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Abstract

Assuming : Whenever B is a totally imperfect set of real numbers,
there is special Aronszajn tree with no continuous order preserving map
into B.

1 Introduction

We use the following notation: If C is a relation on 7" and = € T, then z7
denotes {y € T : T y} and z| denotes {y € T': y T x}. Then a tree is a set T
with a strict partial order C such that each x| is well-ordered by C. In a tree T,
height(x) is the order type of x| and L, = L4(T) = {x € T : height(z) = a}.
T is an wy—tree iff |T| = Ny, each L,(T) is countable, and L., (T) = 0. An
Aronszajn tree is an wi—tree T" with no uncountable chains; then, T' is special
iff T is a countable union of antichains.

We give a tree T its natural tree topology, in which U C T is open iff for
all y € U with height(y) a limit ordinal, there is an = C y such that T Ny| C
U. Then the elements whose heights are successor ordinals or 0 are isolated
points. Note that T need not be Hausdorff, although any tree that we construct
explicitly will be Hausdorff (equivalently, y| = z| — y = 2).

Let T be an wi—tree. A map ¢ : T — R is called order preserving iff
xCy— p(x) < p(y) for all z,y € T. The existence of such a ¢ clearly implies
that T is Aronszajn, but not necessarily special; there is a counter-example [2]
under . However, it is easy to see (first noted by Kurepa [3]) that T is special
iff there is an order preserving ¢ : T' — Q.

Let T be an Aronszajn tree. If there is an order preserving ¢ : T — R,
then there is also a continuous order preserving ¢ : T'— R, where ¥(y) = ¢(y)
unless height(y) is a limit ordinal, in which case ¥(y) = sup{p(z) : x C y}. If
we assume MA(X;), then every Aronszajn tree is special, as Baumgartner [1]

*2010 Mathematics Subject Classification: Primary 03E35, 54F05. Key Words and Phrases:
special Aronszajn tree, diamond.

TUniversity of Wisconsin, Madison, WI 53706 kunen@math.wisc.edu

HUniversity of Florida, Gainesville, FL 32611 jal@ufl.edu

$York University, Toronto, Ontario M3J 1P3  steprans@yorku.ca



2 KILLING CONTINUOUS MAPS 2

proved by forcing with finite order preserving maps into Q. Note that this same
forcing also produces a continuous order preserving ¢ : T' — Q. We show here
that this cannot be done in ZFC, since assuming <, there is an Aronszajn tree
T with an order preserving map into Q (so T is special), but no continuous
order preserving ¢ : T — Q.

This last result can be generalized somewhat. First, we can replace “order
preserving” by the weaker requirement that each ¢~'{q} is discrete in the tree
topology; observe that when v is order preserving, each 1¥~'{¢} is an antichain,
and hence closed and discrete. Then, we can replace Q by any metric space
which has no Cantor subsets (that is, subsets homeomorphic to 2¢):

Theorem 1.1 Assume <, and fir a metric space B with no Cantor subsets
such that |B| < Xy. Then there is a special Aronszajn tree T which has no
continuous map 1 : T — B such that each y~*{b} is discrete.

By CH (which follows from <)), |B| < ®; holds whenever B is separable, as
well as when B has a dense subset of size Nj.

Observe that if T' is special and B C R does have a Cantor subset F', then
there must be a continuous order preserving ¢ : T' — B. Just let D C F be
countable and order-isomorphic to Q, let ¢ : T' — D be order preserving, and
then construct a continuous ¢ : T' — F' as described above.

In Theorem 1.1, T" depends on B. There is no one tree which works for all B
by the following, which holds in ZFC' (although it is trivial unless CH is true):

Theorem 1.2 Let T be any special Aronszajn tree. Then there is a B C R with
no Cantor subsets and a continuous order preserving map v : T — B such that

forallx,y € T, ¥(x) # Y(y) unless x| = y|.

