Some Points in Spaces of Small Weight *

István Juhász[†] and Kenneth Kunen[‡] October 25, 2001

Abstract

There is a compact 0-dimensional Hausdorff space X of weight \aleph_1 with an $x \in X$ which is a weak P-point and not a P-point. There is a zero-dimensional L_{\aleph_1} space X of weight and cardinality \aleph_2 , with a non-isolated weak P_{\aleph_2} -point to which no discrete subset of X accumulates.

1 Introduction

In this paper, we obtain two examples of spaces of weight κ^+ where the known example from the literature has weight 2^{κ} . Both examples involve weak P_{κ^+} -points that are not P_{κ^+} -points:

Definition 1.1 For a point x in the topological space X:

- 1. $x \in X$ is a P_{κ} -point in X iff the intersection of any family of fewer than κ neighbourhoods of x is also a neighbourhood of x.
- 2. $x \in X$ is a weak P_{κ} -point in X iff x is not a limit point of any subset of $X \setminus \{x\}$ of size less than κ .
- 3. "P-point" and "weak P-point" mean " P_{\aleph_1} -point" and "weak P_{\aleph_1} -point", respectively.

So, in any T_1 space, every P_{κ} -point is a weak P_{κ} -point. If $w(X) = \aleph_0$, then every weak P-point is isolated, whereas the ordinal $\omega_1 + 1$ is an example of a space of weight \aleph_1 with a non-isolated P-point. In Section 2, we shall show:

^{*2000} Mathematics Subject Classification: Primary 54D20, 54D30.

[†]Author supported by OTKA Grant no. 25745.

[‡]Research done while a guest of the Rényi Institute and the Central European University. Support also received from NSF Grant DMS-0097881.

2

Theorem 1.2 There is a compact 0-dimensional Hausdorff space X of weight \aleph_1 with an $x \in X$ which is a weak P-point and not a P-point.

By [7], there is an example of weight 2^{\aleph_0} , taking $X = \mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$. To prove Theorem 1.2 in ZFC, we shall apply an elementary submodel argument to this $x \in \mathbb{N}^*$; see Dow [3] for more on such arguments. The point in [7] was a weak P-point because it was ω_1 -OK (see Definition 2.2). After applying the elementary submodel, the x from Theorem 1.2 will be ω_1 -soso, a weaker property which still implies "weak P-point". The strengthening of Theorem 1.2 in which x is actually ω_1 -OK is independent of $ZFC + \neg CH$ (see Theorems 2.7 and 2.8).

The following is easy to prove (see, e.g., [4]):

Proposition 1.3 If X is compact Hausdorff and $x \in X$ is not isolated, then x is the accumulation point of some discrete subset.

So, the x of Theorem 1.2 must be a limit of a discrete subset of size \aleph_1 . However, Proposition 1.3 fails in non-compact spaces:

Theorem 1.4 (van Douwen [1]) There is a countable 0-dimensional Hausdorff space X of weight 2^{\aleph_0} with a non-isolated point p to which no discrete subset of X accumulates.

In fact, in this example, X was countable and dense in itself, but every discrete subspace of X was closed, so p could be any point of X.

Again, one can ask if the X of Theorem 1.4 can have weight \aleph_1 . It can, assuming an L space:

Definition 1.5 X is an L_{κ} space iff X is T_3 and hereditarily κ -Lindelöf but not hereditarily κ -separable. An L space is an L_{ω} space.

So, an L space is hereditarily Lindelöf but not hereditarily separable. In Section 3, we shall show:

Theorem 1.6 If there is a 0-dimensional L_{κ} space, then there is a 0-dimensional L_{κ} space X of weight and cardinality κ^+ , with a non-isolated point p to which no discrete subset of X accumulates. Furthermore, p is a weak P_{κ^+} -point.

Some remarks:

The p in Theorem 1.6 cannot be a P_{κ^+} -point, since in a T_3 hereditarily κ -Lindelöf space, every point is the intersection of at most κ of its neighbourhoods.

