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Abstract

There is a compact 0-dimensional Hausdorff space X of weight N; with
an z € X which is a weak P-point and not a P-point. There is a zero-
dimensional Ly, space X of weight and cardinality Ny, with a non-isolated
weak Py,-point to which no discrete subset of X accumulates.

1 Introduction

In this paper, we obtain two examples of spaces of weight x™ where the known
example from the literature has weight 2%. Both examples involve weak P, +-

points that are not P,+-points:

Definition 1.1 For a point x in the topological space X :

1. x € X is a P;-point in X iff the intersection of any family of fewer than
k neighbourhoods of x is also a neighbourhood of x.

2. x € X is a weak P.-point in X iff x is not a limit point of any subset of
X\{z} of size less than k.

3. “P-point” and “weak P-point” mean “Py,-point” and “weak Py, -point”,
respectively.

So, in any T} space, every P.-point is a weak P,-point. If w(X) = N, then

every weak P-point is isolated, whereas the ordinal w; + 1 is an example of a
space of weight ¥; with a non-isolated P-point. In Section 2, we shall show:
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Theorem 1.2 There is a compact 0-dimensional Hausdorff space X of weight
Ny with an x € X which is a weak P-point and not a P-point.

By [7], there is an example of weight 2%, taking X = N* = SN\N. To prove
Theorem 1.2 in ZFC, we shall apply an elementary submodel argument to this
x € N*; see Dow [3] for more on such arguments. The point in [7] was a weak
P-point because it was wi-OK (see Definition 2.2). After applying the elementary
submodel, the x from Theorem 1.2 will be w;-soso, a weaker property which still
implies “weak P-point”. The strengthening of Theorem 1.2 in which z is actually
wy-OK is independent of ZFC + —CH (see Theorems 2.7 and 2.8).

The following is easy to prove (see, e.g., [4]):

Proposition 1.3 If X s compact Hausdorff and x € X 1is not isolated, then x
is the accumulation point of some discrete subset.

So, the x of Theorem 1.2 must be a limit of a discrete subset of size N;.
However, Proposition 1.3 fails in non-compact spaces:

Theorem 1.4 (van Douwen [1]) There is a countable 0-dimensional Haus-
dorff space X of weight 280 with a non-isolated point p to which no discrete
subset of X accumulates.

In fact, in this example, X was countable and dense in itself, but every
discrete subspace of X was closed, so p could be any point of X.

Again, one can ask if the X of Theorem 1.4 can have weight W;. It can,
assuming an L space:

Definition 1.5 X s an L, space iff X is Ty and hereditarily k-Lindeldf but not
hereditarily k-separable. An L space is an L, space.

So, an L space is hereditarily Lindelof but not hereditarily separable. In
Section 3, we shall show:

Theorem 1.6 If there is a 0-dimensional L, space, then there is a 0-dimensional
L, space X of weight and cardinality k™, with a non-isolated point p to which no
discrete subset of X accumulates. Furthermore, p is a weak P.+-point.

Some remarks:
The p in Theorem 1.6 cannot be a P, +-point, since in a 73 hereditarily x-
Lindel6f space, every point is the intersection of at most x of its neighbourhoods.
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For k = w, the X in Theorem 1.6 cannot be countable, as it is in Theorem
1.4, since under M A, every non-isolated point in a countable T5 space of weight
less that 2% is a limit of a discrete w-sequence.

For k = w, it is still unknown whether there is an L space in ZFC, although
there is one in every known model of set-theory. Theorem 1.6 for kK = w was
proved in [4] by a different method which does not seem to generalise to arbitrary
k. As is well known (see e.g. [5] or [8]), the existence of an L space implies that
of a O-dimensional one of weight w;. It is not clear whether this generalises to
arbitrary L, spaces, although once one has a O-dimensional L, space, one easily
gets one of weight k' (see Section 3).

For k = wy: The existence of a O-dimensional L, space is provable in ZFC|
using Shelah’s colouring theorem; see [9] and Theorem 1.11 of [6]. Thus:

Corollary 1.7 There is a 0-dimensional L, space X of weight and cardinality
wsy, with a non-isolated point p to which no discrete subset of X accumulates.
Furthermore, p 1s a weak P,,-point.

