Now
suppose that the two points (x0, y0) and (x1, y1) both lie in Iσ × Jτ , but lie in
different smaller boxes Iσ�μ × Jτ�ν . So, there are

(
4
2

)
= 6 possibilities. For two

of them, between Iσ�μ×Jτ�0 and Iσ�μ×Jτ�1 (μ ∈ {0, 1}), the slope |Δy/Δx| is
very large. For the other four, between Iσ�0×Jτ�ν and Iσ�1×Jτ�ν (ν ∈ {0, 1}),
or between Iσ�0×Jτ�0 and Iσ�1×Jτ�1 or between Iσ�0×Jτ�1 and Iσ�1×Jτ�0,
|Δy/Δx| is very small.

More formally, assume that p0 > q0 > p1 > q1 > · · · and qn/pn → 0 and
pn+1/qn → 0 as n→∞. Fix (x0, y0) and (x1, y1) in H ×K, and then fix n such
that for some σ, τ ∈ n2, (x0, y0), (x1, y1) ∈ Iσ × Jτ , but (x0, y0), (x1, y1) are in
two different smaller boxes Iσ�μ × Jτ�ν . Note that this n → ∞ as δ → 0. In
the two large slope cases, |Δy/Δx| ≥ (qn − 2qn+1)/pn+1 → ∞ as n → ∞, since
qn/pn+1 → ∞ and qn+1/pn+1 → 0. In the four small slope cases, |Δy/Δx| ≤
qn/(pn − 2pn+1)→ 0, since pn/qn →∞ and pn+1/qn → 0. K

Proof of Theorem 1.5. Fix H,K as in Lemma 3.1, and then fix H̃ ∈ [H ]ℵ1

and K̃ ∈ [K]ℵ1 . Let D =
⋃{H̃ + s : s ∈ Q} and E =

⋃{K̃ + t : t ∈ Q}.
Now, fix f,D∗, E∗, p, q, a, b as in Theorem 1.5. Then the function f ∗ := f ∩(

(D∗ ∩ (p, q))× (E∗ ∩ (a, b))
)

is uncountable, and is an order-preserving bijection
from D∗ ∩ (p, q) onto E∗ ∩ (a, b).
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Now fix s, t ∈ Q so that f ∗∩ (H̃+ s)× (K̃+ t) is uncountable, so in particular
it contains a convergent sequence. So, we have (xn, yn) ∈ f ∗ for n ≤ ω, with
xn → xω and yn → yω as n↗ ω, and xn ∈ H̃ + s and yn ∈ K̃ + t for all n ≤ ω.
We may assume that all the xn are distinct and that all the yn are distinct. Since
f ∗ is order-preserving and the property of H,K in Lemma 3.1 is preserved by
translation, ∀ε > 0 ∃n ∈ ω [(yω − yn)/(xω − xn) ∈ (0, ε)∪ (1/ε,∞)]. Passing to a
subsequence, we may assume that either ∀n ∈ ω [(yω − yn)/(xω − xn) ∈ (2n,∞)]
or ∀n ∈ ω [(yω − yn)/(xω − xn) ∈ (0, 2−n)]. In the first case, f ′(xω) doesn’t exist
and f is not Lipschitz on (p, q). In the second case, (f−1)′(yω) doesn’t exist and
f−1 is not Lipschitz on (a, b).

For (3), repeat the argument, now letting f ∗ be the set of all (d, f(d)) such

that p < d < q and f ′(d) exists and f ′(d) 
= 0. K

4 Everywhere Differentiable Functions

We prove here some lemmas to be used in the proof of Theorem 1.6, where we
shall construct the isomorphism f along with its derivative g.

Definition 4.1 For g : R→ R, let ‖g‖ = sup{|g(x)| : x ∈ R} ∈ [0,∞].

Definition 4.2 For bounded measurable ψ : R→ R and a 
= b:

AVb
aψ =

1

b− a
∫ b

a

ψ(x) dx .

Definition 4.3 D is the set of all measurable g : R→ R such that ‖g‖ <∞ and
g(x) = limη→0 AVx+η

x g dt for all x.

By this last condition, if f(x) =
∫ x

0
g(t) dt, then f ′(x) = g(x) for all x.

Note that D is a Banach space with the sup norm ‖ · ‖. Also, D contains all
bounded continuous functions, and every function in D is of Baire class 1; that
is, a pointwise limit of continuous functions. However, many Baire 1 functions,
such as χ{0}, fail to be in D. A function in D can be everywhere discontinuous;
this has been known since the 1890s; see pp. 412–421 of Hobson [7] for references.
Katznelson and Stromberg [8] describe a method for constructing such functions
which we can embed into our forcing construction. Here we summarize their
method and make some minor additions to it.

Definition 4.4 Fix C > 1. ψ : R → R has the C–average property iff ψ is
bounded and continuous, and ψ(x) ≥ 0 for all x, and AVb

aψ ≤ C min(ψ(a), ψ(b))
whenever a 
= b. Let APC be the set of all functions with the C–average property.
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So, the average value of ψ on an interval is bounded by C times the value
at either endpoint. Note that either ψ(x) > 0 for all x or ψ = 0 for all x.
Also, APC is closed under finite sums and uniform limits, and if ψ ∈ APC then
(x �→ αψ(βx+ γ)) ∈ APC for all α, β, γ ∈ R with α ≥ 0. APC clearly contains
all non-negative constant functions, but also, by [8], the function (1 + |x|)−1/2

has the 4–average property; see also Lemma 4.7 below. Functions in APC can be
used to build functions in D by:

Lemma 4.5 Fix C > 1. Assume that all ψj ∈ APC. Let g(x) =
∑

j∈ω ψj(x),
and assume that g(x) <∞ for all x and ‖g‖ <∞. Then g ∈ D.

