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Abstract

The Bohr compactification and the Bohr topology are well-known
for groups, but they can easily be generalized to arbitrary structures.
We prove a number of theorems about Bohr topologies in this general
setting. Some of these results are new even for groups; for example,
the weight of the Bohr compactification of a countable structure is
either countable or continuum. In some cases, theorems about Bohr
topologies are special cases of more general results in C), theory. We also
present applications of these generalities to the Bohr compactifications
of lattices, semilattices, and loops.

1 Introduction

The Bohr topology and Bohr compactification for groups date back to the
1940 manuscript of Weil [35], and are well-known in harmonic analysis. In
fact these notions generalize to arbitrary algebraic structures, as pointed out
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by Holm [14] in 1964. For example, if 2 is ring (with no topology on it yet),
its Bohr-Holm compactification is a compact ring b2(, together with a ring
homomorphism ® from 2 into a dense subring of b2(. The pair (b2, P) is
characterized as the mazimal compactification of 2. Then, 2A# denotes the
ring A together with its Bohr topology — that is, the topology induced by the
map ® : A — bA. So, A¥ is a topological ring.

These notions are made precise by Definition 2.3.6. Actually, unlike in
in Holm [14], we define b2 without reference to any algebraic axioms which
20 may satisfy. As we point out though, b2 satisfies all the positive logical
sentences satisfied by 2 (see Lemma 2.3.9). In particular, if 2 is a ring, then
b2 will be a ring also, and if every element of 2 has a square root, the same
will be true in b%; it is not necessary to decide ahead of time whether to view
20 as a member of the category of rings or of the category of rings all of whose
elements have square roots.

Once the definitions are given, Section 2 develops some general theorems
about b2 and A#, and Section 3 applies these to some specific classes of
structures — primarily groups, quasigroups, semilattices, and lattices — where
one sometimes has a fairly simple description of b%l.

Some of the general results in this paper are new even in the case of
groups. For example (see Section 2.8), given a structure B, one can always
find a countable 2 C B such that b2l is just the restriction of 6B to 2. One
cannot in general let 2 be an arbitrary countable substructure of ‘B here; one
can in the cases of semilattices (by Theorem 3.4.26) and abelian groups (as is
well-known), but one cannot in the cases of distributive lattices (see Section
3.5) or non-abelian groups.

Also, by Corollary 2.10.20, the weight of the closure of every countable
subset of B in bB is either countable or 2%, For groups, both these values are
possible (see Section 3.3). For abelian groups, however, only 2% is possible, by
arguments described in [11] and [21]. Actually, Corollary 2.10.20 is a special
case of a more general result in C), theory, as we explain in Section 2.10.

A general question, for infinite structures 2, 9B, is whether A%, $B# can be
homeomorphic topological spaces when 2, %8 are not isomorphic structures.
For most varieties of structures, it is easy to give many such examples, but in
the case of abelian groups, this is a long outstanding question of van Douwen,
and has generated a fairly large body of literature. Some references are given
in Section 3.3, together with our proof that A%, B# are always homeomorphic
whenever 2 is a subgroup of ‘B of finite index.
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Other of our theorems show how some results which are known in the
case of groups can be extended to more general classes of structures. For
example, in Section 2.9, we discuss conditions which imply that b(2 x B) =
b2A x bB. This equality holds for semigroups with an identity element 1 [16,
14, 15], but not for semigroups in general. The use of the 1 has an obvious
generalization (Lemma 2.9.3) to other structures, but we also show b(AxB) =
b2A x bB for some structures which lack the 1, such as semilattices, lattices, and
quasigroups. Proving equality for this more general case involves our study
of substructures in Section 2.7 (in some cases, it is “harmless” to extend the
structure to add a 1), as well as conditions under which the basic functions
in the structure may be modified; see Section 2.8. For example, for groups,
b(G;-) = b(G; -, 1); that is, it does not matter whether or not we consider the
variety to include the unary inverse function. A similar result holds for some
(but not all) varieties of loops (see Section 3.2). For distributive lattices, one
cannot in general identify b(A;V, A) with b(A; V), even though A is first-order
definable from V; one can drop the A in the case of total orders (see Sections
3.4 and 3.5).

For groups %2, one may compute b2l by using the homomorphisms into
various U(n) (the group of all n X n unitary matrices); we say that {U(n) :
1 < n < w} is adequate for groups. For abelian groups, the circle group
U(1) alone gives us the adequate set {U(1)}. The situation for general 2
is discussed in Sections 2.6 and 2.10. The collection of all second countable
compact structures is always adequate (Theorem 2.6.4), but this collection is
uncountable. If there is a countable adequate family for 2, then ¥ is an
Eberlein-Grothendieck space (a notion from C), theory; see Definition 2.10.7).
A countable 2 for which 2(# is not an Eberlein-Grothendieck space (because
2# is the Fréchet — Urysohn fan) is described in Example 3.6.7.

A number of other definitions of b2 and 2A# are known to be equivalent in
the case of groups. For example, G# is the finest totally bounded topological
group topology on G the correct generalization of this (described in Section
2.4 and by Holm [14]) derives 2(# from the finest totally bounded uniformity;
it just happens that in the group case, the uniformity is obtained directly
from the topology. For groups, bG' can also be defined via almost periodic
functions. In fact, the name of Harald Bohr is attached to bG and G# in
recognition of his work [4] on almost periodic functions. This approach does
not seem to generalize to arbitrary structures; see also Remark 2.3.12.