For $\kappa = \omega$, the X in Theorem 1.6 cannot be countable, as it is in Theorem 1.4, since under MA, every non-isolated point in a countable T_2 space of weight less that 2^{\aleph_0} is a limit of a discrete ω -sequence.

For $\kappa = \omega$, it is still unknown whether there is an L space in ZFC, although there is one in every known model of set-theory. Theorem 1.6 for $\kappa = \omega$ was proved in [4] by a different method which does not seem to generalise to arbitrary κ . As is well known (see e.g. [5] or [8]), the existence of an L space implies that of a 0-dimensional one of weight ω_1 . It is not clear whether this generalises to arbitrary L_{κ} spaces, although once one has a 0-dimensional L_{κ} space, one easily gets one of weight κ^+ (see Section 3).

For $\kappa = \omega_1$: The existence of a 0-dimensional L_{ω_1} space is provable in ZFC, using Shelah's colouring theorem; see [9] and Theorem 1.11 of [6]. Thus:

Corollary 1.7 There is a 0-dimensional L_{ω_1} space X of weight and cardinality ω_2 , with a non-isolated point p to which no discrete subset of X accumulates. Furthermore, p is a weak P_{ω_2} -point.

2 Some Flavours of Weak P-Points

As stated in the Introduction, we plan to start with an $x \in \mathbb{N}^*$ which is a weak P-point and not a P-point, and take an elementary submodel. To compare x in the universe, V, with x in the submodel, it is simpler to view \mathbb{N}^* as a Stone space. If \mathcal{A} is a boolean algebra, let $\operatorname{st}(\mathcal{A})$ denotes its Stone space; so $x \in \operatorname{st}(\mathcal{A})$ iff x is an ultrafilter on \mathcal{A} . The clopen sets of $\operatorname{st}(\mathcal{A})$ are all of the form $N_a = \{x \in \operatorname{st}(\mathcal{A}) : a \in x\}$, for $a \in \mathcal{A}$, so $w(\operatorname{st}(\mathcal{A})) = |\mathcal{A}|$ whenever \mathcal{A} is infinite. $\mathbb{N}^* = \operatorname{st}(\mathcal{P}(\omega)/fin)$, where $fin \subset \mathcal{P}(\omega)$ denotes the ideal of finite sets.

Suppose that $x \in \operatorname{st}(\mathcal{A})$ and $x, \mathcal{A} \in M \prec H(\theta)$. Then $x \cap M$ is an ultrafilter on the boolean algebra $\mathcal{A} \cap M$; that is $(x \cap M) \in \operatorname{st}(\mathcal{A} \cap M)$. If $|M| = \aleph_1$, then $w(\operatorname{st}(\mathcal{A} \cap M)) \leq \aleph_1$. Now, we need to relate properties of $x \in \operatorname{st}(\mathcal{A})$ to properties of $(x \cap M) \in \operatorname{st}(\mathcal{A} \cap M)$. The property "not a P-point" is easy; M must contain an ω -sequence $\langle N_{a_n} : n \in \omega \rangle$ which refutes "P-point", so:

Lemma 2.1 If $x \in st(A)$ is not a P-point in st(A) and $x, A \in M \prec H(\theta)$, then $x \cap M$ is not a P-point in $st(A \cap M)$.

However, the property "weak P-point" is trickier. Suppose that $x \in \operatorname{st}(\mathcal{A})$ is a weak P-point in $\operatorname{st}(\mathcal{A})$ and is not isolated (i.e., is not a principal ultrafilter generated by an atom). If M is countable, then $\operatorname{st}(\mathcal{A} \cap M)$ will be second

countable and hence separable, so that $x \cap M$ will not be a weak P-point in $\operatorname{st}(\mathcal{A} \cap M)$. Even when $|M| = \aleph_1$, if $MA + \neg CH$ holds and \mathcal{A} has the countable chain condition (ccc), then $\operatorname{st}(\mathcal{A} \cap M)$ will still be separable, so that $x \cap M$ will again fail to be a weak P-point. Furthermore, there are many examples of such x, \mathcal{A} , since under MA there are weak P-points in $\operatorname{st}(\mathcal{A})$ whenever \mathcal{A} is complete and ccc and $\operatorname{st}(\mathcal{A})$ is not separable (see Dow [2], Theorems 2.3 and 3.2).

