Continuous Maps on Aronszajn Trees^{*}

Kenneth Kunen[†], Jean A. Larson[‡], and Juris Steprāns[§]

August 26, 2010

Abstract

Assuming \diamond : Whenever *B* is a totally imperfect set of real numbers, there is special Aronszajn tree with no continuous order preserving map into *B*.

1 Introduction

We use the following notation: If \Box is a relation on T and $x \in T$, then $x \uparrow$ denotes $\{y \in T : x \sqsubset y\}$ and $x \downarrow$ denotes $\{y \in T : y \sqsubset x\}$. Then a *tree* is a set Twith a strict partial order \sqsubset such that each $x \downarrow$ is well-ordered by \Box . In a tree T, height(x) is the order type of $x \downarrow$ and $\mathcal{L}_{\alpha} = \mathcal{L}_{\alpha}(T) = \{x \in T : \text{height}(x) = \alpha\}$. T is an ω_1 -tree iff $|T| = \aleph_1$, each $\mathcal{L}_{\alpha}(T)$ is countable, and $\mathcal{L}_{\omega_1}(T) = \emptyset$. An *Aronszajn tree* is an ω_1 -tree T with no uncountable chains; then, T is *special* iff T is a countable union of antichains.

We give a tree T its natural *tree topology*, in which $U \subseteq T$ is open iff for all $y \in U$ with height(y) a limit ordinal, there is an $x \sqsubset y$ such that $x \uparrow \cap y \downarrow \subseteq$ U. Then the elements whose heights are successor ordinals or 0 are isolated points. Note that T need not be Hausdorff, although any tree that we construct explicitly will be Hausdorff (equivalently, $y \downarrow = z \downarrow \rightarrow y = z$).

Let T be an ω_1 -tree. A map $\varphi : T \to \mathbb{R}$ is called *order preserving* iff $x \sqsubset y \to \varphi(x) < \varphi(y)$ for all $x, y \in T$. The existence of such a φ clearly implies that T is Aronszajn, but not necessarily special; there is a counter-example [2] under \Diamond . However, it is easy to see (first noted by Kurepa [3]) that T is special iff there is an order preserving $\varphi : T \to \mathbb{Q}$.

Let T be an Aronszajn tree. If there is an order preserving $\varphi : T \to \mathbb{R}$, then there is also a *continuous* order preserving $\psi : T \to \mathbb{R}$, where $\psi(y) = \varphi(y)$ unless height(y) is a limit ordinal, in which case $\psi(y) = \sup\{\varphi(x) : x \sqsubset y\}$. If we assume $MA(\aleph_1)$, then every Aronszajn tree is special, as Baumgartner [1]

^{*2010} Mathematics Subject Classification: Primary 03E35, 54F05. Key Words and Phrases: special Aronszajn tree, diamond.

 $^{^{\}dagger}$ University of Wisconsin, Madison, WI 53706 kunen@math.wisc.edu

[‡]University of Florida, Gainesville, FL 32611 jal@ufl.edu

[§]York University, Toronto, Ontario M3J 1P3 steprans@yorku.ca

proved by forcing with finite order preserving maps into \mathbb{Q} . Note that this same forcing also produces a *continuous* order preserving $\psi: T \to \mathbb{Q}$. We show here that this cannot be done in ZFC, since assuming \diamondsuit , there is an Aronszajn tree T with an order preserving map into \mathbb{Q} (so T is special), but no continuous order preserving $\psi: T \to \mathbb{Q}$.¹

This last result can be generalized somewhat. First, we can replace "order preserving" by the weaker requirement that each $\psi^{-1}\{q\}$ is discrete in the tree topology; observe that when ψ is order preserving, each $\psi^{-1}\{q\}$ is an antichain, and hence closed and discrete. Then, we can replace \mathbb{Q} by any metric space which has no Cantor subsets (that is, subsets homeomorphic to 2^{ω}):

Theorem 1.1 Assume \diamondsuit , and fix a metric space B with no Cantor subsets such that $|B| \leq \aleph_1$. Then there is a special Aronszajn tree T which has no continuous map $\psi: T \to B$ such that each $\psi^{-1}\{b\}$ is discrete.