2 Some Flavours of Weak P-Points

As stated in the Introduction, we plan to start with an x € N* which is a weak
P-point and not a P-point, and take an elementary submodel. To compare
x in the universe, V, with z in the submodel, it is simpler to view N* as a
Stone space. If A is a boolean algebra, let st(.A) denotes its Stone space; so
z € st(A) iff z is an ultrafilter on A. The clopen sets of st(A) are all of the form
N, ={z €st(A) : a € x}, for a € A, so w(st(A)) = |A| whenever A is infinite.
N* = st(P(w)/fin), where fin C P(w) denotes the ideal of finite sets.

Suppose that x € st(A) and z, A € M < H(f). Then x N M is an ultrafilter
on the boolean algebra A N M; that is (z N M) € st(AN M). If |[M| = Xy, then
w(st(ANM)) < R;. Now, we need to relate properties of 2z € st(A) to properties
of (tN M) € st(AN M). The property “not a P-point” is easy; M must contain
an w-sequence (N, :n € w) which refutes “P-point”, so:

Lemma 2.1 If z € st(A) is not a P-point in st(A) and z, A€ M < H(0), then
x N M is not a P-point in st(AN M).

However, the property “weak P-point” is trickier. Suppose that x € st(A)
is a weak P-point in st(.A) and is not isolated (i.e., is not a principal ultrafil-
ter generated by an atom). If M is countable, then st(.A4 N M) will be second
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countable and hence separable, so that x N M will not be a weak P-point in
st(AN M). Even when |M| =Ry, if MA + —CH holds and A has the countable
chain condition (ccc), then st(,A N M) will still be separable, so that = N M will
again fail to be a weak P-point. Furthermore, there are many examples of such
z, A, since under MA there are weak P-points in st(.4) whenever A is complete
and ccc and st(A) is not separable (see Dow [2], Theorems 2.3 and 3.2).

Thus, if this plan for proving Theorem 1.2 is to work, we must use a property
of x which implies weak P-point and which is incompatible with the ccc. So, we
turn to OK points:

Definition 2.2 For a point x in a space X :

1. A sequence of neighbourhoods of x, (U, : n € w), is an w-OK sequence iff
there are neighbourhoods V,, of x for o < wy such that for alln > 1 and all
o <o <y < wy, we have Vo, N---NV,, CU,.

2. x is wi-OK in X iff every w-sequence of neighbourhoods of x is wi-OK.

3. x is wi-soso in X iff for every countable family VW of neighbourhoods of X,
there is an wi-OK sequence of neighbourhoods of x, (U, : n € w), such that
W CH{U, :n € w}.

Clearly, w;-OK implies wy-soso. The notion of “w;-OK” is from [7], and was
used there to produce weak P-points in N*. Unfortunately (see Theorem 2.8), it
is consistent with ZFC' that for all compact X of weight N, every w;-OK point
in X is already a P-point. Thus, we turn to the more complicated notion of
“w1-s0s0” to prove Theorem 1.2. We remark that no ccc T3 space can have a
non-isolated w;-soso point; the proof is the same as the one in [7] for OK points.

Lemma 2.3 If v is wy-soso in X and H is a Gy set containing x, then there
are neighbourhoods V,, of x for a < wy such that (), ., Ve, € H whenever the
o, < wy are distinct.

Proof. Apply the definition, 2.2.3, to any W such that W = H. ]

ncw

Lemma 2.4 If X is a T} space and x € X is wy-soso, then x is a weak P-point.

Proof. If Y is a countable subset of X\{z}, let H = X\Y. If the V, are
neighbourhoods of = as in Lemma 2.3, then all but countably many V, are
disjoint from Y, so x ¢ Y. []

We call M < H(0) w-covering iff for all countable E C M, there is a
countable F' € M such that £ C F. Such an M of size X; is easily produced as
a union of an elementary chain (see [3], §3).
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Lemma 2.5 Assume that © € st(A) is wy-soso in st(A) and that , A € M <
H(0), where M is w-covering. Then x N M is wi-soso in st(A N M).