Proof. Fix x ∈ R and ε > 0. It is sufficient to produce a δ > 0 such that:

∀η ∈ (−δ, δ)\{0} : g(x)− 2ε ≤ AVx+η
x g ≤ g(x) + (C + 1)ε . (∗)

Let gm(x) =
∑

j<m ψj(x). First fix m such that gm(x) ≥ g(x)− ε. Then fix δ > 0
such that |gm(x)−gm(x+η)| ≤ ε for all η ∈ (−δ, δ)\{0}. Then, fix such an η, and
we verify (∗). For the first ≤, use g(x) − 2ε ≤ gm(x) − ε ≤ AVx+η

x gm ≤ AVx+η
x g.

For the second ≤, note that for each n ≥ m, (gn − gm) ∈ APC , and hence
AVx+η

x (gn−gm) ≤ C(gn(x)−gm(x)) ≤ Cε. Letting n↗∞, we get AVx+η
x (g−gm) ≤

Cε, so that AVx+η
x g ≤ AVx+η

x gm + Cε ≤ gm(x) + (C + 1)ε ≤ g(x) + (C + 1)ε. K
To verify that the function (1 + |x|)−1/2 has the 4–average property:

Lemma 4.6 Suppose that ψ : R→ [0,∞) is a bounded continuous function such
that ψ(x) = ψ(−x) for all x, ψ is decreasing for x > 0, and AVb

0ψ ≤ Cψ(b) for
all b > 0. Then ψ ∈ AP2C.

Proof. We must show that AVb
aψ ≤ 2C min(ψ(a), ψ(b)) whenever a 
= b. By

symmetry, there are only two cases:
Case I: a < 0 < b, where 0 < â := −a ≤ b (so ψ(a) ≥ ψ(b)):

AVb
aψ =

1

b+ â

[∫ b

0

ψ +

∫ â

0

ψ

]
≤ 1

b
· 2

∫ b

0

ψ ≤ 2Cψ(b) .

Case II: 0 ≤ a < b: Then, since ψ is decreasing, AVb
aψ ≤ AVb

0ψ ≤ Cψ(b). K
Lemma 4.7 If ψ(x) = (1 + |x|)−1/2 then ψ ∈ AP4.

Proof. For b > 0,

1

ψ(b)
AVb

0ψ =

√
1 + b

b

[
2
√

1 + b− 2
]

=
2

b

[
b+ 1−√1 + b

]
< 2 ,

so apply Lemma 4.6. K
Then, by taking translates and finite sums:
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Corollary 4.8 If ψ(x) =
∑

	<L γ	(1+ r	|x− δ	|)−1/2, where L ∈ ω, all γ	, r	, δ	 ∈
R, and all γ	, r	 ≥ 0, then ψ ∈ AP4.

5 Isomorphisms

This entire section is devoted to the proof of Theorem 1.6. We plan to construct
f along with g = f ′, which will be in D; so f(x) =

∫ x

0
g(t) dt. We shall construct

g as a limit of an ω–sequence, using the following modification of Lemma 4.5:

Lemma 5.1 Assume that we have gn, ψn, θn for n ∈ ω such that:

1. g0 ∈ C(R, [0,∞) ) and ‖g0‖ <∞.

2. θn ∈ C(R,R), and
∑

n ‖θn‖ <∞.

3. Each ψn ∈ AP4.

4. gn+1 = gn − ψn + θn and gn+1(x) ≥ 0 for all x.

Then 〈gn : n ∈ ω〉 converges pointwise to some g : R→ [0,∞), and g ∈ D.

Proof. Since all ψi ≥ 0 and all gn ≥ 0, all sums hn :=
∑

i<n ψi, and hence
also h :=

∑
i<ω ψi, are bounded by ‖g0‖ +

∑
i ‖θi‖. It follows that the sequence

〈gn : n ∈ ω〉 converges pointwise, and h ∈ D by Lemma 4.5. Then g ∈ D because

g = g0 +
∑

n θn−h and g0 +
∑

n θn ∈ D (since it is bounded and continuous). K
We plan to build the ψn and θn by forcing, and the forcing conditions will

guarantee that each gn(x) ≥ 0 for all x. Besides f(x) :=
∫ x

0
g(t) dt, we also have

fn(x) :=
∫ x

0
gn(t) dt, and the fn will converge pointwise to f . Since f(0) must be

0, we shall assume WLOG that 0 ∈ D∩E. The proof applies the “collapsing the
continuum” trick; so we assume CH, and we describe a ccc poset which forces the
ψn and θn.

To construct ccc posets, we use the standard setup with elementary submodels:

Definition 5.2 Fix κ, a suitably large regular cardinal. Let 〈Mξ : 0 < ξ < ω1〉 be
a continuous chain of countable elementary submodels of H(κ), with D,E ∈ M1

and each Mξ ∈Mξ+1. Let M0 = ∅. For x ∈ ⋃
ξ Mξ, let ht(x), the height of x, be

the ξ such that x ∈Mξ+1\Mξ.