Thus, if this plan for proving Theorem 1.2 is to work, we must use a property of x which implies weak P-point and which is incompatible with the ccc. So, we turn to OK points:

Definition 2.2 For a point x in a space X:

- 1. A sequence of neighbourhoods of x, $\langle U_n : n \in \omega \rangle$, is an ω_1 -OK sequence iff there are neighbourhoods V_{α} of x for $\alpha < \omega_1$ such that for all $n \geq 1$ and all $\alpha_1 < \cdots < \alpha_n < \omega_1$, we have $V_{\alpha_1} \cap \cdots \cap V_{\alpha_n} \subseteq U_n$.
- 2. x is ω_1 -OK in X iff every ω -sequence of neighbourhoods of x is ω_1 -OK.
- 3. x is ω_1 -soso in X iff for every countable family W of neighbourhoods of X, there is an ω_1 -OK sequence of neighbourhoods of x, $\langle U_n : n \in \omega \rangle$, such that $W \subseteq \{U_n : n \in \omega\}$.

Clearly, ω_1 -OK implies ω_1 -soso. The notion of " ω_1 -OK" is from [7], and was used there to produce weak P-points in \mathbb{N}^* . Unfortunately (see Theorem 2.8), it is consistent with ZFC that for all compact X of weight \aleph_1 , every ω_1 -OK point in X is already a P-point. Thus, we turn to the more complicated notion of " ω_1 -soso" to prove Theorem 1.2. We remark that no ccc T_3 space can have a non-isolated ω_1 -soso point; the proof is the same as the one in [7] for OK points.

Lemma 2.3 If x is ω_1 -soso in X and H is a G_{δ} set containing x, then there are neighbourhoods V_{α} of x for $\alpha < \omega_1$ such that $\bigcap_{n \in \omega} V_{\alpha_n} \subseteq H$ whenever the $\alpha_n < \omega_1$ are distinct.

Proof. Apply the definition, 2.2.3, to any W such that $\bigcap W = H$.

Lemma 2.4 If X is a T_1 space and $x \in X$ is ω_1 -soso, then x is a weak P-point.

Proof. If Y is a countable subset of $X\setminus\{x\}$, let $H=X\setminus Y$. If the V_{α} are neighbourhoods of x as in Lemma 2.3, then all but countably many V_{α} are disjoint from Y, so $x\notin \overline{Y}$.

We call $M \prec H(\theta)$ ω -covering iff for all countable $E \subseteq M$, there is a countable $F \in M$ such that $E \subseteq F$. Such an M of size \aleph_1 is easily produced as a union of an elementary chain (see [3], §3).

Lemma 2.5 Assume that $x \in \operatorname{st}(\mathcal{A})$ is ω_1 -soso in $\operatorname{st}(\mathcal{A})$ and that $x, \mathcal{A} \in M \prec H(\theta)$, where M is ω -covering. Then $x \cap M$ is ω_1 -soso in $\operatorname{st}(\mathcal{A} \cap M)$.

Proof. Let $W = \{W_i : i \in \omega\}$ be a family of neighbourhoods of $x \cap M$ in $\operatorname{st}(A \cap M)$. Choose $e_i \in x \cap M$ such that $N_{e_i} \subseteq W_i$. Then, fix a countable $F \in M$ such that $\{e_i : i \in \omega\} \subseteq F$. Since $x \in M$, we may assume (intersecting with x) that $F \subseteq x \cap M$. Now, apply the definition of "soso" to $W' = \{N_a : a \in F\}$. \square

Proof of Theorem 1.2. Apply Lemmas 2.1 and 2.5 with $\mathcal{A} = \mathcal{P}(\omega)/fin$ and x any ω_1 -OK point in $\operatorname{st}(\mathcal{A})$ which is not a P-point (see [7]). Then in $\operatorname{st}(\mathcal{A} \cap M)$, the point $x \cap M$ is not a P-point, but is ω_1 -soso, and hence a weak P-point. \square

