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Abstract. There is a locally compact Hausdorff space of weight ℵω

which is linearly Lindelöf and not Lindelöf.

We shall prove:

Theorem 1. There is a compact Hausdorff space X and a point p in X
such that:

1. χ(p, X) = w(X) = ℵω.
2. For all regular κ > ω, no κ-sequence of points distinct from p con-

verges to p.

As usual, χ(p, X), the character of p in X, is the least size of a local base
at p, and w(X), the weight of X, is the least size of a base for X. This
theorem with “�ω” replacing “ℵω” was proved in [11]. Arhangel’skii and
Buzyakova [1] point out that if X, p satisfy (2) of the theorem, then the space
X\{p} is linearly Lindelöf and locally compact; if in addition χ(p, X) > ℵ0,
then X\{p} is not Lindelöf. (2) requires cf(χ(p, X)) = ω, because there
must be a sequence of type cf(χ(p, X)) converging to p. Thus, in (1) of
the theorem, ℵω is the smallest possible uncountable value for χ(p, X) and
w(X).

As in [11], the X of the theorem will be constructed as an inverse limit,
using the following terminology:

Definition 2. An inverse system is a sequence 〈Xn, πn+1
n : n ∈ ω〉, where

each Xn is a compact Hausdorff space, and each πn+1
n is a continuous map

from Xn+1 onto Xn.

Such an inverse systems yields a compact Hausdorff space, Xω =
←−
limnXn,

and maps πω
m : Xω � Xm for m < ω and πn

m : Xn � Xm for m ≤ n < ω.
Exactly as in [11], one easily proves:
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Lemma 3. Suppose that 〈Xn, π
n+1
n : n ∈ ω〉 is an inverse system and

p ∈ X = Xω, with the pn = πω
n(p) ∈ Xn satisfying:

A. Each pn is a weak Pℵn-point in Xn.
B. Each w(Xn) < ℵω.
C. Each (πn

0 )−1{p0} is nowhere dense in Xn.

Then X, p satisfies Theorem 1.

As usual, y ∈ Y is a weak Pκ-point iff y is not in the closure of any subset
of Y \{y} of size less than κ, and y is a Pκ-point iff the intersection of fewer
than κ neighborhoods of y is always a neighborhood of y. These properties
are trivial for κ = ℵ0. The terms “P -point” and “weak P -point” denote
“Pℵ1-point” and “weak Pℵ1-point”, respectively.

Every Pκ-point is a weak Pκ-point, but as pointed out in [11], one can-
not have each pn being a Pℵn-point, as that would contradict (C). In the
construction we describe, it will be natural to make every pn fail to be a
P -point in Xn.

We shall build the Xn and pn inductively using the following:

Lemma 4. Assume that y ∈ F ⊆ Y , where Y is compact Hausdorff,
w(Y ) ≤ ℵn, and int(F ) = ∅. Then there is a compact Hausdorff space
X, a point x ∈ X, and a continuous g : X → Y such that:

1. g(X) = Y and g(x) = y.
2. g−1(F ) is nowhere dense in X.
3. w(X) = ℵn.
4. In X, x is a weak Pℵn-point and not a P -point.

Proof of Theorem 1. Inductively build an inverse system as in Lemma
3, with each w(Xn) = ℵn. X0 can be the Cantor set. When n > 0 and we
are given Xn−1, pn−1, we apply Lemma 4 with F = (πn−1

0 )−1{p0}. �
Of course, we still need to prove Lemma 4. We remark that we do not

assume that F is closed, although that was true in our proof of Theo-
rem 1. Even if F is dense in Y in Lemma 4, we still get (2) — that is,
int(cl(g−1(F ))) = ∅.

In Lemma 4, n can be 0, although this case is not used in the proof of
Theorem 1. For this case, the “weak Pℵ0-point” is trivial, and the lemma is
easily proved by an Aleksandrov duplicate construction. A more convoluted
proof is: Let D ⊆ Y \F be dense in Y and countable. Let g map ω onto
D and extend g to a map βg : βω � Y . Choosing x to be any point in
(βg)−1({y}) yields (1)(2)(4), but βω has weight 2ℵ0 . Now, we can take a
countable elementary submodel of the whole construction to get an X of
weight ℵ0. Our proof for a general n will follow this pattern.