By setting M0 = ∅, we ensure that under CH, ht(x) is defined whenever
x ∈ R or x is a Borel subset of R. Observe that {d ∈ D : ht(d) = ξ} and
{e ∈ E : ht(e) = ξ} are both countable and dense for each ξ < ω1.

We now state the basic combinatorial lemma behind the proof of ccc.
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Lemma 5.3 Assume CH. Say we have 2n–tuples

pα =
(
(dα

0 , e
α
0 ), . . . , (dα

n−1, e
α
n−1)

) ∈ R2n

for α < ω1. Fix ϕ ∈ C((0,∞), (0,∞)). Assume that:

a. dα
i 
= dβ

i and eα
i 
= eβ

i for all α, β, i with α 
= β.

b. ht(dα
i ) > ht(eα

i ) for all α, i.

c. ht(dα
i ) 
= ht(dα

j ) for all α, i, j with i 
= j.

Then there exist α 
= β such that pα, qβ are compatible (pα 
 ↓ qβ) in the sense that
for all i < n, the slope (eβ

i − eα
i )/(dβ

i − dα
i ) > 0 and also |eβ

i − eα
i | < ϕ(|dβ

i − dα
i |).

Here, pα 
 ↓ qβ asserts that each two-element partial function {(dα
i , e

α
i ), (dβ

i , e
β
i )}

is order-preserving, and also has growth rate bounded by a “small” function ϕ.
We shall use the usual symbol p 
⊥ q to denote compatibility in a forcing poset.

This lemma does not mention forcing explicitly, but the p 
 ↓ q used here will be
part of a proof of ccc for a poset later (Lemma 5.11).

Proof. Induct on n. The case n = 0 is trivial, so assume the result for n
and we prove it for n+ 1, so now pα = ((dα

0 , e
α
0 ), . . . , (dα

n, e
α
n)) ∈ R2n+2. Applying

(b)(c), WLOG, each sequence is arranged so that ht(pα) = ht(dα
n), and hence

ht(pα) > ht(dα
i ) for all i < n and ht(pα) > ht(eα

i ) for all i ≤ n. Also, by (a),
WLOG, α < β → ht(pα) < ht(pβ), which implies that ht(pα) ≥ α.

Let F = cl{pα : α < ω1} ⊆ R2n+2. For each α and each x ∈ R, obtain qα
x ∈

R2n+2 by replacing the dα
n by x in pα. Let F α = {x ∈ R : qα

x ∈ F}. Fix ζ such that
F ∈Mζ . For α ≥ ζ , F α is uncountable because dα

n ∈ F α and F α ∈Mht(pα) while
dα

n /∈Mht(pα). So, choose any uα, vα ∈ F α with uα < vα. Then, get an uncountable
S ⊆ ω1\ζ , along with rational open intervals U, V such that supU < inf V and
uα ∈ U and vα ∈ V for all α ∈ S. Let Ξ = inf{ϕ(y − x) : y ∈ V & x ∈ U}.
Thinning S, we assume also that for α, β ∈ S, |eα

n − eβ
n| < Ξ.

Let ∗pα = pα�(2n) (delete the last pair). Applying induction, fix α, β ∈ S such
that ∗pα 
 ↓ ∗pβ and eα

n < eβ
n. Now, qα

uα , q
β
vβ ∈ F , so we may choose pδ, pε sufficiently

close to qα
uα , q

β
vβ ∈ F , respectively, such that ∗pδ 
 ↓ ∗pε and also so that dδ

n ∈ U and
dε

n ∈ V , and also so that 0 < eε
n− eδ

n < Ξ. Then (eε
n− eδ

n)/(dε
n− dδ

n) > 0 and also

|eε
n − eδ

n| < ϕ(|dε
n − dδ

n|), so pδ 
 ↓ pε. K
Our forcing conditions will contain, among other things, a finite σ ⊆ D × E

which is a partial isomorphism; this σ will be a sub-function of the f of Theorem
1.6. We let g0(x) = x2/(x2 +1), so that f0(x) = x−arctan(x). The forcing condi-
tions will determine successively ψ0, θ0, ψ1, θ1, . . ., and hence also g1, f1, g2, f2, . . ..
We shall demand that all ψn, θn ∈ M1 (and hence also all gn, fn ∈ M1), so that
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there are only countably many possibilities for them; this will facilitate the proof
that the poset is ccc. Then, limn fn = f ⊃ σ; the fn will not actually extend σ;
rather, they will approximate σ in the sense of the following definition:

Definition 5.4 (τ, g, f, ι) is correctable iff:

P̆1. (0, 0) ∈ τ and τ ∈ [R× R]<ω.

P̆2. τ is an order-preserving bijection.

P̆7. g ∈ C(R, [0,∞)) and g−1{0} = {0}.
P̆8. f(x) =

∫ x

0
g(t) dt.

P̆13. ι > 0 and whenever (d0, e0), (d1, e1) ∈ τ and d0 < d1:

0 <
e1 − e0
d1 − d0

− f(d1)− f(d0)

d1 − d0

< ι .

The labels on these items correspond to the labels in Definition 5.6 (of P). In
P, the f, g will be replaced by suitable fn, gn.

Think of ι as being “very small”. So, our hypotheses (P̆2)(P̆3)(P̆7)(P̆13) imply
that f and τ are strictly increasing, and between d0, d1 ∈ dom(τ), the slope of f
is very slightly less than the slope of τ .