By *CH* (which follows from \Diamond), $|B| \leq \aleph_1$ holds whenever *B* is separable, as well as when *B* has a dense subset of size \aleph_1 .

Observe that if T is special and $B \subseteq \mathbb{R}$ does have a Cantor subset F, then there must be a continuous order preserving $\psi : T \to B$. Just let $D \subseteq F$ be countable and order-isomorphic to \mathbb{Q} , let $\varphi : T \to D$ be order preserving, and then construct a continuous $\psi : T \to F$ as described above.

In Theorem 1.1, T depends on B. There is no one tree which works for all B by the following, which holds in ZFC (although it is trivial unless CH is true):

Theorem 1.2 Let T be any special Aronszajn tree. Then there is a $B \subseteq \mathbb{R}$ with no Cantor subsets and a continuous order preserving map $\psi: T \to B$ such that for all $x, y \in T$, $\psi(x) \neq \psi(y)$ unless $x \downarrow = y \downarrow$.

So, ψ is actually 1-1 if T is Hausdorff. Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.

By Theorem 1.2, the " $|B| \leq \aleph_1$ " cannot be removed in Theorem 1.1, since *B* could be the direct sum of all totally imperfect subspaces of \mathbb{R} .

2 Killing Continuous Maps

Throughout, T always denotes an ω_1 -tree and B denotes a metric space. We begin with some remarks on pruning open $U \subseteq T$. In the special case when U is a subtree (that is, $x \downarrow \subseteq U$ for all $x \in U$), the pruning reduces to the standard procedure of removing all $x \in U$ with $x \uparrow \cap U$ countable. For a general U, we replace "countable" by "non-stationary" (which is the same when U is a subtree).

¹A continuous order preserving map ψ from an Aronszajn tree *T* into the rationals is a nice thing to have. Todorčević [4, Remark 4.3.(d) on page 429] proved that a combination of such a map with his osc map can be used to color the 2-element chains of *T* with countably many colors so that every chain of order type ω^{ω} receives all the colors.

Definition 2.1 For $U \subseteq T$: U is stationary iff $\{\text{height}(x) : x \in U\}$ is stationary, and U^p is the set of all $x \in U$ such that $x^{\uparrow} \cap U$ is stationary.

Clearly $U^p \subseteq U$. If U is open then U^p is open, since $x \in U^p \to x \downarrow \cap U \subseteq U^p$.

Lemma 2.2 If $U \subseteq T$ is open, then $(U^p)^p = U^p$.

Proof. Fix $a \in U^p$; so $a \uparrow \cap U$ is stationary. We need to show: $\{x \in a \uparrow \cap U : x \uparrow \cap U \text{ is stationary}\}$ is stationary. So, we fix a club $C \subseteq \omega_1$, and we shall find an x such that height $(x) \in C$ and $a \sqsubset x$ and $x \in U$ and $x \uparrow \cap U$ is stationary.

Since $a \in U^p$, fix a stationary S such that for all $\beta \in S$: $a \uparrow \cap U \cap \mathcal{L}_{\beta}(T) \neq \emptyset$ and β is a limit point of C. For each $\beta \in S$: Choose $y_{\beta} \in a \uparrow \cap U \cap \mathcal{L}_{\beta}(T)$; then, since U is open, choose $x_{\beta} \sqsubset y_{\beta}$ such that $x_{\beta} \in a \uparrow \cap U$ and height $(x_{\beta}) \in C$.

By the Pressing Down Lemma, fix x and a stationary $S' \subseteq S$ such that $x_{\beta} = x$ for all $x \in S'$. Then $x \uparrow \cap U$ is stationary (since it contains $\{y_{\beta} : \beta \in S'\}$) and height $(x) \in C$ and $a \sqsubset x$ and $x \in U$. \bigcirc

Lemma 2.3 If $A \subseteq T$ is discrete in the tree topology and U is a stationary open set, then the set $S := \{\alpha : U \cap \mathcal{L}_{\alpha} \neq \emptyset \land U \cap \mathcal{L}_{\alpha} \subseteq A\}$ is non-stationary. Hence, $U \setminus A$ is stationary.