As usual, βκ denotes the Čech compactification of a discrete κ, and
κ∗ = βκ\κ. Equivalently, βκ is the space of ultrafilters on κ, and κ∗ is
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the space of nonprincipal ultrafilters. If g : κ → Y , where Y is compact
Hausdorff, then βg denotes the unique extension of g to a continuous map
from βκ to Y . Our weak Pκ-point in Lemma 4 will be a good ultrafilter in
the sense of Keisler [9]:

Definition 5. An ultrafilter x on κ is good iff for all H : [κ]<ω → x,
there is a K : κ → x such that K(α1) ∩ · · · ∩ K(αn) ⊆ H(s) for each
s = {α1, . . . , αn} ∈ [κ]<ω.

The following is well-known:

Lemma 6. Let κ be any infinite cardinal.

1. There are ultrafilters x on κ which are both good and countably in-
complete.

2. Any x as in (1) is a weak Pκ point and not a P -point in βκ.

In (2), x is not a P -point by countable incompleteness, and proofs that it
is a weak Pκ point can be found in [2, 3, 5]. For (1), see [4], Theorem 6.1.4;
also, [2, 3] construct good ultrafilters with various additional properties.

We first point out (Lemma 9) that taking x to be a good ultrafilter on
ωn will give us (1)(2)(4) of Lemma 4. Unfortunately, w(βωn) = 2ℵn, so we
shall take an elementary submodel to bring the weight down. Omitting the
elementary submodel, our argument is as in [11], which obtained the X of
Theorem 1 with w(X) = �ω, rather than ℵω. A related use of elementary
submodels to reduce the weight occurs in [7].

Before we consider the weight problem, we explain how to map the good
ultrafilter onto the given point y. This part of the argument works for any
regular ultrafilter.

Definition 7. An ultrafilter x on κ is regular iff there are Eα ∈ x for α < κ
such that {α : ξ ∈ Eα} is finite for all ξ < κ.

Such an x is countably incomplete because
⋂

n<ω En = ∅. For the follow-
ing, see Exercise 6.1.3 of [4] or the proof of Lemma 2.1 in Keisler [10]:

Lemma 8. If x is a countably incomplete good ultrafilter on κ, then x is
regular.

Lemma 9. Let x be a regular ultrafilter on κ. Assume that y ∈ F ⊆ Y ,
where Y is compact Hausdorff, w(Y ) ≤ κ, and int(F ) = ∅. Then there is a
map g : κ → Y such that:

A. βg maps βκ onto Y .
B. (βg)(x) = y.
C. g(ξ) /∈ F for all ξ ∈ κ.
D. g−1(F ) is nowhere dense in βκ.
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Proof. Of course, (D) follows from (C) because g−1(F ) ⊆ κ∗. Fix A ⊆ κ
with A /∈ x and |A| = κ. Let {Eα : α < κ} be as in Definition 7, with each
Eα ∩ A = ∅. Let {Uα : α < κ} be an open base at y in Y . Let D ⊆ Y \F
be dense in Y with |D| ≤ κ. Choose g : κ → Y such that g maps A onto D
(ensuring (A)) and each g(ξ) ∈