We remark that it is sufficient to assume that (P̆13) holds between adjacent
elements of dom(τ); that implies the full (P̆13), since if d0 < d1 < d2 we have{

0 <
(
τ(d1)− τ(d0)

)− (
f(d1)− f(d0)

)
< ι(d1 − d0) &

0 <
(
τ(d2)− τ(d1)

)− (
f(d2)− f(d1)

)
< ι(d2 − d1)

}
=⇒

0 <
(
τ(d2)− τ(d0)

)− (
f(d2)− f(d0)

)
< ι(d2 − d0) .

Since f(0) = τ(0) = 0, we can set d0 = 0 or d1 = 0 in (P̆13) to obtain, for
(d, e) ∈ τ :

P̆12. d, e > 0 → 0 < (e− f(d)) < ιd ; d, e < 0 → 0 > (e− f(d)) > ιd .

That is, if (d, e) ∈ τ , then f(d) is a slight under-estimate of e when d > 0 and a
slight over-estimate of e when d < 0. The next lemma says that this “error” can
be corrected by adding a small positive function θ to g:

Lemma 5.5 Assume that (τ, g, f, ι) is correctable and J ⊂ R is finite. Then for
some θ : R→ R:

a. θ(x) ≥ 0 for all x, and ‖θ‖ < ι, and θ(x)→ 0 as x→ ±∞.

b. θ is continuous, and θ−1{0} = J .

c. If g∗ = g + θ and f ∗(x) =
∫ x

0
g∗(t) dt, then f ∗(d) = e for each (d, e) ∈ τ .
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Proof. Since τ(0) = f(0) = 0, item (c) will hold if we have, for adjacent
d0, d1 ∈ dom(τ) with d0 < d1:∫ d1

d0

θ(t) dt = (τ(d1)− τ(d0))− (f(d1)− f(d0)) ,

and this quantity is assumed to lie in (0, ι(d1 − d0)). It is now easy to construct

a C∞ function θ which satisfies this, along with (a)(b). K

Definition 5.6 P is the set of all tuples p = (σp, Np, gp
n+1, f

p
n+1, ψ

p
n, θ

p
n)n<Np,

satisfying the following conditions. We drop the superscript p when it is clear
from context. Let g0(x) = x2/(x2 + 1) and f0(x) = x− arctan(x).

P1. σp ∈ [D ×E]<ω and (0, 0) ∈ σp.

P2. σp is an order-preserving bijection.

P3. For (d, e) ∈ σp and (d, e) 
= (0, 0): ht(e) < ht(d) < ht(e) + ω.

P4. If (d0, e0), (d1, e1) ∈ σp and d0 
= d1 then ht(d0) 
= ht(d1).

P5. Np ∈ ω.

P6. ht(gn) = ht(fn) = ht(ψn) = ht(θn) = 0.

P7. gn ∈ C(R, [0, 2− 2−n)) and g−1
n {0} = {0} and limx→±∞ gn(x) = 1.

P8. fn(x) =
∫ x

0
gn(t) dt.

P9. gn+1 = gn − ψn + θn when n < Np.

P10. ψn ∈ AP4.

P11. θn ∈ C(R) and ‖θn‖ ≤ 2−n−1.

P12. For (d, e) ∈ σ: d, e > 0 → 0 < (e− fNp(d)) < 2−Np−2d and
d, e < 0 → 0 > (e− fNp(d)) > 2−Np−2d.

P13. Whenever (d0, e0), (d1, e1) ∈ σ and d0 < d1:

0 <
e1 − e0
d1 − d0

− fNp(d1)− fNp(d0)

d1 − d0

< 2−Np−2 .

Define q ≤ p iff

Q1. σq ⊇ σp and N q ≥ Np.

Q2. (gp
n+1, f

p
n+1, ψ

p
n, θ

p
n) = (gq

n+1, f
q
n+1, ψ

q
n, θ

q
n) for all n < Np.

Q3. Whenever (0, 0) 
= (d, e) ∈ σp and Np < n ≤ N q: gq
n(d) ∈ (0, 2−n).

Then � = ({(0, 0)}, 0); that is, when Np = 0, the rest of the tuple is empty.
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We shall now prove a sequence of lemmas leading up to Theorem 1.6, at the
same time explaining some of the clauses in Definition 5.6.

The restriction on heights in (P3)(P4) will be important in the proof of ccc,
and are analogous to the restrictions in Lemma 5.3.

If G is a generic filter on P, then in V[G] we can define σ̂ =
⋃{σp : p ∈ G}.

Then σ̂ is an order-preserving function from a subset of D to a subset of E, and
the f of Theorem 1.6 will extend σ̂ (Lemma 5.10 below).

We shall apply Lemma 5.1 in V[G] to obtain f, g, and (Q3) will let us prove
that g(d) = 0 for all d ∈ dom(σ̂). Note that (Q3) is vacuous when Np = N q.

By (P1)(P2)(P7)(P8)(P13), each (σ, gN , fN , 2
−N−2) is correctable. Then, as

noted above, (P12) follows, but we state it separately for emphasis, since it is used
to prove that f extends σ̂. Also, the gn(x) < 2− 2−n asserted by (P7) follows by
induction from the other assumptions; specifically, g0(x) < 1, gn+1 = gn−ψn +θn,
θn(x) ≤ 2−n−1, and ψn(x) ≥ 0.

Definition 5.7 μ(p) = min
({1} ∪ {|d0 − d1| : d0, d1 ∈ dom(σp) & d0 
= d1}

)
.