Up to now, we have assumed that 2( is just an abstract (discrete) structure.
However, all the basic definitions easily generalize to topological structures,
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where 2l already has a topology 7 on it, in which case A# will be coarser then
7. Although the emphasis of this paper is on compactifications of discrete
structures, we shall point out where the general theory also works for arbitrary
topological structures.

We have tried to provide counter-examples to possible extensions or gener-
alizations of our results. Where we could, we have chosen these examples from
naturally occurring mathematical structures. In some cases, we did not see
how to do this, so Section 3.6 collects a number of artificial counter-examples.

2 Generalities

We prove some general results here which are common to all structures.

2.1 Topological Structures

In discussing structures, we shall employ the standard terminology of first-
order logic. Throughout, £ denotes a (possibly empty) set consisting of con-
stant symbols and function symbols; each function symbol has an arity > 1.
Using the symbols of £ plus the predicate ‘=’, one may build logical formulas
in the usual way; we never consider predicates other than equality here (see
Remark 2.3.13). A structure 2 for £ is a non-empty set A (the domain),
together with actual elements of and functions on A corresponding to the
constant and function symbols of £. For example, when discussing groups,
we could take £ = {-,i,1} (the symbols for product, inverse, and identity).
If s € L, we use sy for the corresponding constant or function on A. Then,
we frequently drop the subscript ‘A” when it is clear from context. So, for
example, we display groups as A = (A4;-,4,1).

Definition 2.1.1 Suppose A is a structure for L and p : A — X. If f € L
is an n-ary function symbol, then o(fy) denotes {(p(ar),---,¢(an),¢(b)) :

(a1, ...,a,,b) € fa}.

Here, we identify fy with its graph, a subset of A"*1. Note that ¢(fy) C
X" but need not be the graph of an n-ary function.

Definition 2.1.2 Let A and B be two structures for L, and let ¢ : A — B.
Then ¢ is a homomorphism from 2A to B iff p(fa) C fw for each function
symbol f of L, and p(cy) = g for each constant symbol ¢ of L.
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This is equivalent to the standard definition of homomorphism in univer-
sal algebra. The notation involving graphs introduced here will be useful in
discussing compactifications, where we frequently use the fact that a function
between compact Hausdorff spaces is continuous iff its graph is closed.

Definition 2.1.3 A topological structure for £ is a pair (A, T), where A is
a structure for L, and T s a topology on A which makes all the functions of
A continuous. We often write A for (A, T) if the topology is understood.

A special case is a discrete structure, where T is the discrete topology. At
the other extreme, £ could be ), in which case a structure is just a set and a
topological structure is just a topological space.

Definition 2.1.4 A compact structure for L is a topological structure (2, T)
in which T is a compact Hausdorff topology.

Note that compact structures are Hausdorff by definition, but topological
structures in general have no separation axioms assumed about them.

Many of the common classes of structures are specified by sets of equa-
tions. The following table lists some equational classes which we use later in
this paper. Also listed are the appropriate £ and the arities of the symbols;
symbols of arity 0 are constants.

Theory L Arities
Groups (+,7,1) (2,1,0)
Quasigroups ,\,/) (2,2,2)
Loops ,\,/,1) (2,2,2,0)
Rings (+,-,—,0) (2,2,1,0)
Semilattices (V) or (A) (2)
Lattices (V,A) (2,2)
Boolean Algebras | (V,A,’,0,1) | (2,2,1,0,0)
Homogeneities (f,9) (3,3)
Pairings (p, L, R) (2,1,1)

Of course, many modifications are possible. For example, for bounded lattices
(with a largest and smallest element), take £ = {V,A,0,1}. Note that since
our languages do not use predicates, we consider theories such as lattices and
boolean algebras to be presented only with functions, not with a < predicate
as is frequently done. Allowing predicates in £ would be possible, but it makes
the general theory ugly; see Remark 2.3.13.
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We comment briefly on the theories listed which are not well-known from
elementary algebra. The axioms for quasigroups are

z-(e\y)=y  (/x)-z=y a\(@-u)y=uv (u-z)/r=u0

In terms of - alone, this is the same as postulating Vxy3!z(zz = y) and
Vay3lz(zz = y), but it is often convenient to express the axioms in a purely
equational way by replacing the z in these two axioms by the functions z\y
and y/z of z and y, as in the above equations. In combinatorics, quasigroups
are identified with latin squares. Every associative quasigroup is a group. A
loop is a quasigroup with an identity element 1 (satisfying z-1=1-z = z).
The texts [5][7][27] give further information on quasigroups and loops.

Some results for quasigroups and loops hold more generally for homo-
geneities; see Sections 3.1 and 3.2.

Definition 2.1.5 A homogeneity is a structure (A; f, g) satisfying
flz,y,2) =g(z,y,2) = y

g(z,y, fly,x,2)) = =z
f(x,y,g(y,x,z)) = <z

That is, for each x,y, the maps f(z,y, _) and g(z,y, _) are both permu-
tations of A taking x to y, and f(x,y, _) and g(y,z, _) are inverses of each
other. Recall that a topological space is called homogeneous iff for all z,y,
there is a homeomorphism moving x to y. So, a topological homogeneity is
one way of expressing the informal notion that these homeomorphisms can be
selected in a continuous way. Note that this puts a large restriction on the ho-
mogeneous space. For example, let A be an infinite compact Hausdorff space
which supports a homogeneity. Then the weight of A equals its character (see
Corollary 3.1.2), which is not true for many homogeneous A. In fact, A must
be dyadic (this is easy to see from Theorem 1 of Uspenskii [33]).

