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Abstract
We define a new principle, SEP, which is true in all Cohen exten-
sions of models of C'H, and explore the relationship between SEP and
other such principles. SEP is implied by each of CH*, the weak Freeze—
Nation property of P(w), and the (Ny,Ng)-ideal property. SEP implies
the principle C§(ws), but does not follow from C§(ws), or even C*%(ws).

1 Introduction

There are many consequences of C'H which are independent of ZFC, but are
still true in Cohen models — that is, models of the form V[G], where V = GCH
and V[G] is a forcing extension of V' obtained by adding some number (possibly
0) of Cohen reals; see [1, 2, 5, 7, 8]. Roughly, these consequences fall into two
classes. One type are elementary submodel axioms, saying that for all suitably
large regular A, there are many elementary submodels N < H(\) such that
IN| = Ny and N NP(w) “captures” in some way all of P(w); these are trivial
under C'H, where we could take N NP(w) = P(w). The other are homogeneity
axioms, saying that given a sequence of reals, (r, : @ < ws), there are wy of them
which “look alike”; again, this is trivial under CH.

In this paper, we define a new axiom, SEP, of the elementary submodel
type, and explore its connection with known axioms of both types.

A large number of applications of such axioms may be found in [2, 4, 7, 8|.

*2000 Mathematics Subject Classification: Primary 03E50, 03E35.

tAuthor supported by NSF Grant DMS-9704477 and OTKA grant 25745.
fAuthor supported by NSF Grant DMS-9704520.




2 SOME PRINCIPLES TRUE IN COHEN MODELS 2

2 Some Principles True in Cohen Models

We begin with a remark on elementary submodels. Under C'H, one can easily
find N < H(A) such that |[N| = w; and N is countably closed; that is [N]¥ C N.
Without C'H, this is clearly impossible, but one can still find such N which are
w-covering; this means that VI' € [N]*3S € NN [N]*[T C S], or N N[N]* is
cofinal in [N]*.

Lemma 2.1 {N < H(A): [N| = w; and N N[N]¥ is cofinal in [N]*} is cofinal
in [H(A\)]** for any A.

See, e.g., [2] for a proof. Various weakenings of C'H involve the existence of
such N such that B = NNP(w) “captures” P(w) in one of the following senses:

Definition 2.2 If B C P(w) then we write:

(i) B <, P(w) iff for all a € P(w), there is a countable C C BNP(a) such
that for all b € BN P(a) there is a ¢ € C withb C ¢ C a;

(it) B <,, P(w) iff for all K € [B]**, there is an L € [K|*' such that
UL e B;

(iii) B <gep P(w) iff for all a € P(w) and K € [BNP(a)|*, there is a set
b e BNP(a) such that |K NP(b)| = w;.

It is obvious that both B <, P(w) and B <,, P(w) imply B <, P(w), and
that all three hold in the case that B = P(w).
<, is relevant to axioms of the wFN (weak Freeze—Nation) type:

Definition 2.3 wEN(P(w)) asserts that for all suitably large regular \: for all
N < H()\) with w; C N, we have N NP (w) <, P(w).

Definition 2.4 P(w) has the (X, Nq)-ideal property iff for all suitably large
regular \: for every N < H(A) such that |N| = wy and N N[N]¥ is cofinal in
[N]¥, we have NN P(w) <, P(w).

Clearly, wEN(P(w)) implies that P(w) has the (X;, Rp)-ideal property. Def-
inition 2.4 is from [2]. The usual definition of wFN(P(w)) is in terms of wFN
maps from P(w) to [P(w)]=¥, but this definition was shown in [5] to be equivalent
to Definition 2.3.

In [8], a different kind of elementary submodel axiom, called C H*, was con-
sidered:



2 SOME PRINCIPLES TRUE IN COHEN MODELS 3

Definition 2.5 N, consists of those N < H()\) with |N| = w; that satisfy both
(i) NN [N]“ is cofinal in [N]* and
(ii) For every K € [N N ON]“', there is a B € [K]“* which has an N—cover B;
that us:

(a) BC BC N;

(b) [B]* N\ N is cofinal in [B]*;

(c) if S € NN B then |SNB| = w.