Call a map ζ from P into the rationals a P–function iff ζ(p) ∈ (0, μ(p)/2) for
all p. For such a ζ, say p, q ∈ P are ζ–close iff Np = N q and |σp| = |σq| and
ζ(p) = ζ(q) and all elements of dom(σp) ∪ dom(σq) have different heights and

(gp
n+1, f

p
n+1, ψ

p
n, θ

p
n)n<Np = (gq

n+1, f
q
n+1, ψ

q
n, θ

q
n)n<Nq ,

and, setting ζ = ζ(p) = ζ(q): For all d ∈ dom(σp) there is a d′ ∈ dom(σq) such
that |d− d′| < ζ; furthermore, if (d, e) ∈ σp and (d′, e′) ∈ σq, then d = d′ implies
e = e′, and d 
= d′ implies 0 < (e− e′)/(d− d′) < ζ.

Note that p is always ζ–close to itself. Inserting the “{1}∪” in the definition
of μ(p) makes it well-defined in the case that σp = {(0, 0)}, but also, it will be
useful to think of ζ as being “small”, so that, e.g., ζ2 < ζ <

√
ζ.

The requirement that ζ(p) < μ(p)/2 implies that the d′ above is uniquely
determined from d. The actual ζ(p) used in Lemma 5.8 will be much smaller
than μ(p)/2. The requirement that all the slopes (e − e′)/(d − d′) be small but
positive will be fulfilled in the proof of ccc using Lemma 5.3.

If p, q are ζ–close, then they are “close” to being compatible, with the tuple
(σp ∪ σq, Np, gp

n+1, f
p
n+1, ψ

p
n, θ

p
n)n<Np being a common extension, except that this

may fail (P2)(P12)(P13).

Lemma 5.8 There is a P–function ζ such that for all p, q ∈ P: If p, q are ζ–close
then p 
⊥ q and there is an s ∈ P such that s ≤ p and s ≤ q and N s = Np + 1.

We shall prove this later, after listing some of its consequences. First, when
p = q, we get:
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Corollary 5.9 For each p ∈ P, there is an s ≤ p with N s = Np + 1. Hence,
{q : N q > i} is dense in P for each i.

So, in V[G], we have gn, fn, ψn, θn for each n ∈ ω; e.g., gn = gp
n for some

(any) p ∈ G such that Np ≥ n. Then Lemma 5.1 applies: (1) is obvious, (2)
follows from (P11), (3) follows from (P10), and (4) follows from (P7)(P9), So, by
Lemma 5.1, 〈gn : n ∈ ω〉 converges pointwise to some g : R→ [0,∞), and g ∈ D;
also, ‖g‖ ≤ 2 by (P7). Then, since the gn are uniformly bounded, 〈fn : n ∈ ω〉
converges pointwise to f , where f(x) =

∫ x

0
g(t) dt. Note that we are applying

Lemma 5.1 in V[G] to the natural extensions of gn, fn, ψn, θn (which were, in V,
functions from RV to RV).

Regarding (Q3): By not requiring gn(d) ≈ 0 for all n ≤ N , we make it
easier to add new pairs (d, e) into extensions of p (see the proof of Lemma 5.13).
Likewise, we only require (P12)(P13) for n = Np, so that when proving Lemma
5.13, we do not need to consider (P12)(P13) for n < Np. But still,

Lemma 5.10 For (d, e) ∈ σ̂: g(d) = 0 and f(d) = e.

Proof. Since 〈gn : n ∈ ω〉 and 〈fn : n ∈ ω〉 converge pointwise, it is sufficient
to show that some subsequence of 〈gn(d) : n ∈ ω〉 converges to 0 and some
subsequence of 〈fn(d) : n ∈ ω〉 converges to e. Say (d, e) ∈ p ∈ G. Then
by Corollary 5.9, S := {N q : q ∈ G ∧ (d, e) ∈ q} is infinite. Then, applying

(Q3)(P12), 〈gn(d) : n ∈ S〉 converges to 0 and 〈fn(d) : n ∈ S〉 converges to e. K
Another consequence of Lemma 5.8:

Lemma 5.11 P has the ccc.

Proof. Let A ⊆ P be uncountable; we prove that A cannot be an antichain.
Let ζ(p) be as in Lemma 5.8. We may assume that ζ(p) is the same rational ζ
for all p ∈ A. Furthermore, by a delta system argument, we may assume that
A = {pα : α < ω1} and σpα

= σα ∪ τ , where τ is the root of the delta system. We
may also assume (applying (P2)(P3)(P6)) that the σα satisfy the hypotheses of
Lemma 5.3, and that all pα, pβ satisfy everything in Definition 5.7 (of “ζ–close”)
except possibly for the requirement “d 
= d′ implies 0 < (e − e′)/(d − d′) < ζ”.
But now Lemma 5.3 (applied with ϕ(t) = ζ · t) implies that there is some pair
pα, pβ with α 
= β satisfying this requirement (since σα 
 ↓ σβ), so that pα 
⊥ pβ by

Lemma 5.8. K
By applying Lemma 5.5 with J = ∅ to P we get:

Lemma 5.12 Fix p ∈ P. Let N = Np and σ = σp. Then for some θ : R→ R:
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a. θ(x) > 0 for all x, and ‖θ‖ < 2−N−2, and θ(x)→ 0 as x→ ±∞.

b. θ is continuous.

c. If g∗ = gN + θ and f ∗(x) =
∫ x

0
g∗(t) dt, then f ∗(d) = e for each (d, e) ∈ σ.