Definition 2.1.6 A pairing is a structure (A;p, L, R) which satisfies:
z = L(p(z,y)), y = R(p(z,y)), and p(L(z), R(z)) = =.

Thus, p provides a bijection from A x A onto A. These pairings will form
a useful collection of examples and counter-examples.

We shall make use of the following elementary notions from logic: A sen-
tence is a formula with no free variables. A positive formula is one which is
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logically equivalent to one expressed using quantifiers and only the proposi-
tional connectives AND and OR. A theory is a set of sentences and a positive
theory is a set of positive sentences. A structure 2 is a model of a theory ¥
(i.e., A = X) iff all the sentences of X are true in . The theory X is consistent
iff it has some model. An equational theory is a theory all of whose sentences
are universally quantified equations. So, every equational theory is a positive
theory. The theory of groups expressed in the language {-, 4,1} is equational,
but if this theory is expressed in the language {-}, it becomes positive but no
longer equational; for example, one must say JyVz(x -y = x).

Every positive theory ¥ is consistent, since it has a 1-element model. It
is possible that ¥ has only the l-element model (e.g. ¥ = {z = y}). It is
also possible that ¥ has infinite models but, as is the case for pairings, the
1-element model is the only finite model. Pairings also have infinite compact
models, since there are infinite compact X homeomorphic to X2, yet there
are equational theories such as lattice ordered abelian groups, with infinite
models, but only the 1-element compact model. For any equational theory
with a compact model of size greater than one, infinite products will generate
infinite compact models. In some cases, every compact model is a product of
finite models. For example, by Strauss [32], every compact boolean algebra is
of the form {0, 1}".

2.2 Compactifications of Sets

We make some remarks here on compactifications, since our definitions differ
somewhat from the standard ones (see Kelley [19]) in general topology.

Definition 2.2.1 Let A be any non-empty set. A compactification of A is
a pair (X, ), where X is a compact Hausdorff space, ¢ : A — X, and
©(A) is dense in X. If (X,¢) and (Y,v) are two compactifications of A,
then (X, @) <p (Y,v) means that T : Y — X is a continuous function and
FCoy=¢p. (X,9) <(Y,¥) means that (X, ) <p (Y, ) for someT.

Since compactifications are Hausdorff, if (X, ¢) < (Y;4) then the I' such
that (X, ¢) <p (Y, %) is uniquely determined, and I'(Y") = X.

Definition 2.2.2 Two compactifications of A, (X, ) and (Y, ), are equiv-
alent iff (X, ¢) < (Y,9) < (X, ).

In this case, we have (X, ) <p (Y, ¢) <a (X, ), where I, A are inverses
of each other, so that X,Y are homeomorphic.
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Definition 2.2.3 K(A) is the set of all equivalence classes of compactifica-
tions of A.

This is a set, not a proper class, since each compactification of A has
size no more than 22", Note that K(A) inherits the order <. Actually,
each equivalence class, [(X, )], is a proper class, but that does not cause
foundational problems (one can either take a set of representatives, or deal
with the associated uniformities (see Section 2.4) instead). In the following,
we frequently say (X, ¢) when we really mean [(X, ¢)]. Each (X, ¢) induces
a topology, 7,, on A:

Definition 2.2.4 If (X, ) is a compactification of A, then T, = {o U :
U is open in X}.

Lemma 2.2.5 7, is Hausdorff iff ¢ is 1-1.
Lemma 2.2.6 If (X, ) < (Y,v), then T, C Ty.

Three simple examples: The maximal element of K(A) is (5A, 1), where
¢, is the usual inclusion of A into the Cech compactification of the set A
with the discrete topology. The minimal element of K(A) is the one ele-
ment compactification, ({z}, v2), where py(a) = x for all @ € A, and hence
T, is indiscrete. This should not be confused with the one point compact-
ification, (A U {o0}, ¢3), which is neither minimal nor maximal in K(A),
although it is the minimal compactification whose induced topology is dis-
crete. The converse to Lemma 2.2.6 is false; for example 7, = 7, but
(BA, 1) £ (AU {oo}, p3) unless A is finite.

To get an “iff” in Lemma 2.2.6, one would have to use the induced unifor-
mity, not the induced topology; see Section 2.4. A converse to Lemma 2.2.6
holds in some cases, when the spaces are endowed with sufficient algebraic
structure to be able to read the uniformity from the topology; see Lemma
3.1.5.

Lemma 2.2.7 K(A) is a complete lattice.

Proof. We compute \/{(X;,¢;) : i € I} to be (X, ), where ¢ is the
natural product map from A into [[, X;, and X is the closure of the range of

@. Then, A{(X;, @i) 1i € I} is just \V{(Y,9) : Vi[(Y, ) < (Xi, )]} O
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The A of compactifications seems a bit intractable, and is not widely
discussed in the literature.

When the target space is clear from context, we frequently say ¢ when we
mean (X, ¢), as we already did in Definition 2.2.4, where T}, should really be
Tix,)- Likewise, we might say that A = \/{p : ¢ € [0,1]*}. Each ¢ here
really designates the pair, (¢, cl(ran(y))). On the other hand, when the map
is clear from context, we frequently say X when we mean (X, ¢); for example,
we use A for the pair consisting of 3A and the embedding of A into SA.

2.3 Compactifications of Spaces and Structures

Now that we have K(A), we may restrict our attention to those compactifi-
cations (X, @) which are compatible with some topology on A, or with some
structure 2 on A, or both.