Proof. In fact, S is discrete in the ordinal (= tree) topology on ω_1 . To see this, suppose that $\alpha \in S$ is a limit ordinal. Then fix $y \in U \cap \mathcal{L}_{\alpha}$. Note that $y \in A$ since $U \cap \mathcal{L}_{\alpha} \subseteq A$. Since U is open and A is discrete, we may fix $x \sqsubset y$ such that $x \uparrow \cap y \downarrow \subseteq U$ and $x \uparrow \cap y \downarrow \cap A = \emptyset$. Let $\xi = \text{height}(x)$. Then $\xi < \alpha$, and S contains no ordinals between ξ and α .

The next lemma has a much simpler proof when B is separable (then, each \mathcal{W}_n can be a singleton). For $b \in B$ and $\varepsilon > 0$, let $N_{\varepsilon}(b) = \{z \in B : d(b, z) < \varepsilon\}$ (where d is the metric on B).

Lemma 2.4 Suppose that $U \subseteq T$ is a stationary open set, B is any metric space, and $\psi: U \to B$ is continuous, with each $\psi^{-1}{b}$ discrete. Then there are infinitely many $b \in B$ such that $\psi^{-1}(N_{\varepsilon}(b))$ is stationary for all $\varepsilon > 0$.

Proof. Since each $U \setminus \psi^{-1}\{b\}$ is also stationary open by Lemma 2.3, it is sufficient to prove that there is one such b. If there are no such b, then B is covered by the open sets W such that $\psi^{-1}(W)$ is non-stationary. By paracompactness of B, this cover has a σ -discrete open refinement, $\{\mathcal{W}_n : n \in \omega\}$. So, each \mathcal{W}_n is a discrete (and hence disjoint) family of open sets W such that $\psi^{-1}(W)$ is non-stationary, and $B = \bigcup_{n \in \omega} (\bigcup \mathcal{W}_n)$.

Fix *n* such that $\psi^{-1}(\bigcup \mathcal{W}_n)$ is stationary. We may assume that $|\mathcal{W}_n| \geq \aleph_1$, since $|\mathcal{W}_n| \leq \aleph_0$ yields an obvious contradiction. Also, we may assume that $|B| \leq \aleph_1$ (replacing *B* by $\psi(U)$), so that $|\mathcal{W}_n| = \aleph_1$. Let $\mathcal{W}_n = \{W_{\xi} : \xi < \omega_1\}$.

For each ξ , let C_{ξ} be a club disjoint from {height $(y) : y \in \psi^{-1}(W_{\xi})$ }. Let D be the diagonal intersection; so D is club and $\xi < \alpha \in D \to \alpha \in C_{\xi}$. Let S be the

2 KILLING CONTINUOUS MAPS

set of limit $\alpha \in D$ such that $\mathcal{L}_{\alpha}(T) \cap \psi^{-1}(\bigcup \mathcal{W}_n) \neq \emptyset$; then S is stationary. For $\alpha \in S$, choose $y_{\alpha} \in \mathcal{L}_{\alpha}(T) \cap \psi^{-1}(\bigcup \mathcal{W}_n)$. Then $y_{\alpha} \in \psi^{-1}(W_{\xi_{\alpha}})$ for some (unique) ξ_{α} , and $\xi_{\alpha} \geq \alpha$ since $\alpha \in D$. Then fix $x_{\alpha} \sqsubset y_{\alpha}$ with $x_{\alpha} \uparrow \cap y_{\alpha} \downarrow \subseteq \psi^{-1}(W_{\xi_{\alpha}})$. By the Pressing Down Lemma, fix x and a stationary $S' \subseteq S$ such that $x_{\alpha} = x$ for all $\alpha \in S'$. Then, using $\xi_{\alpha} \geq \alpha$, fix stationary $S'' \subseteq S'$ such that the ξ_{α} , for $\alpha \in S''$, are all different. Then the sets $x \uparrow \cap y_{\alpha} \downarrow$, for $\alpha \in S''$ are pairwise disjoint, which is impossible because $\mathcal{L}_{\text{height}(x)+1}(T)$ is countable. \bigcirc

Proof of Theorem 1.1. Call $\psi : T \to B$ a *DP* map iff ψ is continuous and each $\psi^{-1}{b}$ is discrete.