Lemma 5.13 ran(σ̂) = E.

Proof. It is sufficient to prove that for each e ∈ E, {q : e ∈ ran(σq)} is dense. So
fix p ∈ P with e /∈ ran(σp), and we find a q ≤ p with e ∈ ran(σq); q will be exactly
like p, except that σq = σp ∪ {(d, e)}, where d ∈ Dξ := {d ∈ D : ht(d) = ξ} and
ht(e) < ξ < ht(e) + ω and ξ is different from ht(d′) for all d′ ∈ dom(σp). Then
q ≤ p is clear, but we must make sure that q ∈ P.

Let f ∗ be as in Lemma 5.12. Then f ∗ is a continuous increasing function, and,
using the limx→±∞ gN(x) = 1 from (P7), f ∗(x)→∞ as x→∞ and f ∗(x)→ −∞
as x → −∞. There is thus a unique d̂ such that f ∗(d̂) = e; and d̂ /∈ dom(σp).
Setting σq = σp ∪ {(d̂, e)} would satisfy (P2)(P12)(P13); to verify this: (P2) is
clear and (P12) follows from (P13). Also, (P13) is clear unless one of (d0, e0),
(d1, e1) is (d̂, e). Assume that (d1, e1) = (d̂, e), since the other case is similar; so
d0 < d̂ = d1. For the “< 2−N−2” in (P13), use ‖θ‖ < 2−N−2 and the fact that

f ∗ ⊃ {(d0, e0), (d̂, e)}. For the “0 <” in (P13), observe that
∫ d̂

d0
θ > 0.

For all d sufficiently close to d̂, setting σq = σp ∪{(d, e)} will also satisfy (P2)

(P12)(P13), so choose such a d in Dξ, which is possible because Dξ is dense. K
Although dom(σ̂) 
= D (by (P3)(P4)), we do have:

Lemma 5.14 In V[G], dom(σ̂) is an ℵ1–dense subset of D.

Proof. Use the facts that f is strictly increasing and continuous, ‖f ′‖ <∞ (by

P7), f ⊃ σ̂ (by Lemma 5.10), and V, V[G] have the same ℵ1 (by the ccc). K
We are now done if we prove Lemma 5.8. First, a few remarks.
As noted above, to prove that p 
⊥ q whenever p, q are ζ–close, we need to

make sure that the common extension satisfies (P2)(P12)(P13). But (P12) is a
special case of (P13), and it is easy to satisfy (P2); that is, if the function ζ is
small enough then σp ∪ σq will be order-preserving. A more serious issue is that
the natural extension (σp∪σq, N, gn+1, fn+1, ψn, θn)n<N may fail condition (P13);
that is, (σp ∪ σq, gN , fN , 2

−N−2) may not be correctable, since correctability puts
a lower bound on the slopes between adjacent elements of σ in terms of the slope
of fN . But “ζ–close” implies that the slopes between neighboring pairs (d, e) and
(d′, e′) are small (bounded above by ζ).

The common extension s will have σs = σp ∪ σq but N s = N + 1. Then ψs
N

will be a linear combinations of functions of the form (1+ r|x− d̄|)−1/2 for d̄ close
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to a d, d′ pair and suitably large r. Also, r ≈ 1/
√
ζ, so rζ  1, so that for x

near d, d′, d̄: gN(x) and ψs
N(x) will be approximately constant; and, we shall make

gN(x)−ψs
N (x) very slightly negative for these x. But r will be large enough that∫ d

0
ψ(t) dt will be negligible for each d.
Now, we need to define ψN = ψs

N and θN = θs
N , which will determine gN+1 =

gs
N+1 and fN+1 = f s

N+1. We do not know a “simple” definition of ζ which “works”,
so rather than defining ζ right away, we shall simply define ψN and θN and check
that they have the right properties, assuming that ζ is small enough. ψn and
θN will determine gN+1 = gs

N+1 and fN+1 = f s
N+1 by gN+1 = gN − ψN + θN and

fN+1(x) =
∫ x

0
gN+1(t) dt. We shall also have θN = θ†N + θ∗N because there are two

tasks for θN : to make sure that gN+1 is positive (the task of θ†N ), and to correct
fN+1 to come close to σs, so as to satisfy (P13) (the task of θ∗N ). Both θ†N and
θ∗N will be positive functions.

First, some notation: Applying the definition of “close”, let L = |σp| = |σq|
and let σp = {(dp

	 , e
p
	) : � < L} and σq = {(dq

	 , e
q
	) : � < L}, where |dp

	 − dq
	 | < ζ ,

which implies also |ep
	 − eq

	 | < ζ2.
Before defining anything, we must make sure that σs satisfies (P2); that is,

that σp ∪ σq is an order-preserving bijection. In view of the definition of “close”,
the problem is to show that whenever dp

	 < dp
j (and hence also dq

	 < dq
j), we have

both ep
	 < eq

j and eq
	 < ep

j . Since |ep
	 − eq

	 | < ζ2 and |ep
j − eq

j | < ζ2, it is sufficient
that ζ2 < |ep

j − ep
	 |/3 and ζ2 < |eq

j − eq
	 |/3; but this follows if we assume that

3(ζ(p))2 < |e− e′| whenever e, e′ ∈ ran(σp) and e 
= e′.
Next, we define ψN so that for each �, the function gN−ψN is slightly negative

near dp
	 and dq

	 . To make sure that ψN ∈ M1: Choose rational d̄	 such that
|d̄	 − dp

	 |, |d̄	 − dq
	 | < ζ . Let γ̄	 = max(gN(dp

	), gN(dq
	), gN(d̄	)). By (P7), 0 < γ̄	 <

2 − 2−N . Then choose a rational r such that 1/
√
ζ < r < 2/

√
ζ and rational γ	

so that γ̄	 < γ	 < 2− 2−N and γ	 − γ̄	 < 2−N/256, and define:

ψN(x) =
∑
	<L

(
γ	 + 2−N/16

)(
1 + r|x− d̄	|

)−1/2
.