Definition 2.3.1 If (A, T) is a topological structure and (X, ) is a compact-
ification of the set A, then (X, ¢) is compatible with (2, T) iff ¢ is continuous
and there is a topological structure X built on the set X such that ¢ is a ho-
momorphism.

Lemma 2.3.2 With the notation of Definition 2.3.1, (X, ) is compatible
with (A, T) iff ¢ is continuous and cl(p(fa)) (see Definition 2.1.1) is the
graph of a function on X for each function symbol f of L.

In this case, the topological structure X built on X must have cx = p(cy)
(for constants ¢) and fx = cl(p(fa)) (for functions f).

Lemma 2.3.3 If (X, ¢) and (Y,v) are both compatible compactifications of
A, with associated topological structures X and ), and (X, ¢) <p (Y,v) as in
Definition 2.2.1, then I' : ) — X is a homomorphism.

The point of this lemma is that, when dealing with structures rather than
abstract sets, we don’t have to re-define the ordering on compactifications. It
might seem more natural to require [' to be a homomorphism, but we get this
for free anyway.

Lemma 2.3.4 If (X, ¢) is compatible with (A, T), then T, is coarser than T,
and (A, T,) is a topological structure.
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The following lemma is clear from the construction of the \/ in the proof
of Lemma 2.2.7.

Lemma 2.3.5 If (X, ¢;) are compactifications of (A, T) (for i € I), and
each (X;, ;) is compatible with (A, T) then so is \[{(X;, ¢i) 17 € I}.

In particular, there is a maximal compatible compactification, since there
is at least one compatible compactification (namely, the 1-element compacti-
fication).

Definition 2.3.6 The Bohr-Holm compactification, (b(A,T), ®@,7)), of a
given topological structure (2, T), is the maximal compatible compactification.
The T is omitted when it is clear from context. (A, T)* denotes the struc-
ture A with the Bohr topology — that is, the topology Te induced by the map
O = Dy 7).

Then, as in Theorem 8 of Holm [14], we get:

Lemma 2.3.7 A% is a topological structure, and is Hausdorff iff Do,y s
1-1. The topology of A* is coarser than the original topology, T .

As in Theorem 8 of [14] (and as usual in general topology), “coarser” need
not imply “strictly coarser”.

It may happen that the only compatible compactification is the one element
compactification (2 is “minimally almost periodic”), in which case b2 will
be a singleton and 2% will be indiscrete. In the case that ® is 1-1 (2 is
“maximally almost periodic”), we may simply identify 20# as a subset of b2,
with the subspace topology.

An important special case in general topology is where L is empty, so we
just have a topological space (A, 7). If T is a completely regular Hausdorff
topology, then (b(A,T),®(4,7)) is just the natural embedding of A into its
Cech compactification. In this (and only this) case, if we identify A as a
subset of bA, then the subspace topology agrees with 7. There are regular
Hausdorff spaces (A,7) all of whose maps into compact Hausdorff spaces
(equivalently, into [0, 1]) are constant; for these, b(A, T) is a singleton and A%
is indiscrete.

On the other hand, we may consider examples where 2l is just an abstract
structure, given the discrete topology. If 2 is finite, then b2A = A, & is the
identity map, and 2# is discrete. It is possible for 2% to be discrete for infinite



2 GENERALITIES 11

2 as well; for example, if £ contains only constants and unary functions, then
bA = (A, the Cech compactification of the discrete space A. If A is an
infinite group (or just a homogeneity), then A# cannot be discrete (since it
is dense in b2(, which is dense in itself by homogeneity), but it might well
be indiscrete, since by von Neumann and Wigner [25][26], there are groups
2 of all infinite cardinalities such that b2l is a singleton. If 2 is an abelian
group or a boolean algebra, then ® is 1-1, so A% is Hausdorff. However, if
A = (Z;+,—,0,V,A), then b2 is a singleton, since the only compact lattice
ordered abelian group is a singleton. Even if 2 = (A;V,A) is just a lattice,
2% may be indiscrete, although 2A# is Hausdorff for distributive lattices (see
Section 3.5). If 2 contains functions of arity greater than one, then b2 will be
(A only in trivial cases, but there are many examples where 2% is discrete.
For example, if 2 = (A;V,A) is any total order, then ¥ is discrete (see
Section 3.4), but b2 is a compact LOTS, and hence will not be A unless A
is finite. The fact that b2l is indeed a LOTS in this case is a special case of
Lemma 2.3.9 below.

Lemma 2.3.8 If (vy,...,v,) is a positive logical formula, and X is a com-
pact structure, then {(z1,...,2,) € X" : X | ¥(x1,...,2,)} s closed in
X"

Proof. Induct on ¢. For the quantifier step, use the fact that the projec-
tion maps are both open and closed. [

Lemma 2.3.9 If ¢(vy,...,v,) is a positive logical formula, (X, @) is a com-
pactification of A, and A = (ay, ..., a,), then X = Y(p(ar),. .., ola,)).

Proof. Induct on 1. In the step for V, use Lemma 2.3.8 and the fact that
ran(y) is dense. O

For example, if A = (A;V,A) is a totally ordered lattice (total order is
expressed by Vzy(zVy =2 OR xVy =y)), then b2 must be totally ordered
as well. Or, if 2 = (A;-,4,1) is a group, then, as expected, b is a group
also. The 9 in Lemma 2.3.9 may include existential quantifiers. For example,
suppose that 2 = (A;-) is a group (now, £ = {-}). Then b2 is still a group,
since the group axioms expressed using - (e.g., Vozy3z(xz = y)) are all positive.
In fact, one can identify b(A;-) with b(A4;-,4,1) (see Section 2.8).