Definition 2.6 CH* asserts that for each large enough reqular cardinal X\, Ny
is cofinal in [H(N)]“.

The property N € N, is a weakening of N being countably closed; N cannot
really be countably closed unless C'H is true, in which case C'H* holds trivially.

The following result shows that C H* yields a property of P(w) of the WFN
type, but replacing <, by <,,.

Theorem 2.7 If N € Ny, where A\ > 2%, then N N P(w) <, P(w).

Proof. Suppose that K C NN P(w) and |K| = w;. Using N € N, (and a
bijection in N between P(w) and the ordinal ¢), we may fix B € [K]|“* such that
that B has an N—cover B. Now let

a={necw:|{be B:neb}=w} .

Then Ty = {b € B:b € a} is countable, so there is some Sy, € N N [B]* with
To C Sy. Let L = B\Sp. Since | J L = a, it will suffice to show that a € N.

To see this, first choose 7" € [L]” that satisfies |{b € T:n € b}| = w for every
n € a, and then choose S € N N [B]* such that T C S. We may assume that
SNSy=0,since Sy € N. Let

d={necw:|{beSneb} =w} .

Then d € N, and we show that a = d. a C d because T' C S. To see that d C a,
fixned Let W={beS:neb}. WeN,so by property (c) in Definition
2.5, WNB#(). Hence, WNL # () (since SNSy=0),soneJL =a. ]

Since <, is weaker than both <, and <, we arrive at the following princi-
ple SEP that is consequently implied by both the (X, Rg)-ideal property (hence
also by the wFN property) of P(w), and by CH*:



2 SOME PRINCIPLES TRUE IN COHEN MODELS 4

Definition 2.8 M, consists of those N < H(\) with |N| = w that satisfy both
(1) NN [N“ is cofinal in [N]* and
(2) NNP(w) <sep Pw).

Definition 2.9 SEP denotes the statement that for all large enough regular
cardinals A, the family My is cofinal in [H(\)]“".

Geschke [6] has shown that B <, P(w) and B <, P(w) are equivalent
when |B| = wy, but that nevertheless it is consistent to have SEP hold while
the (Xq, Xy)-ideal property fails for P(w). Note that SEP only requires that M
be cofinal, whereas the the (X, Ry)-ideal property requires that M, contain all
N with N N [N]¢ cofinal in [N]“.

In a completely different direction, we have homogeneity properties such as
C*(k) and HP (k) [1, 7]. The C*® principles are defined as follows:

Definition 2.10 Let {A(a,n) : @ < k & n < w} be a matriz of subsets of
w, T C w< and S C k. Then A[(S x w) is T-adic iff for all m € w and
all t € T with 1h(t) = m, and all distinct ag,...,am, 1 € S: Alag,tg) N---N
A(am—latm—l) 7£ @

Definition 2.11 C*(k) states: Given any matriz {A(a,n) : a < kK & n < w}
of subsets of w and any T C w<¥, either:

1. There is a stationary S C K such that Al(S X w) is T-adic, OR

2. There are m, t, and stationary Sy C k for k < m, witht € W™ NT, such
that for all By, ..., Bm-1, with each By, € Sy, we have (., A(Br, tr) = 0.

C:. (k) is C*(k) restricted to T C w™.

We remark that in (2), WLOG the Sy are disjoint, so that we get an equiv-
alent statement if we require the (§; to be distinct, as in [1, 7]. As in most
partition theorems, (1) and (2) are not necessarily mutually exclusive, in that
(1) might hold on S while (2) holds for some Sy disjoint from S.

A strengthening of the C* principles, called HP(x) and H P,,(k), is described
in [1]. C*(k) does not imply HP(k), or even HP(k) (see Theorem 3.9 below).
We do not state H P here, since all we shall need is the consequence of it stated
in (1) of the next lemma (proved in [1]). Part (2) is from [7]:
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Lemma 2.12
1. HPy(k) implies that if R is any relation on P(w) which is first-order defin-
able over H(w,), then there is no X C P(w) such that (X; R) is isomorphic
to (k;<).
2. C5(k) implies the special case of (1) where R is C*.

Cs(k) has many other interesting consequences; see [7]; for example every
first countable separable T; space of size  contains two disjoint open sets of size
& ([7], Theorem 4.14).