So, 1 is actually 1-1 if T is Hausdorff. Theorem 1.1 is proved in Section 2,
and Theorem 1.2 is proved in Section 3.

By Theorem 1.2, the “|B| < X;” cannot be removed in Theorem 1.1, since
B could be the direct sum of all totally imperfect subspaces of R.

2 Killing Continuous Maps

Throughout, T always denotes an wj—tree and B denotes a metric space. We
begin with some remarks on pruning open U C T'. In the special case when
U is a subtree (that is, x| C U for all x € U), the pruning reduces to the
standard procedure of removing all x € U with T NU countable. For a general
U, we replace “countable” by “non-stationary” (which is the same when U is a
subtree).

! A continuous order preserving map 1 from an Aronszajn tree T into the rationals is a nice
thing to have. Todor¢evié¢ [4, Remark 4.3.(d) on page 429] proved that a combination of such
a map with his osc map can be used to color the 2-element chains of T" with countably many
colors so that every chain of order type w® receives all the colors.



2 KILLING CONTINUOUS MAPS 3

Definition 2.1 For U C T': U is stationary iff {height(x) : z € U} is station-
ary, and UP is the set of all x € U such that xT NU is stationary.

Clearly UP C U. If U is open then UP is open, since x € UP — x| NU C UP.
Lemma 2.2 IfU C T is open, then (UP)P = UP.

Proof. Fix a € UP; so a] NU is stationary. We need to show: {z € al NU :
xTNU is stationary} is stationary. So, we fix a club C' C wy, and we shall find
an x such that height(z) € C and a C z and € U and ] N U is stationary.
Since a € UP, fix a stationary S such that for all 3 € S: aTNUNL(T) # 0
and (3 is a limit point of C'. For each 5 € S: Choose yg € alNU N Lg(T); then,
since U is open, choose xg C yg such that 3 € aT N U and height(zg) € C.
By the Pressing Down Lemma, fix  and a stationary S’ C S such that
zg =z for all x € §'. Then 27 NU is stationary (since it contains {yg : 5 € S'})

and height(z) € C and a C z and z € U.

Lemma 2.3 If A C T is discrete in the tree topology and U is a stationary
open set, then the set S :={a:UNLy, #0 N UNL, C A} is non-stationary.
Hence, U\ A is stationary.

Proof. In fact, S is discrete in the ordinal (= tree) topology on wq. To see this,
suppose that o € S is a limit ordinal. Then fix y € U N L,. Note that y € A
since U N L, C A. Since U is open and A is discrete, we may fix x C y such
that z71 Nyl CU and z7 Nyl N A = (. Let £ = height(z). Then £ < o, and S

contains no ordinals between £ and «.

The next lemma has a much simpler proof when B is separable (then, each
W,, can be a singleton). For b € B and € > 0, let N.(b) = {z € B:d(b,z) < e}
(where d is the metric on B).

Lemma 2.4 Suppose that U C T is a stationary open set, B is any metric
space, and 1) : U — B is continuous, with each 1¥~1{b} discrete. Then there are
infinitely many b € B such that 11 (N.(b)) is stationary for all € > 0.

Proof. Since each U \ ¢»~1{b} is also stationary open by Lemma 2.3, it is suffi-
cient to prove that there is one such b. If there are no such b, then B is covered
by the open sets W such that 1»~!(W) is non-stationary. By paracompactness
of B, this cover has a o—discrete open refinement, {W,, : n € w}. So, each W,
is a discrete (and hence disjoint) family of open sets W such that =1 (W) is
non-stationary, and B = (J,,c.,(LWh).

Fix n such that ¥~1(lJW,) is stationary. We may assume that |W,| > Ny,
since |W,| < Ny yields an obvious contradiction. Also, we may assume that
|B] <Xy (replacing B by ¢(U)), so that [W,| = R;. Let W, = {W¢ : £ < w}.