As with groups, homomorphisms are continuous with respect to the Bohr
topology; this easy to prove directly from the definition of 2#:
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Lemma 2.3.10 If A, B are topological structures and i : A — B is a ho-
momorphism which is continuous with respect to the given topologies on 2,8,
then v is also continuous as a map A* — BF.

The following lemma lets us prove general results about 02 by considering
only the case where 2A# is Hausdorff (equivalently, ® is 1-1).

Lemma 2.3.11 Let 2 be any topological structure, and let ® = Py : A —
X =0bA. On A, define a ~ b iff ®(a) = ®(b). This defines a quotient map
Q/~: Af~— X. Then @/~ is 1-1, and b(A/~) = (X, D/~).

Remark 2.3.12 One may define a function f : A — C to be almost periodic
iff f = go®y for some continuous ¢ : ¥A — C. Then, trivially, A# is the coars-
est topology which makes all almost periodic functions continuous. However,
we do not see how to define “almost periodic” directly (e.g., in terms of the
translates of f having compact closure in C'(A)), without reference to b2, and
thereby use this as an independent way of defining the Bohr compactification,
as one can for groups (or for some varieties of semigroups; see [16]).

Remark 2.3.13 One might allow £ to have predicate symbols as well as
function symbols, but the theory is a little messier that way. The usual defini-
tion of topological structure requires that the interpretation of each predicate
be closed (but not necessarily open). There are two definitions of “homomor-
phism” in the literature. Say ¢ : 2 — B and p is a binary predicate. One
definition requires only that py(a1,as) = ps(p(a1), p(az)), but in that case,
the requirement of compatibility in Definition 2.3.1 would be trivial (we could
always take px to be cl(p(pa))), so that the Bohr topology and Bohr compact-
ification would be computed by ignoring the predicates. Another definition
requires that py(ay, as) < ps(p(ar), p(az)). But then we lose the fact that
every structure has at least one compactification (the one-element structure),
so that b2 would not always be defined.

We next consider the possibility that a given compact structure may be
its own Bohr compactification:

Definition 2.3.14 Let X be a compact structure and let X5 be X with the
discrete topology. X is self-Bohrifying iff b(X,) is just the identity map into
X. X us self-compactifying iff there is no other compact Hausdorff topology on
the structure X making all the functions of X continuous.
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Note that X is self-Bohrifying iff every homomorphism from X into any
compact structure ) is continuous iff (X;)* is the original compact topology
on X. Clearly, self-Bohrifying implies self-compactifying, but the reverse im-
plication can fail. For example, every compact total order X (viewed either as
a lattice or as a semilattice) is self-compactifying, since the only possible com-
pact topology is the usual LOTS topology, but X cannot be self-Bohrifying if
it is infinite, since (X4)* is discrete (by Lemma 3.4.8). In fact, by Lawson [23],
every compact semilattice and every compact lattice is self-compactifying.

Every finite structure is self-Bohrifying, but the infinite ones are a bit un-
usual. No infinite abelian group is self-Bohrifying (since |b(%4)| = 22™') (see
Theorem 3.3.1), but there are infinite non-abelian examples. A finite dimen-
sional compact connected group is self-Bohrifying iff it is a semi-simple Lie
group (for example, SO(3)) (Anderson-Hunter [2]; see also van der Waerden
[34]). There are also zero dimensional self-Bohrifying groups (see Moran [24]).
Observe that any compact group of the form X* with |X| > 1 cannot be
self-Bohrifying because it will have discontinuous homomorphisms into itself.
However, such a product can be self-compactifying. For example , SO(3)¥
is self-compactifying, since by Stewart [31], every compact connected group
with a totally disconnected center is self-compactifying.

Semilattices and distributive lattices are self-Bohrifying iff they have no
infinite chains. There is a large class of semilattice examples satisfying this
condition, but for distributive lattices, this condition holds iff the lattice is
finite (see Theorems 3.4.23 and 3.5.12).

It is also possible to consider just O-dimensional compactifications, so we
define:

Definition 2.3.15 The 0-dimensional Bohr compactification of a given topo-
logical structure 2 is the mazimal 0-dimensional compatible compactification,
(bo2A, D). AF0 is the topology on A induced by Ppgy.

There is such a maximal compactification, since if one computes the \/ in
the lattice of compactifications (as in Lemma 2.2.7), the \/ of 0-dimensional
compactifications is 0-dimensional. The following lemma identifies the rela-
tionship between by and b<A:

Lemma 2.3.16 Let A be any topological structure, and define I' : bA — b2l
so that byl <p bA (see Definition 2.2.1). Then T™'(T'(x)) is the connected
component of x for all x € b2.
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Proof. Obtain A : b2l — X by collapsing each connected component in b2l
to a point, and let o = Ao Py : A — X. Since hy2A is 0-dimensional, I’
must be constant on each component of b2(, so there is a I'' : X — by2A with
' =T1"oA. Then (b, ®y) < (X,¢). But since X is zero-dimensional and
boRl is maximal, I is a bijection, so that I' also is the map which collapses
components to points. []

In some cases, b2 turns out to be O-dimensional, in which case by = b2I.
This happens, for example, when 2 is a discrete abelian group of finite ex-
ponent n (satisfying Vn(z" = 1)), in which case every compactification is
0-dimensional. If 2 is just an infinite discrete set A, then not every com-
pactification of 2 is O-dimensional, but the maximal compactification is 0-
dimensional; here, by = b2A = BA.