We build T, along with an order–preserving $\varphi: T \to \mathbb{Q}$, and use \Diamond to defeat all DP maps $\psi: T \to B$.

As a set, T will be the ordinal ω_1 , and the root will be 0. We shall define the tree order \Box so that $\mathcal{L}_0(T) = \{0\}, \mathcal{L}_1(T) = \omega \setminus \{0\}, \mathcal{L}_{n+1}(T) = \{\omega \cdot n + k : k \in \omega\}$ for $0 < n < \omega$, and $\mathcal{L}_\alpha(T) = \{\omega \cdot \alpha + k : k \in \omega\}$ when $\omega \le \alpha < \omega_1$. As in the usual construction of a special Aronszajn tree, we construct $\varphi : T \to \mathbb{Q}$ and \Box recursively so that $\varphi(0) = 0$ and

$$\forall x \in T \,\forall \alpha < \omega_1 \,\forall q \in \mathbb{Q} \,[\alpha > \operatorname{height}(x) \land q > \varphi(x) \rightarrow \\ \exists y \in \mathcal{L}_\alpha(T) \,[x \sqsubset y \land \varphi(y) = q]] \quad .$$

This implies, in particular, that each node has \aleph_0 immediate successors.

Let $\langle \psi_{\alpha} : \alpha < \omega_1 \rangle$ be a \diamond sequence, where each $\psi_{\alpha} : \alpha \to B$. Such a sequence exists by \diamond because $|B| \leq \aleph_1$.

In the recursive construction of \Box and φ , do the usual thing in building each $\mathcal{L}_{\gamma}(T)$ to preserve (*). But in addition, whenever $\omega \cdot \gamma = \gamma > 0$ (so $T_{\gamma} = \gamma$ as a set, and $\psi_{\gamma} : T_{\gamma} \to B$): *if* ψ_{γ} is a DP map, then *if* it is possible, extend \Box so that the node $\gamma \in \mathcal{L}_{\gamma}(T)$ satisfies:

$$\sup\{\varphi(x): x \sqsubset \gamma\} \le 1 \text{ and } \langle \psi_{\gamma}(x): x \sqsubset \gamma \rangle \text{ does not converge in } B$$
 . (†)

This implies that ψ_{γ} could not extend to a continuous map into B. Use the nodes $\gamma + 1, \gamma + 2, \ldots$ to preserve (*), so if (†) is possible, we may let $\varphi(\gamma) = 1$. If (†) is impossible, then ignore it and just preserve (*). To ensure that the tree will be Hausdorff, make sure that if $j \neq k$ then $\gamma + j$ and $\gamma + k$ are limits of distinct branches.

Lemma 2.5 (Main Lemma) Suppose that $\psi : T \to B$ is a DP map. Then there is a club $C \subseteq \omega_1$ so that for all limit points γ of $C: \omega \cdot \gamma = \gamma$, and if $\psi_{\gamma} = \psi \upharpoonright \gamma$, then (\dagger) is possible at level γ .

The theorem follows immediately, since choosing such a γ for which $\psi_{\gamma} = \psi \uparrow \gamma$, we see that ψ cannot be continuous at node $\gamma \in \mathcal{L}_{\gamma}(T)$.

So, we proceed to prove the Main Lemma. We use a standard definition of C — namely, let $\langle M_{\xi} : \xi < \omega_1 \rangle$ be a continuous chain of countable elementary

submodels of $H(\theta)$ (for a suitably large regular θ), such that $\varphi, \psi, \Box, B \in M_0$ and each $M_{\xi} \in M_{\xi+1}$. Let $C = \{M_{\xi} \cap \omega_1 : \xi < \omega_1\}$.

Now, fix a limit point γ of C, with $\psi_{\gamma} = \psi \upharpoonright \gamma$. Let $\alpha_n \nearrow \gamma$, with all $\alpha_n \in C$. We shall build a Cantor tree of candidates for the path satisfying (†), and then prove that one of these works by using the fact that B does not have a Cantor subset. For $s \in 2^{<\omega}$, construct W_s, U_s, x_s with the following properties; here, |s| denotes the length of s.