In [1], it was shown that wFN(P(w)) implies that C5(x) holds for every
regular cardinal k > w;. Our next result shows that, at least for kK = ws, the
same conclusion follows already from the much weaker assumption SEP. It will
be clear from the proof that for any regular x > w; we could formulate a x—
version SEP, of SEP (with SEP,, = SEP) which also follows from the wFN
property of P(w) and which implies C5(k).

Theorem 2.13 SEP implies C5(w,).

Proof. Fix A = (A(a,n) : (o, n) € wy X w), a matrix of subsets of w, and
T C w?. Assume that for every stationary S C w, the submatrix A4 [ S x w is
not T-adic.

For every set X C w,, define H(X) C X recursively by:

vyeH(X) <= veXand A| [[{7}U(yNH(X))] x w] is T-adic .

Note that then A [ (H(X) X w) will be T—adic, hence by our assumption, H(X)
is always non-stationary in wy. We may (and shall) assume that T = T~', so
that if v € X\H(X), thereisa € H(X)N~y and a t € T such that

A(B,to) N A(y,t1) =0 .

By SEP, fix an N € M, with A,T € N. Let C(ws) denote the family of
club subsets of wy. Since N N [N]¥ is cofinal in [N]¥ (Definition 2.8.1), we may
choose an w;-sequence {C¢ : £ € w1} € N NC(ws) such that & < n implies
C, C C¢, and for every C € N N C(wy) there is some & < w; with C¢ C C.

Next, for every £ € wy let S¢ = H(C¢). Then S¢ € N because C¢ € N, and
Se is non-stationary.

Definition 2.8.1 also implies that § := N Nwy is an ordinal. It is easy to see
that § belongs to every C' € N N C(w,); hence § ¢ Se for each £ € wy. Applying
6 € Ce\H(C¢), we may choose a 3* € S¢ N d and a t¢ € T such that

A(B516) MA@, 1) =0
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Now, fix a t € T and an uncountable set (Q C w; such that t¢ = ¢ for all £ € Q.
Then for every £ € @), we have

A(B, 1) Cw\A(S, 1) .

Since 3¢ < §, each A(¢,ty) € N, so by Definition 2.8.2, there is some set b € N
such that b C w\A(d,#) and R := {¢ € Q : A(B%, o) C b} is uncountable. Since
b € N, so also are the sets

D:{ﬂEwZ:A(ﬂ,tU)gb}} and E:{ﬂEWQiA(ﬂ,tl)ﬂb:(b} .

We claim that both D and E are stationary. For this, however, it suffices to
show that they meet every C' € N N C(wy). Fix such a C, and then fix £ € R
with C¢ C C. Then ¢ € CeND,s0o CND #(,and 6 € CeNE, so CNE # 0.

Finally, we obviously have A(3, to)NA(7,t;) = 0 whenever § € D and vy € FE,
and this completes the proof of Cj(wy). O

We do not know if SE'P (or even any of the stronger assumptions wEN(P(w))
or CH*) implies C*(wy) or just C§(ws), but by Theorem 3.8, C*(w2), and in fact
C* (k) for “most” regular k > w;, does not imply SEP.

3 Some Independence Results

As usual in forcing (see, e.g., [9]), a partial order P really denotes a triple,
(P, <,1), where < is a transitive reflexive relation on P and 1 is a largest element
of P. Then, [[,.,;P; denotes the product of the P;, with the natural product
order. Elements p' € [],.,P; are I-sequences, with each p; € P;. The finite
support product is given by:

Definition 3.1 If p' € [],.;P;, then the support of p, supt(p), is {1 € I :
pi #1}. Hzfe”} P; = {p € [Lic; Pi : [supt(p)] < No}.

The principle C*(k) was first stated in [7], which proved that it holds in
Cohen extensions (i.e., using some Fn(I,2)) over a model in which x is Ro-
inaccessible (that is, x is regular, and 0% < k whenever § < ). The following
result generalizes this:

Theorem 3.2 Suppose, in V: k is Ry-inaccessible and P = er"} P;, where P
is ccc and each |P;| < 2%. Then C*(k) holds in V[G] whenever G is P-generic
over V.
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We remark that each P; could be the trivial (1-element) order, so V[G] = V;
that is, as pointed out in [7], C*(x) holds whenever & is Ry-inaccessible.