Now, whether Theorem 1.2 can hold with x an ω_1 -OK point depends on the model of set theory. As usual, \mathfrak{d} denotes the least size of a dominating family in ω^{ω} , and \mathfrak{b} denotes the least size of an unbounded family; so $\aleph_1 \leq \mathfrak{b} \leq \mathfrak{d} \leq 2^{\aleph_0}$. We can modify the proof of Lemma 2.5 to get:

Lemma 2.6 Assume that $x \in st(A)$ is ω_1 -OK and $x, A \in M \prec H(\theta)$, where M is ω -covering and $(\omega^{\omega}) \cap M$ is cofinal in ω^{ω} . Then $x \cap M$ is ω_1 -OK in $st(A \cap M)$.

Proof. Now, we start with a sequence, $\langle N_{a_n} : n \in \omega \rangle$, of neighbourhoods of $x \cap M$; so each $a_n \in x \cap M$. We need to get $b_{\alpha} \in x \cap M$ for $\alpha < \omega_1$ such that $b_{\alpha_1} \wedge \cdots \wedge b_{\alpha_n} \leq a_n$ whenever $n \geq 1$ and $\alpha_1 < \cdots < \alpha_n < \omega_1$.

Since M is ω -covering, we can get a sequence $\langle c_n : n \in \omega \rangle \in M$ such that each $c_n \in x \cap M$ and each $a_n = c_{\varphi(n)}$ for some $\varphi : \omega \to \omega$. Fix $\psi \in \omega^\omega \cap M$ such that $\varphi(n) \leq \psi(n)$ for all n. Note that $\omega_1 \subset M$ since M is ω -covering. Since $\psi \in M$, we can, in M, apply the definition of ω_1 -OK to the sequence $\langle c_0 \wedge c_1 \wedge \cdots \wedge c_{\psi(n)} : n \in \omega \rangle$ to get $b_\alpha \in x \cap M$ for $\alpha < \omega_1$ such that for all $n \geq 1$ and all $\alpha_1 < \cdots < \alpha_n < \omega_1$, we have $b_{\alpha_1} \wedge \cdots \wedge b_{\alpha_n} \leq c_0 \wedge c_1 \wedge \cdots \wedge c_{\psi(n)}$, and hence $b_{\alpha_1} \wedge \cdots \wedge b_{\alpha_n} \leq c_{\varphi(n)} = a_n$.

In particular, if $\mathfrak{d} = \aleph_1$ then we can get $|M| = \aleph_1$. Hence, analogously to Theorem 1.2, we have:

Theorem 2.7 If $\mathfrak{d} = \aleph_1$, then there is a compact Hausdorff space X of weight \aleph_1 with an ω_1 -OK point which is not a P-point.

We do not know if the converse to this theorem holds, but the hypothesis cannot be weakened to " $\mathfrak{b} = \aleph_1$ ":

Theorem 2.8 Assume that V[G] is an extension of V by $\geq \aleph_2$ Cohen reals. Then in V[G]:

- 1. $\mathfrak{b} = \omega_1$.
- 2. In every compact Hausdorff space X of weight \aleph_1 every ω_1 -OK point is a P-point.

Proof.(1) holds because the first \aleph_1 Cohen reals yield an unbounded family of size \aleph_1 . For (2):

First, work in V[G]: Assume that $z \in X$ is not a P-point. We must show that it is not ω_1 -OK. Following Tychonov, we may assume that X is a closed subspace of $[-1,1]^{\omega_1}$, that $z=\vec{0}$ (the identically 0 sequence), and that "P-point" is refuted by the neighbourhoods $U_n = \{x \in X : |x_0| < 2^{-n}\}$; that is, $\vec{0}$ is a boundary point of the set $\{x \in X : x_0 = 0\}$ in X. Let $D \subseteq X$ be dense in X, with $|D| \leq \aleph_1$.

Now, since $|D| \leq \aleph_1$, it depends on at most \aleph_1 of the Cohen reals, so by the usual splitting argument, we may (and shall) assume that $D \in V$.