For semilattices and distributive lattices (see Sections 3.4 and 3.5), it is
useful to study by®A, which always has a fairly simple description, and then to
investigate conditions which imply by = b%.

If A is a discrete group, then by is obtained as the \/ (in the lattice
of compactifications) of homomorphisms into finite groups, and A#° is the
coarsest topology which makes all cosets of normal subgroups of finite index
clopen. For example, Q%° is indiscrete.

2.4 Uniformities

One can also define the Bohr topology on a structure using uniformities. This
may seem more elegant, as the whole construction resides just on the set A,
and we do not need to deal with arbitrary representative of equivalence classes
of compactifications. Since the two presentations turn out to be equivalent in a
fairly straightforward way, studying uniformities provides no new information,
so we shall keep our remarks brief here.

Let A be any non-empty set and let A = A(A) = {(z,z) : v € A}.
U CAxA let U, ={y: (z,y) € U}. A uniformity on A is a non-
empty family & C P(A x A) satisfying the properties described in Kelley
[19]. Let T(U) be the topology generated by the uniformity U: W € T(U)
iff Yo € W3U € U(U, € W). In general, there may be many uniformities
which generate the same topology. However, every compact Hausdorff space
(X,7) has a unique uniformity ¥ such that T(U) = T; namely, U = {U C
X x X : A C U°}. This uniformity is always intended when discussing
compact Hausdorff spaces.
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Now, if (X, ¢) is a compactification of the set A, then it induces a uni-
formity U on A, generated by sets of the form {(a,b) : (¢(a),p(b)) € V},
where V' is a neighborhood of A in X x X. This U is totally bounded (see [19],
p. 198). Conversely, given any totally bounded uniformity on A, one may, by
the standard completion process, construct a compactification which induces
it. Thus, if we let I(A) be the lattice of all totally bounded uniformities on
A, then L(A) and K(A) (see Definition 2.2.3) are isomorphic lattices.

Now, it is also easy to prove directly that I(A) is a complete lattice; then,
as an alternative presentation, one could work directly with uniformities. Let
(A, 7) be a topological structure. We may say that a uniformity & on A is
is compatible with (2, T) iff every function of 2 is uniformly continuous with
respect to U and T(U) is coarser than 7. One may then define the Bohr
uniformity as the finest (i.e., take the \/ in I(A)) uniformity compatible with
(A, 7). Equivalently, the Bohr uniformity is the uniformity induced by the
Bohr compactification.

Remark 2.4.1 In the case of groups, the construction of the Bohr topology
by constructing the Bohr uniformity first is due to Alfsen and Holm [1], and
was the approach later emphasized by Holm [14] (see Theorem 8) for arbitrary
structures. For groups, this approach seems very natural, since one may read
the uniformity directly off of the topology (via translations of neighborhoods
of the identity), and then retrieve the usual definition of the Bohr topology
as the finest totally bounded topological group topology. We do not know if
this is possible for more general classes of structures; see also Remark 3.1.6.

2.5 Cardinal Functions

We recall some basic results on weight and character in compact Hausdorff
spaces (see Juhdsz [17]). If T is a topology on X, then w(X,7T), or just
w(X), denotes the weight of the topology (the least size of a basis). If F is
a closed subset of X, then X(F, X) denotes the character of F’; that is, the
least size of a local base of neighborhoods of F' in X. Then, X(X) denotes
sup{X({z}, X) :z € X}.

Lemma 2.5.1 If X is any infinite compact Hausdorff space, then

X(X) < w(X) =w(X x X)=X(A,X x X) < |X|<2X® (1)
where A = {(z,z) : x € X}. If X is homogeneous, then

X(X) < w(X)=wX x X)=X(A, X x X) < |X|=2X (2
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We remark that X(A, X x X) is the weight of the natural uniformity on
X (see Section 2.4). The last “<” in (1) is by Arkhangel’skii’'s Theorem, and
then the last “=” in (2) follows by applying the Cech - Pospisil Theorem.

The two “<”s in (2) may or may not be “="s, depending on the ho-
mogeneous X. For example, if X is the double arrow space ([0, 1] x {0, 1},
ordered lexically) with the endpoints deleted (to make it homogeneous), then
X(X) = Ny, while w(X) = |X| = 2%. However, if X supports a group oper-
ation (or in fact, a quasigroup, or just a homogeneity), then X(X) = w(X);
see Corollary 3.1.2. Obviously, the two “<”s cannot both be “="s, and
under GC'H, one of them must be an “=". However, if x is any cardinal
with By < x < 2%, there is a separable compact homogeneous X with
X(X) =Ny < w(X) =k < |X| = 2%; just modify the double arrow con-
struction to double only the points in K N (0,1), where K is a subfield of R
of size k.