Then ψN ∈ AP4 by Corollary 4.8. Clearly, gN(d̄	)−ψN (d̄	) < γ	−(γ	+2−N/16) <
0, but we wish to assert also that gN(x) − ψN (x) < 0 whenever |x − d̄	| < ζ ; in
particular, for x = dp

	 , d
q
	 . Note that always ζ(p) < 1; then, for |x− d̄	| < ζ :(

1 + r|x− d̄	|
)−1/2 ≥ (1 +

(
2/

√
ζ
) · ζ)−1/2 = (1 + 2

√
ζ)−1/2 > 1−

√
ζ .

Now, assume that our function ζ(p) satisfies ∀d ∈ dom(σp) ∀x [|x− d| < 2ζ(p)→
|gN(x)− gN(d)| < 2−N/256]. Then, using γ̄	 < γ	:

gN(x)− ψN (x) ≤ (
γ	 + 2−N/256

)− (
γ	 + 2−N/16

)(
1−

√
ζ
)
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when |x− d̄	| < ζ , so that

gN(x)− ψN (x) ≤ 2−N/256− 2−N/16 +
(
γ	 + 2−N/16

)√
ζ < 0 ;

This last < holds if we assume that always
√
ζ(p) < 2−N/256.

Now, we define θ†N (x) = max(0, ψN(x) − gN(x)) + εx2/(x2 + 1), where ε is a
positive rational which is small enough to make the rest of the argument work.
Let g†N(x) = gN(x) − ψN (x) + θ†N(x), which is positive everywhere except at 0.
Let f †

N (x) =
∫ x

0
g†N(t) dt. We shall eventually show that (σp ∪ σq, g†N , f

†
N , 2

−N−2)
is correctable.

(P11) requires ‖θN‖ ≤ 2−N−1. To accomplish this, we first verify that ‖θ†N‖ ≤
2−N−2, and later we shall verify that ‖θ∗N‖ ≤ 2−N−2. As long as ε ≤ 2−N−2,
θ†N (x) ≤ 2−N−2 whenever ψN (x) ≤ gN(x), which holds as x→ ±∞ since gN(x)→
1 and ψN(x)→ 0. Also, θ†N (x) ≤ ψN (x) + ε, so that if ε ≤ 2−N−3, then θ†N (x) ≤
2−N−2 whenever ψN (x) ≤ 2−N−3, and if ζ is large enough, this will hold unless
x is very close to one of the d̄	. More precisely, if |x − d̄	| ≥ c for all �, then

ψN (x) ≤ 2L
(
1 + rc

)−1/2
< 2Lr−1/2c−1/2. Then, using 1/

√
ζ < r < 2/

√
ζ, if

|x− d̄	| ≥ ζ1/4 for all � then

ψN(x) < 2Lζ1/4ζ−1/8 = 2Lζ1/8 .

Then θ†N (x) ≤ 2−N−2 for these x provided we assume that our ζ function satisfies
2|σp| · (ζ(p))1/8 ≤ 2−Np−3.

Now, fix x and assume that |x − d̄m| ≤ ζ1/4 for some m; this m will be
unique if we assume that (ζ(p))1/4 < μ(p)/4 for all p. We need to show that
θ†N (x) ≤ 2−N−2. Assume that ψN(x) > gN(x), since we have already covered the
case that ψN (x) ≤ gN(x). So,

θ†N(x) = ψN (x)− gN(x) + εx2/(x2 + 1) ≤
ε+

(
γm + 2−N/16

)(
1 + r|x− d̄m|

)−1/2
+∑

	 �=m

(
γ	 + 2−N/16

)(
1 + r|x− d̄	|

)−1/2 − gN(x) ≤

ε+
(
γm + 2−N/16

)
+ 2−N−4 − gN(x) = ε+ (γm − gN(x)) + 2−N−2/2 ;

for the last ≤, use the previous argument, but now assuming that our ζ function
satisfies 2|σp| ·(ζ(p))1/8 ≤ 2−Np−4. Assuming that ε ≤ 2−N−2/4 and γm−gN(x) ≤
2−N−2/4 we have θ†N (x) ≤ 2−N−2. Since γ̄m ∈ {gN(dp

m), gN(dq
m), gN(d̄m)} and

γ̄m < γm < γ̄m + 2−N/256, and x is within 2ζ1/4 of each of dp
m, d

q
m, d̄m, we obtain

γm−gN(x) ≤ 2−N−2/4 if we assume that ∀x∀d ∈ dom(σp) [|x−d| ≤ 2(ζ(p))1/4 →
|gN(x)− gN(d)| ≤ 2−N−2/16.
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We next show that (σp, g†N , f
†
N , 2

−N−2) and (σq, g†N , f
†
N , 2

−N−2) are correctable.
To do this, we bound the change in fN(d) caused by replacing gN by gN−ψN +θ†N ;

this change is
∫ d

0
(ψN (t) − θ†N(t)) dt. Let Δ be the diameter of dom(σp). Then,

since γ	 + 2−N/16 < 2 and r > 1/
√
ζ

∫ d

0

ψN (t) dt < 2L

∫ Δ

0

(1 + rt)−1/2 dt =
4L

r

[√
1 + rΔ− 1

]
≤

4L

r

√
rΔ ≤ 4L

√
Δ 4

√
ζ .