In V: Let $\{B_{\alpha} : \alpha < \omega_1\}$ enumerate a local base for $\vec{0}$ in $[-1,1]^{\omega_1}$. Assume that each B_{α} is a finitely supported product of rational intervals of the form (-r,r), and that $B_n = \{x \in [-1,1] : |x_0| < 2^{-n}\}$ for $n < \omega$. Then, in V[G], and hence also in $V, \forall \beta \exists i < \omega \ [B_{\beta} \cap D \not\subseteq B_i]$.

Again by splitting, V[G] = V[f][H], where $f \in \omega^{\omega}$ is generic over V using the partial order $\mathbb{P} = Fn(\omega, \omega)$, and H adds the rest of the Cohen reals, via some $\mathbb{Q} = Fn(\kappa, \omega)$. We shall show that in V[G], the neighbourhoods $U_n = B_{f(n)} \cap X$ establish that $\vec{0}$ is not ω_1 -OK. To do this, it is sufficient to show that there is no S such that $\Phi(f, S)$ holds, where $\Phi(f, S)$ asserts:

$$S \subseteq \omega_1 \& |S| = \aleph_1 \&$$

$$\forall n \ge 1 \forall \alpha_1 < \dots < \alpha_n [\{\alpha_1, \dots, \alpha_n\} \subseteq S \to B_{\alpha_1} \cap \dots \cap B_{\alpha_n} \cap D \subseteq B_{f(n)}]$$

If, in V[G], there is an S satisfying $\Phi(f,S)$, then, working in V[f], there is a \mathbb{Q} -name \dot{S} and a $q \in \mathbb{Q}$ such that $q \Vdash \Phi(f,\dot{S})$. Then, in V[f], we can find an uncountable $T \subseteq \omega_1$ and $q_\alpha \leq q$ for $\alpha \in T$ such that each $q_\alpha \Vdash [\alpha \in \dot{S}]$. Furthermore, shrinking T, we may assume that $\{q_\alpha : \alpha \in T\}$ is centred, which implies that $\Phi(f,T)$ holds in V[f]. Furthermore, since \mathbb{P} is countable, there will be an uncountable subset of T in V. Thus, shrinking T again, we may assume that $T \in V$.

Retreating to V, we have a \mathbb{P} -name \dot{f} for the generic function and a $p \in \mathbb{P}$ such that $p \Vdash \Phi(\dot{f}, T)$. Assume that $\text{dom}(p) \subseteq n$, fix $\alpha_1 < \cdots < \alpha_n \in T$, and fix β with $B_{\beta} \subseteq B_{\alpha_1} \cap \cdots \cap B_{\alpha_n}$. Then $p \Vdash [B_{\beta} \cap D \subseteq B_{\dot{f}(n)}]$, but p does not determine the value of $\dot{f}(n)$. Fix i so that $B_{\beta} \cap D \not\subseteq B_i$, and let $p' \leq p$ with $p' \Vdash \dot{f}(n) = i$. Then $p' \Vdash [B_{\beta} \cap D \subseteq B_i]$, a contradiction.

3 Proof of Theorem 1.6

Let Z be our L_{κ} space. Since Z is not hereditarily κ -separable, it contains a sequence which is left separated in type κ^+ . But then we may assume without loss of generality that this sequence is all of Z, so that $Z = \langle \kappa^+, \tau \rangle$, where τ is some topology on κ^+ . "Left separated" means that every initial segment $\alpha \in \kappa^+$ is closed in Z, so each final segment $\kappa^+ \setminus \alpha$ is open. Since Z is 0-dimensional and hereditarily κ -Lindelöf, we can write:

$$\kappa^+ \setminus \alpha = \bigcup \{ U_{\xi}^{\alpha} : \xi \in \kappa \} ,$$

where U_{ξ}^{α} is clopen in Z for every $\xi \in \kappa$. Let τ_0 be the coarser topology with a base consisting of all finite boolean combinations from $\mathcal{U} = \{U_{\xi}^{\alpha} : \xi \in \kappa \& \alpha \in \kappa^{+}\}$. Then τ_0 is Hausdorff (because \mathcal{U} separates points), hereditarily κ -Lindelöf (because it is coarser than τ), and not hereditarily κ -separable (because it is still left separated). But then, we may assume that $\tau_0 = \tau$, so that Z has weight only κ^+ .