Proof. Let W = {W; : i € w} be a family of neighbourhoods of x N M in
st(ANM). Choose e; € xNM such that N,, C W;. Then, fix a countable F' € M
such that {e; : i € w} C F. Since z € M, we may assume (intersecting with z)
that F¥ C 2N M. Now, apply the definition of “soso” to W' ={N,:a € F}. []

Proof of Theorem 1.2. Apply Lemmas 2.1 and 2.5 with A = P(w)/fin and
z any w;-OK point in st(.4) which is not a P-point (see [7]). Then in st(AN M),
the point x N M is not a P-point, but is w;-soso, and hence a weak P-point. []

Now, whether Theorem 1.2 can hold with x an w;-OK point depends on the
model of set theory. As usual, 0 denotes the least size of a dominating family in
w¥, and b denotes the least size of an unbounded family; so ®; < b < d < 2%,
We can modify the proof of Lemma 2.5 to get:

Lemma 2.6 Assume that x € st(A) is w-OK and x, A € M < H(0), where M
is w-covering and (w*)N M is cofinal in w”. Then xNM is wi-OK in st(ANM).

Proof. Now, we start with a sequence, (N,, : n € w), of neighbourhoods of
x N M; so each a,, € x " M. We need to get b, € x N M for a@ < wy such that
bo; A+ Abg, < a, whenever n > 1 and oy < -+ < oy < wy.

Since M is w-covering, we can get a sequence (¢, : n € w) € M such that
each ¢, € N M and each a, = cy(,) for some ¢ : w — w. Fix ¢ € w N M
such that ¢(n) < ¢(n) for all n. Note that w; C M since M is w-covering.
Since ¢ € M, we can, in M, apply the definition of w;-OK to the sequence
(CoNCi A= Neym) 2 n € w) to get by € 2N M for v < wy such that for all n > 1
and all oy < -++ <, < wy, we have by A+ Abg, < cogAcy A--+ A cym), and
hence by, A -+ Abq, < Cpm)y = ap. []

In particular, if = ®; then we can get |M| = N;. Hence, analogously to
Theorem 1.2, we have:

Theorem 2.7 If 0 = Ny, then there is a compact Hausdorff space X of weight
Ny with an wi-OK point which is not a P-point.

We do not know if the converse to this theorem holds, but the hypothesis
cannot be weakened to “b = N;”:

Theorem 2.8 Assume that V[G] is an extension of V by > Ry Cohen reals.
Then in V[G]:
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1. b= wi.
2. In every compact Hausdorff space X of weight ¥, every wi-OK point is a
P-point.

Proof.(1) holds because the first X; Cohen reals yield an unbounded family of
size ;. For (2):

First, work in V[G]: Assume that z € X is not a P-point. We must show that
it is not w1-OK. Following Tychonov, we may assume that X is a closed subspace
of [=1,1]*1, that z = 0 (the identically 0 sequence), and that “P-point” is refuted
by the neighbourhoods U,, = {x € X : |xy| < 27"}; that is, 0 is a boundary point
of the set {z € X : 2 =0} in X. Let D C X be dense in X, with |[D| < N;.

Now, since |D| < Ny, it depends on at most X; of the Cohen reals, so by the
usual splitting argument, we may (and shall) assume that D € V.

In V: Let {B, : @ < w;} enumerate a local base for 0 in [—1,1]*!. Assume
that each B, is a finitely supported product of rational intervals of the form
(—r,r), and that B, = {x € [-1,1] : |xo| < 27"} for n < w. Then, in V[G], and
hence also in V, V3 3i < w[BsND Z B;].

Again by splitting, V[G] = V[f][H], where f € w“ is generic over V using the
partial order P = Fn(w,w), and H adds the rest of the Cohen reals, via some
Q = Fn(k,w). We shall show that in V[G], the neighbourhoods U, = By, N X
establish that 0 is not w-OK. To do this, it is sufficient to show that there is no
S such that ®(f,S) holds, where ®(f,S) asserts:

S§w1&|5|:N1&
Vn > 1Voy < - < ap[{on,...,an} €8S = By, NN By, N D C By

If, in V[G], there is an S satisfying ®(f,S), then, working in V[f], there is
a Qname S and a ¢ € Q such that ¢ IF O(f, S) Then, in V[f], we can find
an uncountable T C w; and ¢, < ¢ for a € T such that each ¢, I+ [a € S]
Furthermore, shrinking 7', we may assume that {g, : @ € T'} is centred, which
implies that ®(f,7) holds in V|[f]. Furthermore, since P is countable, there will
be an uncountable subset of 7" in V. Thus, shrinking 7" again, we may assume
that T € V.