In the case that all the P; are the same, this theorem is due to [1]. In fact,
in this case, [1] proves that the stronger property HP(k) holds in V[G]; this
can fail when the P; are different (see Theorem 3.9). Here, as in [1, 7], we use
a A-system argument (in V'), applying the following lemma, due to Erdds and
Rado; see [7] for a proof:

Lemma 3.3 If k is Ny-inaccessible, and K, is a countable set for each o < K,
then there is a stationary S C k such that {K, : o € S} forms a A-system.

In [1, 7], this is used to show that given a k-sequence of reals in V|G|, we

can find x of them which are disjointly supported. Then, in [1], one finds x of
these which “look alike”, proving H P(x) in V[G]. That cannot work here when
Kk < 22°° gince there are 22°° possibilities for the P;. Instead, we use the fact that
C* (k) explicitly involves empty intersections, together with a separation lemma
(Lemma 3.5), which reduces empty intersections in V[G] to empty intersections
in V. First, we need some further notation for product orders:
Definition 3.4 Let P = [[/%}P,. For J C I, let PJ = [/, P;, and let
@y : PIJ — P be the natural injection: ¢;(q) is the p € P such that p]J = ¢ and
pi=1fori ¢ J. If 7 is a P[J-name, we also use p (1) for the corresponding
P-name. If 7 is a P-name, then the support of 7, supt(7r) is the minimal J C I
such that T = (1) for some PlJ-name 7. If G C P, let G|J = ¢, (G).

If one uses Shoenfield-style names, as in [9], then supt(7) may be computed
inductively; if 7 = {(0¢,pe) : £ < a}, then supt(r) = [J{supt(o¢) U supt(pe) :
¢ < a}. By the usual iteration lemma for product forcing, if P € V and G is
P-generic over V, and J C I with J € V| then V[G] = V[G[J][G[(I\J)], where
G'1J is P[J-generic over V and G[(I\J) is P[(I\.J)-generic over V[G[J].
Lemma 3.5 Assume that P = er"} P, € V and G is P-generic over V. In
VIG], suppose that Ay C w for k < m, where m € w, and (., Ax = 0.
Suppose that there are names Ay (for k < m) such that A, = (Ag)q and the
supt(Ak), for k < m, are pairwise disjoint. Then there are Xy € P(w) NV (for
k < m) such that (,_,, Xr =0 and each A C Xj.

Proof. Fix p € G such that g I ﬂk<mAk =0 InV,let Xp ={l € w:
37 < plqd IF £ € A;]}. Then Ay C Xj. Now, suppose ¢ € ()., Xz For
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each k& < m, choose ¢ < p such that ¢ IF ¢ € A,. We may assume that
(gr)i = pi for i ¢ supt(Ay). But then, since the supt(Ay) are disjoint, the
qr are all compatible, so they have a common extension ¢. So, ¢ < p and
7IFL € Niem Ay, a contradiction. ]

Proof of Theorem 3.2. In V|G|, suppose we have a matrix, {A(a,n) :
a < k& n < w}, where each A(a,n) C w. So, actually, A is a function from kX w
into P(w). Then, we have a name A € V such that (4) = A. By a standard
use of the maximal principle, we may assume that 1 I Ak xw— P(w).

Now, in V: For each «, let K, C I be countable, so that K, is a support of
{A(a,n) : n < w} in the following sense: for each n, there is a name A, such
that supt(Aa,n) C K, and such that 1 I+ A(d, n) = A'ayn. K, may be chosen to
be countable because P is ccc. Then, apply Lemma 3.3 to fix a stationary S C k
such that {K, : « € S} is a A-system, with some root .J.