This can be made arbitrarily small by requiring the ζ function to be small enough.
Likewise,

∫ d

0
θ†N (t) dt can be made arbitrarily small using 0 ≤ θ†N (t) ≤ ψN (t) + ε.

So, the correctability of (σp, g†N , f
†
N , 2

−N−2) and (σq, g†N , f
†
N , 2

−N−2) follows from
the correctability of (σp, gN , fN , 2

−N−2) and (σq, gN , fN , 2
−N−2) if ζ makes f †

N

close enough to fN .
Now, to verify that (σp ∪σq, g†N , f

†
N , 2

−N−2) is correctable, we must show that

(P̆13) holds between any two elements of dom(σp ∪ σq). There are two cases not
already covered by the above:

Case I: Between dp
m and dq

	 where m 
= �: We need

0 <
ep

m − eq
	

dp
m − dq

	

− f †
N(dp

m)− f †
N (dq

	)

dp
m − dq

	

< 2−N−2 .

This is handled by making ζ small enough, since the inequality holds if we replace
dq

	 , e
q
	 by dp

	 , e
p
	 .

Case II: Between dp
	 and dq

	 , when dp
	 
= dq

	 . WLOG, dp
	 < dq

	 , and we need

0 <
eq

	 − ep
	

dq
	 − dp

	

− f †
N(dq

	)− f †
N(dp

	)

dq
	 − dp

	

< 2−N−2 .

By the definition of “close”, we have 0 < (eq
	 − ep

	)/(d
q
	 − dp

	) < ζ , and our
assumptions above about ζ already imply that ζ < 2−N−2. Thus, it is sufficient
to have f †

N(dq
	) − f †

N (dp
	) < eq

	 − ep
	 . Now we have already checked that gN(x) −

ψN (x) < 0 for x ∈ [dp
	 , d

q
	 ], so that g†N(x) = εx2/(x2 + 1) for these x. Then

f †
N (dq

	) − f †
N(dp

	) = ε
∫ dq

�

dp
�
x2/(x2 + 1) dx < ε(dq

	 − dp
	), which will be less than

eq
	 − ep

	 if we have chosen a small enough ε.

Since (σp ∪ σq, g†N , f
†
N , 2

−N−2) is correctable, Lemma 5.5 gives us a positive
function θ#

N such that ‖θ#
N‖ < 2−N−2 and such that, setting g#

N+1 = g†N + θ#
N and

integrating, we get f#
N+1 ⊃ σs := σp ∪ σq; so, instead of (P13) for s we have, for

(d0, e0), (d1, e1) ∈ σs and d0 < d1:

(e1 − e0)− (f#
N+1(d1)− f#

N+1(d0)) = 0 .
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This is not exactly what we want, and this θ#
N need not be inM1, but by modifying

our θ#
N slightly, we can get θ∗N ∈M1 so that setting gs

N+1 = g†N+θ∗N and integrating
we get f s

N+1 satisfying

0 < (e1 − e0)− (f s
N+1(d1)− f s

N+1(d0)) < 2−N−3(d1 − d0) ,

which is (P13) for the forcing condition s, so that s ∈ P.
Of course, we also need to verify that s ≤ p and s ≤ q. (Q1) and (Q2) are

trivial, but (Q3) requires gs
N+1(d) ∈ (0, 2−N−1) for d ∈ dom(σp) ∪ dom(σq)\{0}.

Now gs
N+1 = g†N +θ∗N , and we already know that g†N(d) = εd2/(d2+1) < ε, and we

already assumed that ε ≤ 2−N−2. So, when we apply Lemma 5.5, get θ#
N (d) = 0

for these d. Then, when we modify θ#
N slightly to get θ∗N , make sure that θ∗N(d) ∈

(0, 2−N−2). This, plus g†N(d) ∈ (0, 2−N−2) implies that gs
N+1(d) ∈ (0, 2−N−1).

We remark on the relationship between this proof and Baumgartner’s proof
in [3, 4], which forced an order-preserving bijection f from D onto E. Since f−1

is also an order-preserving bijection, there is a symmetry between D and E in
the forcing. Specifically, in his forcing, our (P3) is replaced by the requirement
that ht(e) 
= ht(d) and that they differ by a finite ordinal. Our (P4) is replaced
by the requirement that max(ht(d0), ht(e0)) 
= max(ht(d1), ht(e1)). The forcing
condition is just the σ alone; there is no need for an (N, g, f, ψ, θ) part.

But requiring f to be differentiable breaks the symmetry, since f ′(d) must
be 0 at many places (see Theorem 1.5), so that f−1 is not differentiable. Then,
getting the derivative to be small seems to require that ht(e) < ht(d) in (P3) so
that the proof of ccc (via Lemma 5.3) works, which leads to the domain of the
order-preserving map being not all of D.
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Topology Appl., or see arXiv:0808.2795v1 .

[11] G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36
(1890) 157-160.
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