For each &, let C¢ be a club disjoint from {height(y) : y € =1 (W¢)}. Let D
be the diagonal intersection; so D iscluband { < a € D — a € C¢. Let S be the
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set of limit a € D such that L, (T) Ny~ (UW,) # 0; then S is stationary. For
a € S, choose Yo € Lo(T)NY~H({UW,). Then yo € 11 (We,) for some (unique)
o, and &, > a since a € D. Then fix 2o T Yo With 24T Nyal C P71 (We,).
By the Pressing Down Lemma, fix x and a stationary S’ C S such that z, =z
for all « € S’. Then, using &, > «, fix stationary S” C S’ such that the &,,
for « € S”, are all different. Then the sets 1 Ny, |, for a € S” are pairwise

disjoint, which is impossible because Lygight(z)+1(7") is countable.

Proof of Theorem 1.1. Call ¢ : T'— B a DP map iff ¥ is continuous and
each 1~1{b} is discrete.

We build T'; along with an order—preserving ¢ : T'— Q, and use <} to defeat
all DP maps ¢ : T' — B.

As a set, T will be the ordinal wy, and the root will be 0. We shall define the
tree order C so that £o(T') = {0}, £1(T) = w\{0}, Ly,41(T) = {w-n+k: k € w}
for 0 <n<w,and Lo(T) ={w-a+k:k € w} when w < a < w;. As in the
usual construction of a special Aronszajn tree, we construct ¢ : T'— Q and C
recursively so that ¢(0) = 0 and

Ve € TVa < w; Vg € Q[a > height(x) A g > p(z) —

3 € Lo(T) [z Cy Aoly) = g]] . *)

This implies, in particular, that each node has Xy immediate successors.

Let (14 : @ < w1) be a { sequence, where each 1), : & — B. Such a sequence
exists by < because |B| < Nj.

In the recursive construction of C and ¢, do the usual thing in building each
L,(T) to preserve (). But in addition, whenever w-v =+ >0 (so Ty, =y as a
set, and ., : Ty — B): if 1, is a DP map, then if it is possible, extend C so
that the node v € £,(T) satisfies:

sup{p(z) : @ C v} <1 and (¢ (x) :  C ) does not converge in B . ()

This implies that ¢, could not extend to a continuous map into B. Use the
nodes v+ 1,7 +2,... to preserve (x), so if (}) is possible, we may let p(vy) = 1.
If (1) is impossible, then ignore it and just preserve (x). To ensure that the tree
will be Hausdorff, make sure that if j # k then v + j and ~ 4+ k are limits of
distinct branches.

Lemma 2.5 (Main Lemma) Suppose that ¢ : T — B is a DP map. Then
there is a club C C wy so that for all limit points v of C: w -~y = =, and if
Yy = [y, then (1) is possible at level 7.

The theorem follows immediately, since choosing such a « for which 1., =
Yy, we see that 1) cannot be continuous at node v € L, (T).

So, we proceed to prove the Main Lemma. We use a standard definition of
C — namely, let (M, : £ < wi) be a continuous chain of countable elementary
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submodels of H(6) (for a suitably large regular 6), such that ¢,1,C, B € My
and each M¢ € M¢yy. Let C = {M¢Nwy : § <wi}.

Now, fix a limit point v of C', with ¢, = %[v. Let o, / 7y, with all o, € C.
We shall build a Cantor tree of candidates for the path satisfying (f), and then
prove that one of these works by using the fact that B does not have a Cantor
subset. For s € 2<%, construct Wy, U, x5 with the following properties; here,
|s| denotes the length of s.

W, C B is open and non-empty, and diam(W;) < 1/|s|.

Wy = B.

W0, W1 € Wy and Wy~ N Wy—1 = 0.