Now, in (1), assume that X = b2, where 2 is a discrete structure, |A| = Ny,
and |£| < Rp. One may then say more about the relevant cardinal func-
tions. First, either w(X) < Ny or w(X) = 2% (see Corollary 2.10.20).
If A is an abelian group, then w(X) = 2% (see Theorem 3.3.1), but this
is not true for groups in general (see Section 3.3). It is true for groups
(and, in fact, homogeneities; see Lemma 3.1.3) that whenever b2l is infinite,
w(AF) = X (A7) = w(bA) = X(bA). These equalities do not hold for arbitrary
structures. For example, if £ = (), then A# is discrete, so its weight and
character are countable, while b = BA, so w(bA) = X(bA) = 2%. If A is a
total order, then again 2% is discrete, but X(b2) = Ro; w(bA) can be either
Ny or 2% depending on the order type (see Corollary 3.4.19). Furthermore, it
is possible to have A countable and £ finite and Ry < w(A#) = X (A#) < 2%o;
see Section 3.6.

2.6 Maps into Standard Structures

If G is an abelian group, then G# and bG can be computed by considering
only homomorphisms into the circle group, not arbitrary compact structures.
We consider the extent to which this is possible for general structures.

Definition 2.6.1 A class K of compact (Hausdorff) structures is adequate
for a compact structure X iff for each x,y € X with x # y, there is a Q) € K
and a continuous homomorphism ¢ from X to ) with p(x) # p(y).
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Definition 2.6.2 A class K of compact (Hausdorff) structures is adequate
for a topological structure A iff IC is adequate for bU.

Often, to verify that K is adequate for 2, we do not compute b2 explic-
itly, but rather verify that IC is adequate for every compact model for some
positive logical sentences true in 2. For example, using the standard theory
of representations for compact groups, we see that {U(n) : 1 < n < w} is
adequate for every topological group; likewise, U(1) = T alone is adequate for
every abelian group. The two-element algebra is adequate for every boolean
algebra (see Corollary 3.5.17). Given an adequate /C, one may use maps into
structures in K to compute the Bohr compactification:

Lemma 2.6.3 Assume that K is a set of compact structures adequate for the
topological structure A. Let ¢, : A — X, (for a € k) list all continuous
homomorphisms which take A into a structure in K. Then A¥ is the coarsest
topology on A which makes all the @, continuous. Let ® be the natural product
map from A into [[, Xo, and let X be the closure of the range of ®. Then
(X, D) = (b2A, Dy ).

For example, the Bohr compactification of every abelian group is a sub-
group of some power of the circle group. If £ = (), then {[0, 1]} is adequate for
all compact Hausdorff spaces; then, if A is a completely regular space, Lemma,
2.6.3 just expresses Tychonov’s embedding of A into a cube.

We do not have a simple description of classes adequate for an arbitrary
structure, but one can bound the size of such classes by a Lowenheim-Skolem
argument; the following theorem implies that the class can always taken to be
a set, of size no more than 2mex(o,|£),

Theorem 2.6.4 The class of all compact structures of weight < max(Ro, |L]|)
is adequate for every topological L-structure.

Proof. Fix a compact structure X, and let k = maxz(Ry, |£]). Fix distinct
a,b € X. We shall produce a ) of weight < x and a continuous homomor-
phism ¢ : X — ) with p(a) # ¢(b).

Since X is compact Hausdorff, we may assume that X C [0,1]" for some
P, and then, by extending all the functions of X arbitrarily, we may assume
that X = [0,1]7. Our Y will be [0,1]% for some Q@ C P with |Q| < &, and ¢
will be the projection g : [0,1]7 — [0, 1]%. It is thus sufficient to find such a
() with mg compatible with X and 7mg(a) # mg(b).
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In general, if ¢ : X — M and R C P, say R is big enough for g iff
g(x1,...,x,) = g(y1,...,Yyn) whenever each wg(z;) = mr(y;). Observe that if
M is compact metric and ¢ is continuous, then there is a countable R which
is big enough for g. It follows that we may find a @ with |Q| < & such that
mg(a) # mo(b) and @ is big enough for m, o fx for each ¢ € @ and each
f € L. Hence, @ is big enough for mg o fx for each f, which implies that ¢
is compatible with X. O

Definition 2.6.5 A discrete L-structure 2L is nice iff L is countable and there
is a single compact second countable L-structure X with {X} adequate for .

Even when £ and A are countable, 2( could fail to be nice (see Example
3.6.7). One may apply Theorem 2.6.4 and take the product of all second count-
able L-structures to produce a single X with {X} adequate for 2. However,
this X might well have weight 2%,

Many of the structures commonly studied turn out to be nice; one usually
proves this by producing one X which is adequate for a whole variety. For
example, groups are nice, taking X to be [],., ., U(n), and boolean algebras
are nice, taking X to be the two element algebra (see Corollary 3.5.17).

2.7 Substructures

As usual, 2 C B means not only that A C B, but also that all the functions
of A are the restrictions of the corresponding functions of B; in the case of
topological structures, 2 C B means also that the topology on A is the relative
topology inherited from B. If we are given a structure B, and a subset A of
B which is closed under the functions of B, then B [ A denotes the structure
2 on A obtained by restricting all these functions to A (and relativising the
topology in the case of topological structures). Using ®g to denote the Bohr
compactification, (0B, Pg), we see that Py [ (i.e., (cl(Py(A)), Py [A)) is
some compactification of 2, but it need not be the maximal compactification,
®y. We investigate conditions which imply that ®g [ does equal ®y, and
in particular, we prove a “Léwenheim-Skolem” result (Corollary 2.7.4), saying
that given 98, we can find a countable A C B with &g [ A = Dy.
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Lemma 2.7.1 Suppose that A and B are topological structures, A C B, and
K is a class of compact structures adequate for 4. Suppose further that when-
ever ¢ : A — X is a continuous homomorphism from A to some X € K,
there is an extension ¥ of ¢ to a continuous homomorphism from B to some
compact structure ) (not necessarily in K) with X C ). Then $g [ A = Dy.