⋂
{Uα : ξ ∈ Eα} \ F (ensuring (B)(C)). �

To apply the elementary submodel technique (as in Dow [6]), we put the
construction of Lemma 9 inside an H(θ), where θ is a suitably large regular
cardinal. Let M ≺ H(θ), with κ ⊂ M and |M | = κ, such that M contains
Y and its topology T , along with F, g, x, y. Let B = P(κ) ∩ M , let st(B)
denote its Stone space, and let Γ : βκ � st(B) be the natural map; so
Γ(x) = x ∩ B = x ∩ M . Since T ∩ M is a base for Y (by w(Y ) ≤ κ),
we have Γ(z1) = Γ(z2) → (βg)(z1) = (βg)(z2), so that βg yields a map
g̃ : st(B) → Y with βg = g̃ ◦ Γ. Note that B contains all finite subsets of
κ, so that st(B) is some compactification of a discrete κ. It is easily seen
that we still have (A–D), replacing βg by g̃, βκ by st(B), and x by Γ(x).
Note that Γ(x) must be countably incomplete by M ≺ H(θ), so that Γ(x)
will not be a P -point in st(B). But to prove Lemma 4 (letting κ = ℵn),
we also need Γ(x) to be a weak Pκ-point in st(B). We may assume that
x ∈ βκ is good, so it is a weak Pκ-point there. But we need to show that
in st(B), Γ(x) is not a limit point of any set of size λ < κ. Our argument
here needs to assume that M is λ-covering and that λ+ is not a Jónsson
cardinal. These two assumptions will cause no problems when λ < ℵω.

As usual, M ≺ H(θ) is λ-covering iff for all E ∈ [M ]λ, there is an
F ∈ [M ]λ such that E ⊆ F and F ∈ M . By taking a union of an elementary
chain of type λ+ (see [6], §3), we see that there is an M ≺ H(θ) with
|M | = λ+ such that M is λ-covering.

κ is called a Jónsson cardinal iff for all ψ : [κ]<ω → κ, there is a W ∈ [κ]κ

such that ψ([W ]<ω) is a proper subset of κ. By Tryba [12] (or see [8]):

Lemma 10. No successor to a regular cardinal is Jónsson.

In particular, each ℵn is not a Jónsson cardinal; this fact is much older
and is easily proved by induction on n.

Lemma 11. Let κ be infinite and x ∈ βκ a good ultrafilter on κ. Fix an
infinite λ < κ and let θ > 2κ be regular. Let M ≺ H(θ), with x, κ ∈ M and
κ ⊂ M . Assume that M is λ-covering and λ+ is not a Jónsson cardinal.
Let B = P(κ) ∩ M , and let Γ : βκ � st(B) be the natural map. Then Γ(x)
is a weak Pλ+-point of st(B).

Proof. Fix Z ⊆ st(B)\{Γ(x)} with |Z| ≤ λ. We shall show that Γ(x) is
not in the closure of Z. For each z ∈ Z, choose Fz ∈ Γ(x) = x∩B = x∩M
such that Fz /∈ z. Since M is λ-covering, we can get 〈Gξ : ξ < λ〉 ∈ M such
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that each Gξ ∈ x and ∀z ∈ Z ∃ξ < λ [Gξ = Fz]. Since λ+ is not Jónsson
and λ+ ∈ M , we can fix ψ ∈ M such that ψ : [λ+]<ω → λ and such that

ψ([W ]<ω) = λ for all W ∈ [λ+]λ
+
. Define H(s) = Gψ(s). Then H ∈ M

and H : [λ+]<ω → Γ(x). Since x is good, we can find 〈Kα : α < λ+〉 ∈ M
such that each Kα is in x (and hence in Γ(x) = x ∩ M), and such that
Kα1 ∩ · · · ∩ Kαn ⊆ H({α1, . . . , αn}) for each n and each α1, . . . , αn ∈ λ+.

Now (in V ), we claim that ∃α < λ+ ∀z ∈ Z [Kα /∈ z] (so that Γ(x) /∈
cl(Z)). If not, then we can fix W ∈ [λ+]λ

+
and z ∈ Z such that Kα ∈ z

for all α ∈ W . Fix ξ < λ such that Gξ = Fz. Since ψ([W ]<ω) = λ, fix
s ∈ [W ]<ω such that ψ(s) = ξ. Say s = {α1, . . . , αn}. Then Gξ = Gψ(s) =
H(s) ⊇ Kα1 ∩ · · · ∩ Kαn ∈ z, a contradiction, since Fz /∈ z. �
Proof of Lemma 4. Use Lemmas 11 and 9, with κ = λ+ = ℵn. �

In view of Lemma 10, we can also prove Theorem 1 replacing ℵω with any
other singular cardinal of cofinality ω, since we can replace ℵn in Lemma 4
by any successor to a regular cardinal.
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