- 1. $W_s \subseteq B$ is open and non-empty, and diam $(W_s) \leq 1/|s|$.
- 2. $W_{\emptyset} = B$.
- 3. $\overline{W_{s \frown 0}}, \overline{W_{s \frown 1}} \subseteq W_s \text{ and } \overline{W_{s \frown 0}} \cap \overline{W_{s \frown 1}} = \emptyset.$
- 4. U_s is a stationary open subset of T, with $(U_s)^p = U_s$.
- 5. $U_{\emptyset} = \{x \in T : \varphi(x) < 1\},\$
- 6. $U_{s \frown 0}, U_{s \frown 1} \subseteq U_s$ and $U_s \subseteq \psi^{-1}(W_s)$.
- 7. $x_s \in U_s$ and $U_{s \frown i} \subseteq x_s \uparrow$ for i = 0, 1.
- 8. $x_{\emptyset} = 0$, the root node of T.
- 9. For n = |s|: height $(x_s) < \alpha_n$ and, when n > 0, height $(x_s) \ge \alpha_{n-1}$.
- 10. For n = |s| and $\alpha_n = M_{\xi_n} \cap \omega_1$: $W_s, U_s, x_s \in M_{\xi_n}$.

For each $f \in 2^{\omega}$, conditions (7) and (9) guarantee that $P_f := \bigcup \{x_{f \upharpoonright n} \downarrow : n \in \omega\}$ is a cofinal path through T_{γ} . Now, fix f so that $\bigcap_{n \in \omega} W_{f \upharpoonright n} = \emptyset$. There is such an f because otherwise, by conditions (1)(3), $\bigcup \{\bigcap_{n \in \omega} W_{f \upharpoonright n} : f \in 2^{\omega}\}$ would be a Cantor subset of B. Then, (†) will hold if we place node γ above the path P_f ; note that condition (5) guarantees that $\sup\{\varphi(x) : x \sqsubset \gamma\} \leq 1$, and every limit point of $\langle \psi_{\gamma}(x) : x \sqsubset \gamma \rangle$ must lie in $\bigcap_{n \in \omega} W_{f \upharpoonright n}$, which is empty.

Of course, we need to verify that the W_s, U_s, x_s can be constructed. Fix s, with n = |s|, and assume that we have W_s, U_s, x_s . Note that $U_s \cap x_s \uparrow$ is stationary by $(U_s)^p = U_s$. Applying Lemma 2.4 (to $\psi \upharpoonright (U_s \cap x_s \uparrow) : (U_s \cap x_s \uparrow) \to W_s$), there exist $b_0 \neq b_1$ in W_s such that $\psi^{-1}(N_{\varepsilon}(b_i)) \cap U_s \cap x_s \uparrow$ is stationary for all $\varepsilon > 0$; applying condition (10), choose such $b_0, b_1 \in M_{\xi_n}$. Then fix ε to be the smallest of 1/(n+1), $d(b_0, b_1)/3$, $d(b_0, B \setminus W_s)/2$, and $d(b_1, B \setminus W_s)/2$. Let $W_{s \cap i} = N_{\varepsilon}(b_i)$ and $U_{s \cap i} = (\psi^{-1}(W_{s \cap i}) \cap U_s \cap x_s \uparrow)^p$.

Then choose $x_{s^{\frown i}} \in U_{s^{\frown i}}$ with $\alpha_n \leq \text{height}(x_{s^{\frown i}})$; such an $x_{s^{\frown i}}$ exists by $(U_{s^{\frown i}})^p = U_{s^{\frown i}}$. Also, make sure that $x_{s^{\frown i}} \in M_{\xi_{n+1}}$ (using $M_{\xi_{n+1}} \prec H(\theta)$), which guarantees that $\text{height}(x_{s^{\frown i}}) < \alpha_{n+1}$ and that condition (10) will continue to hold. \bigcirc

3 Constructing Continuous Maps

Proof of Theorem 1.2. Let $H = \{1, 4, 16, ...\} = \{2^{2i} : i \in \omega\}$ and $K = \{2, 8, 32, ...\} = \{2^{2i+1} : i \in \omega\}$. Observe that $H \cap K = \emptyset$ and

$$\forall n_1, n_2 \in H \,\forall j_1, j_2 \in K \left[n_1 + j_1 = n_2 + j_2 \rightarrow n_1 = n_2 \wedge j_1 = j_2 \right] \; .$$

Now, let P be the set of all real numbers of the form $\sum_{j \in K} \varepsilon_j 2^{-j}$, where each $\varepsilon_j \in \{0, 1\}$. Then P is a Cantor set and $0 \in P \subset [0, 1]$.