Next, we may assume that J = (). If not, then we have V- C V[G|J] C V[G],
and we may view V[G] as an extension of V[G|[J] by G[(I\J). Viewing V[G|J]
as the ground model, the A(a,n), for a € S, are named by names with support
contained in K,\J. Note that x remains Ry-inaccessible in V[G[.J] because P|.J
is ccc and |[PJ.J| < 2%,

Now (with J = (), work in V[G]: Since k is regular and £ > |P(w) N V|, we
may construct a stationary S’ C S such that for all X € P(w)NV and alln € w,
{6 € S": A(6,n) C X'} is either empty or stationary. So, to verify C*(k), suppose
T Cw<¥. If A[(S"xw) is T-adic, we are done. Otherwise, fix t € T with m = |¢|,
and distinct g, ...,q, 1 € S’ such that A(ao,to) NN Al 1,tm 1) = 0.
Then, by Lemma 3.5, choose X} € P(w) NV for k < m such that (", _,, X =0
and each A(ag,tr) C Xi. Finally, for k < m, let Sy = {0 € " : A(d,tx) C Xi};
this is non-empty, and hence stationary. Whenever [, ..., 3,,_1 < Kk, with each
By € Sk, we have N, A(Bk, tx) =0. [

To refute SEP and H P(w,) in such models, we use trees of subsets of w. As
usual, we consider 2<“* to be a binary tree, with root the empty sequence, (),
and tree order defined by s < t «» I [t = s].

Definition 3.6 An embedded tree in P(w) is a pair (B,1)) such that:

1. B is a sub-tree of the binary tree 2<“* of height w;.

2.1 : B — [w]“.

3. () =w.

4. Vs,t € Bls <t —(t) C* (s)].

5. Forall s € B: 70,571 € B and ¢(s™0) N(s™1) is finite.
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Lemma 3.7 There is an embedded tree, (B,1)), such B = 2<%,

Theorem 3.8 It is consistent to have ~SEP, together with C*(k) for each reg-
ular k > wy which is not a successor of an w-limit.

Proof. In V: Assume GCH. Let (B, ) be an embedded tree as in Lemma
3.7. Let {fo : @ € wy} C 2% list wy distinct branches of B. Let P, be the usual
o-centered forcing order which adds an infinite 2, C w such that z, C* ¥(fo [€)
for every & € wy (see [3], §§11,14). Let P = Hgfgw P,.

Let G' be P-generic over V, and work in V[G]: We have C*(k) for all appro-
priate regular k > w; by Theorem 3.2. To prove that SEP fails, we show that
(B,v) ¢ N whenever N € M,.

Still in V[G]: Assume, by contradiction, that (B,1) € N € M,. For each
@ € wy, choose n = n, such that E, := {£ : (x4\n) C ¢¥(fa]€)} is uncountable.
Applying the definition (2.2.iii) of N N P(w) <gp P(w) to a 1= n U (w\z,)
and K = {w\ ¢(fa[€) : £ € E,}, we get a y, 2O x,\n such that y, € N and
{€ € Ey : Yo C Y(fal€)} is uncountable. Then y, C* ¢(fq[€) for every £ € wy.
But then, the y,, for o € wy, are infinite and pairwise almost disjoint, so that
|N| > ws, a contradiction. ]

We now show that HP(k) can fail in such a model:

Theorem 3.9 It is consistent to have —H Py(ws), together with C*(k) for each
reqular Kk > wy which is not a successor of an w-limat.

Proof. In V: Assume V = L, and hence GCH. For f,g € 2 define f <* g iff

A < wi ¥y > €[f(n) < g(n)]. Define f <* g iff f <* g but g £° f. Let (B,v),
{fa 1 @ € W}, and P = er”wz P, be exactly as in the proof of Theorem 3.8,
but assume also that f, <* fs whenever a < 3 < wy; that is, the f, are the
characteristic functions of an wy-chain of sets in P(w;)/countable.

In V[G]: We again have x, C w such that x, C* ¥(f[£) for every £ € wy.

For z,y C w, define zRy iff

¥ <wVp>¢EVs,teB
[[Ih(s) = Ih(t) > n & 2 C* P(s) &y C* ¥(1)] = s(n) < t(n)]

Then {z, : @ < ws} is well-ordered by R in type w,. By Lemma 2.12.1, this
refutes H Py(ws) if R is definable over H(w).

In V: B = 2<% is certainly definable over H(w;). Applying V' = L, we can
make 1 definable as well.
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Then, in V[G]: we can, by quantifying over H(w,), refer to (H(w;))" as
L(w), so that B and ¢ will remain definable over H(w;). Hence, R will be
definable over H(wy). O
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