Retreating to V', we have a P-name f for the generic function and a p € P
such that p I+ (ID(f,T). Assume that dom(p) C n, fix oy < -+ < o, € T, and
fix 8 with Bg C By, N+ N By,. Then p I- [Bg N D C By,,l, but p does not
determine the value of f(n). Fix i so that Bg N D ¢ By, and let p’ < p with
P’ IF f(n) =i. Then p' I [Bs N D C By, a contradiction. ]
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3 Proof of Theorem 1.6

Let Z be our L, space. Since Z is not hereditarily x-separable, it contains a
sequence which is left separated in type x*. But then we may assume without
loss of generality that this sequence is all of Z, so that Z = (k™, ), where 7 is
some topology on k*. “Left separated” means that every initial segment o € k™
is closed in Z, so each final segment £ \ « is open. Since Z is 0-dimensional and
hereditarily x-Lindelof, we can write:

m+\a:U{U§°‘:§€n} ,

where U¢' is clopen in Z for every £ € k. Let 7y be the coarser topology with a
base consisting of all finite boolean combinations from U = {Ug‘ fern&ac
kT}. Then 7y is Hausdorff (because U separates points), hereditarily x-Lindelof
(because it is coarser than 7), and not hereditarily k-separable (because it is still
left separated). But then, we may assume that 75 = 7, so that Z has weight only
kT,

Let Y = [k|<¥ x Z, where [k]<“ is discrete, so that Y is a topological sum of
Kk copies of Z. For E C Y and a € [k]<¥, let E, = {a: (a,a) € E}. Our space X
will be Y U {p} where p € Y and Y is an open subspace of X. So, the topology
on X is defined once we define the neighbourhoods of p in X. To this end, for
any o € k1 define W* C Y such that for each a € [5]<*

W), = J{Ug :¢ea} .

Now let {W*U {p}:a € K™} be a neighbourhood subbase of p in X. Each W*
is clopen in Y (because each (W?), is clopen in Z), so that X is 0-dimensional.
Also, it is easy to see that Y and X are both L, spaces of weight ™.

Next to show that p is non-isolated in X, we fix any oy,...,q, € k" and
show that [W*n...NnWe| = k™. To do this, fix any 8 € kT \ max{ay,...,a,}.
Then, for every 1 < i < n, choose & € k with 5 € Ugl Let a = {&, ..., &}
Then, by definition, we have 8 € (W®), for every 4, so (a,3) € W' N...NWo,

Finally, p is a weak P,+-point in X because for every set S € [V]<" there
is some « € kT with S C [K]<% x «, so that SN W® = (). Then, since Y is
hereditarily x-Lindeldf, every discrete D C Y has size < k, so that p ¢ D. [

References

[1] E. K. van Douwen, Applications of maximal topologies, Top. Appl. 51 (1993)
125-139.



REFERENCES 8

[2] A. Dow, Weak P-points in compact CCC F-spaces, Trans. Amer. Math.
Soc. 269 (1982) 557-565.

[3] A. Dow, An introduction to applications of elementary submodels to topol-
ogy, Topology Proc. 13 (1988) 17-72.

[4] A.Dow, M. G. Tkacenko, V. V. Tkacuk, R. G. Wilson, Topologies generated
by discrete subspaces, preprint

[5] 1. Juhdsz, A survey of S and L spaces, in Topology, Vol. II (Proc. Fourth
Collog., Budapest, 1978), Colloq. Math. Soc. Janos Bolyai Vol. 23, 1979, pp.
675-688.

[6] I. Juhdsz, Cardinal functions, in Recent Progress in General Topology
(Prague, 1991), North-Holland, 1992, pp. 417-441

[7] K. Kunen, Weak P-points in N*, Colloq. Math. Soc. Janos Bolyai 23 (1980)
741 — 749.

[8] J. Roitman, Basic S and L, in Handbook of Set-Theoretic Topology, North-
Holland, 1984, pp 295-326.

[9] S. Shelah, Colouring and non-productivity of X,-CC, Ann. Pure Appl. Logic
84 (1997) 153-174.

RENYI ALFRED INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF
ScIENCES, POB 127, H-1364 BUDAPEST, HUNGARY
Email address: juhasz@renyi.hu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON,
WI 53706, USA

Email address: kunen@math.wisc.edu

URL: http://www.math.wisc.edu/ "kunen