Let S be the set of all sums of the form $\sum_{n \in H} z_n 2^{-n}$, where each $z_n \in P$. Then S is compact, since it is the range of the continuous map $\Gamma : P^H \to \mathbb{R}$ defined by $\Gamma(\vec{z}) = \sum_{n \in H} z_n 2^{-n}$. Also, Γ is 1-1; that is,

$$\sum_{n \in H} z_n 2^{-n} = \sum_{n \in H} w_n 2^{-n} \implies \forall n \in H \left[z_n = w_n \right] \qquad (\text{all } z_n, w_n \in P \) \quad . \quad (\circledast)$$

To see this, let $z_n = \sum_{j \in K} \varepsilon_{j,n} 2^{-j}$ and $w_n = \sum_{j \in K} \delta_{j,n} 2^{-j}$. We then have $\sum \{\varepsilon_{j,n} 2^{-(j+n)} : j \in K \land n \in H\} = \sum \{\delta_{j,n} 2^{-(j+n)} : j \in K \land n \in H\}$. Since the values j + n are all different, each $\varepsilon_{j,n} = \delta_{j,n}$.

For $n \in H$, define the "coordinate projection" $\pi_n : S \to P$ so that we have $\pi_n(\sum_{n \in H} z_n 2^{-n}) = z_n$. So, $\pi_n = \hat{\pi}_n \circ \Gamma^{-1}$, where $\hat{\pi}_n : P^H \to P$ is the usual coordinate projection.

Since T is special, fix $a: T \to H$ such that each $A_n := a^{-1}\{n\}$ is antichain. Also, fix a 1-1 function $\zeta: T \to P \setminus \{0\}$ such that $\zeta(T)$ has no perfect subsets. Then, define

$$\psi(x) = \sum \{ \zeta(t) \cdot 2^{-a(t)} : t \in x \downarrow \} .$$

Let B be the range of ψ ; then $\psi : T \to B$ is clearly continuous and order preserving.

Note that $\psi(x) = \sum_{n \in H} z_n 2^{-n}$, where $z_n = \zeta(t)$ if $t \in A_n \cap x \downarrow$, and $z_n = 0$ if $A_n \cap x \downarrow = \emptyset$. Then, $x \downarrow \neq y \downarrow \to \psi(x) \neq \psi(y)$ follows from (\circledast) and the fact that ζ is 1-1.

Suppose that $C \subseteq B$ is a Cantor set. Then each $\pi_n(C)$ is a compact subset of $\operatorname{ran}(\zeta) \cup \{0\}$, and is hence countable. There is then a countable α such that $\pi_n(C) \subseteq \zeta(T_\alpha) \cup \{0\}$ for all $n \in H$. So, fix $x \in T$ with $\psi(x) \in C$ and height $(x) > \alpha$, let $x \downarrow \cap \mathcal{L}_\alpha(T) = \{t\}$, and let n = a(t). Then $\zeta(t) = \pi_n(\psi(x)) \in \pi_n(C)$ and $\zeta(t) \notin \zeta(T_\alpha) \cup \{0\}$, a contradiction. \bigcirc

References

- J. Baumgartner, J. Malitz, and W. Reinhardt, Embedding trees in the rationals, Proc. Nat. Acad. Sci. U.S.A. 67 (1970) 1748-1753.
- [2] K. Devlin, Note on a theorem of J. Baumgartner, Fund. Math. 76 (1972) 255-260.
- [3] D. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Revista Ci., Lima 42 (1940) 827-846.
- [4] S. Todorčević, Some partitions of three-dimensional combinatorial cubes, Journal of Combinatorial Theory, Series A 68 (2) (1994), 410-437.