Us is a stationary open subset of T, with (Us)P = Us.
Up={z €T :p(x) <1},

Us~0,Us~1 C Us and Us C o~ H(Wy).

zs € Us and Ug~; C 2,47 for ¢ =0, 1.

xg = 0, the root node of T

For n = |s|: height(zs) < o, and, when n > 0, height(zs) > ;1.
For n = |s| and oy, = Mg, Nwi: Wi, Us, x5 € Mg, .
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For each f € 2¥, conditions (7) and (9) guarantee that Py := (J{zfn] : n € w}
is a cofinal path through T,. Now, fix f so that (), o, Wy, = 0. There is such
an f because otherwise, by conditions (1)(3), U{(N,.co, Wrin : f € 2} would be
a Cantor subset of B. Then, () will hold if we place node v above the path Py;
note that condition (5) guarantees that sup{p(z) : x C v} < 1, and every limit
point of (¢, (x) : x T v) must lie in (.., Wyn, which is empty.

Of course, we need to verify that the W, Uy, zs can be constructed. Fix
s, with n = |s|, and assume that we have W, U, x5. Note that Us N xzs] is
stationary by (U, )P = U,. Applying Lemma 2.4 (to PI(UsNas?) : (UsNasl) —
Ws), there exist by # by in W, such that ¢~ (N-(b;)) NUsNx,T is stationary for
all € > 0; applying condition (10), choose such bg,b; € M,. Then fix € to be
the smallest of 1/(n + 1), d(bo,b1)/3, d(bo, B\W5)/2, and d(b1, B\Ws)/2. Let
We~i = Ng(bz) and Ug~; = (lbfl(Wsﬁi) NUsN xST)p.

Then choose zs~; € Us~; with a,, < height(xs~;); such an z,~; exists by
(Us~i)? = Us~;. Also, make sure that xy—~; € Mg, ., (using M, ., < H(0)),
which guarantees that height(xs~;) < ay,+1 and that condition (10) will continue
to hold. ©

3 Constructing Continuous Maps

Proof of Theorem 1.2. Let H = {1,4,16,...} = {2% : i € w} and K =
{2,8,32,...} = {2%*! :j € w}. Observe that H N K = () and

an,TLQEHle,jQEK[n1+j1:n2+j2 — nlzngAjlzjg]
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Now, let P be the set of all real numbers of the form ) jEK 5j2_j, where each
g; € {0,1}. Then P is a Cantor set and 0 € P C [0, 1].

Let S be the set of all sums of the form ZnEH zp27 ", where each z, € P.
Then S is compact, since it is the range of the continuous map I' : P#¥ — R
defined by I'(Z) = >, oy 2027". Also, I is 1-1; that is,

> z2 = w2 = VneH[zm=w,] (all zpw, €P) . (O
neH neH

To see this, let z, = ZJEK 5j7n2_j and w, = ZjeK 6j7n2_j. We then have
S{ejn2 Ut s j e KAne Hy =3{6;,270" : j € K An € H}. Since the
values j + n are all different, each ¢;, = d; .

For n € H, define the “coordinate projection” 7, : S — P so that we have
Tn(Dopem #2n2™") = 2p. So, M, = ftp 0 ', where , : PH — P is the usual
coordinate projection.

Since T is special, fix a : T — H such that each A, := a~'{n} is antichain.
Also, fix a 1-1 function ¢ : T — P\{0} such that ((7') has no perfect subsets.
Then, define

Yla) = {¢t)-27W teal} .

Let B be the range of v; then ¢ : T' — B is clearly continuous and order
preserving.

Note that ¥(x) = Y . 2,27", where z, = ((t) if t € A, Nz], and z, =0
if A,Nxz| =0. Then, x| # y| — ¥ (x) # ¥(y) follows from ( [ and the fact
that ¢ is 1-1.

Suppose that C C B is a Cantor set. Then each 7,(C) is a compact subset
of ran(¢) U {0}, and is hence countable. There is then a countable a such that
T (C) C ((T,)U{0} for alln € H. So, fix x € T with ¥(z) € C and height(z) >
a, let | N Lo(T) = {t}, and let n = a(t). Then ((t) = 7, (Y(z)) € m,(C) and
¢(t) ¢ ¢((T,) U{0}, a contradiction.
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