Let $Y = [\kappa]^{<\omega} \times Z$, where $[\kappa]^{<\omega}$ is discrete, so that Y is a topological sum of κ copies of Z. For $E \subseteq Y$ and $a \in [\kappa]^{<\omega}$, let $E_a = \{\alpha : (a, \alpha) \in E\}$. Our space X will be $Y \cup \{p\}$ where $p \notin Y$ and Y is an open subspace of X. So, the topology on X is defined once we define the neighbourhoods of p in X. To this end, for any $\alpha \in \kappa^+$ define $W^{\alpha} \subseteq Y$ such that for each $a \in [\kappa]^{<\omega}$

$$(W^{\alpha})_a = \bigcup \{ U_{\xi}^{\alpha} : \xi \in a \} .$$

Now let $\{W^{\alpha} \cup \{p\} : \alpha \in \kappa^{+}\}$ be a neighbourhood subbase of p in X. Each W^{α} is clopen in Y (because each $(W^{\alpha})_{a}$ is clopen in Z), so that X is 0-dimensional. Also, it is easy to see that Y and X are both L_{κ} spaces of weight κ^{+} .

Next to show that p is non-isolated in X, we fix any $\alpha_1, \ldots, \alpha_n \in \kappa^+$ and show that $|W^{\alpha_1} \cap \ldots \cap W^{\alpha_n}| = \kappa^+$. To do this, fix any $\beta \in \kappa^+ \setminus \max\{\alpha_1, \ldots, \alpha_n\}$. Then, for every $1 \leq i \leq n$, choose $\xi_i \in \kappa$ with $\beta \in U_{\xi_i}^{\alpha_i}$. Let $a = \{\xi_1, \ldots, \xi_n\}$. Then, by definition, we have $\beta \in (W^{\alpha_i})_a$ for every i, so $(a, \beta) \in W^{\alpha_1} \cap \ldots \cap W^{\alpha_n}$.

Finally, p is a weak P_{κ^+} -point in X because for every set $S \in [Y]^{\leq \kappa}$ there is some $\alpha \in \kappa^+$ with $S \subseteq [\kappa]^{<\omega} \times \alpha$, so that $S \cap W^{\alpha} = \emptyset$. Then, since Y is hereditarily κ -Lindelöf, every discrete $D \subseteq Y$ has size $\leq \kappa$, so that $p \notin \overline{D}$.

References

[1] E. K. van Douwen, Applications of maximal topologies, *Top. Appl.* 51 (1993) 125–139.

REFERENCES 8

[2] A. Dow, Weak *P*-points in compact CCC *F*-spaces, *Trans. Amer. Math. Soc.* 269 (1982) 557–565.

- [3] A. Dow, An introduction to applications of elementary submodels to topology, *Topology Proc.* 13 (1988) 17–72.
- [4] A. Dow, M. G. Tkačenko, V. V. Tkačuk, R. G. Wilson, Topologies generated by discrete subspaces, preprint
- [5] I. Juhász, A survey of S and L spaces, in Topology, Vol. II (Proc. Fourth Collog., Budapest, 1978), Colloq. Math. Soc. János Bolyai Vol. 23, 1979, pp. 675–688.
- [6] I. Juhász, Cardinal functions, in Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, pp. 417–441
- [7] K. Kunen, Weak P-points in \mathbb{N}^* , Colloq. Math. Soc. János Bolyai 23 (1980) 741-749.
- [8] J. Roitman, Basic S and L, in Handbook of Set-Theoretic Topology, North-Holland, 1984, pp 295–326.
- [9] S. Shelah, Colouring and non-productivity of ℵ₂-CC, Ann. Pure Appl. Logic 84 (1997) 153–174.

RÉNYI ALFRÉD INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES, POB 127, H-1364 BUDAPEST, HUNGARY

Email address: juhasz@renyi.hu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706, USA

 $Email\ address$: kunen@math.wisc.edu URL: http://www.math.wisc.edu/~kunen