This lemma is easily proved from the computation of b2 as a product (see
Lemma 2.6.3). For discrete abelian groups, X = {T'} and we can always let
9 = X =T. An application with ) # X occurs naturally in semilattices (see
Theorem 3.4.26).

For discrete structures, the proof of Theorem 2.7.3 will verify the hypoth-
esis of Lemma 2.7.1 whenever 2 is algebraically closed in ‘B.

Definition 2.7.2 A system of equations over a structure 1 is a finite set,
o(%), of equations formed by using the symbols of L, together with the elements
of A as constants, together with some variables ¥ = (x1,...,2,). A solution
of o(Z) in A is an n-tuple d = (ay,...,a,) such that o(a@) is true in A. If
A C B, then A is algebraically closed in B iff every system of equations over
20 which has a solution in B also has a solution in .

Theorem 2.7.3 If A C B, where A and B are discrete structures, and A is
algebraically closed in B, then ®g [ A = Dy

Proof. By Lemma 2.7.1, it is sufficient to show that whenever ¢ : 2 — X is
a homomorphism from 2 to some compact structure X, there is an extension
1 of ¢ to a homomorphism from B to X. We shall obtain ¢ by using an
ultrafilter to take a limit.

Let A be the set of all equations true in 8. So, elements of A can be
written as 7 (b) = 7»(b), where b is a tuple (possibly empty) of elements of
B\A and 71 (&) = 7(Z) is an equation over A with 7;(b) = 7»(b) true in B.

Let I be the set of all finite subsets of A, and let U be an ultrafilter over
I'such that {i e T:j Ci} el forall jel.

Each i € I can be written as i = o(b), where (%) is an system of equations
over A and b = (by,...,b,) is a tuple of elements of B\ A which is a solution
of o(Z). For each such i € I, let C(i) be some tuple @ of elements of A which
is also a solution of o(#). Always choose @ such that whenever b, = b,, we

also have a, = a,; this is possible because we could always add z, = z, to o.
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=

For b € B\A, let F, : I — X be such that whenever ¢ = o(b) with b = b,
and @ = C(i), we have Fy(i) = ¢(a,). If b is not among the b,, then choose
Fy(i) arbitrarily, but note that the set of ¢ for which this happens is not in U.
If a € A, set Fy(i) = ¢(a) for all i.

Now, define 9 (b) to be the U-limit of Fy; that is, 1(b) is the unique z € X
such that {i : Fy(i) € V} € U for every neighborhood V of x. It is easy to
verify that ¢/ is a homomorphism and extends ¢. O

One may also view this proof as embedding 9B into an ultrapower, 2! /U,
and then using U-limits to extend a homomorphism ¢ : % — X to A /U.

Corollary 2.7.4 If L is countable and B is a discrete L-structure, then there
is a countable A C B such that By [A = Py, and hence A* is the same as
the topology of B restricted to A.

In the cases of semilattices (Theorem 3.4.26) and discrete abelian groups,
Py [A = Py holds for all A C B, and furthermore A is closed in B#, but
these facts do not hold in general, even for groups. For example, B could be
one of the groups described by von Neumann and Wigner [25][26], where B#
is indiscrete. If 2 is an infinite abelian subgroup, then 2A# is Hausdorff, and
hence strictly finer than the topology of B# restricted to 2. Also, if % is any
proper subgroup of 98, then A is not closed in B#, so we do not expect to get
A closed in Corollary 2.7.4.

2.8 Reducts

If Lo C L, and 2 is an L structure, then one defines the reduct, A [ Ly, to be
the £y structure obtained from 2 by applying the forgetful functor; 2 is called
an ezpansion of A [ Ly. Now, (b2) | Ly is some compactification of A [ Ly, but
is not necessarily maximal. So,

Lemma 2.8.1 If Ly C L, and A is a topological L structure, then (bA) [ Lo <
b(AT Ly), and (AT Lo)* is finer than AF .

In some cases, 20 will be an “inessential” expansion of 2 [ Ly, in which
case we can identify b2 with b(2( [ Ly). The notion of “inessential” here differs
somewhat from the usual notion from logic. Constants are always inessential,
as are functions defined explicitly by terms (Lemma 2.8.3). But functions
defined “implicitly” by logical formulas are only sometimes inessential; not
always, as in first-order logic (see Theorem 2.8.5 and following discussion).
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Definition 2.8.2 If 2 is an L-structure, F' : A" — A, and 7(z1,...,%n,
21y .. Zm) is a term of L, then F is definable by 7 on 2 iff for some fized
di,...,dm € A, we have F(ay,...,a,) = To(a1,...an,dy,...,dy) for all ele-
ments a, . ..,a, € A.

Lemma 2.8.3 Assume that L C L', A" is a topological L' structure, and
A=2A"[L. Assume also that every symbol of L'\L is either a constant symbol
or denotes a function on A which is definable on A by some term of L. Then

every compactification compatible with 2 is compatible with A' as well; hence,
b = (b') | L, and the topologies A* and A'# are the same.

For example, for groups, b(A;-,i,1) = b(A;-,4). But also, if we fix any
a € A and define o(r) = a™'za, then b(A;-,i,0,1) = b(A;-, 7).
Next, we consider functions defined implicitly by logical formulas.

Definition 2.8.4 If2 is an L-structure and F : A" — A, then F is positively
definable on 2L iff for some positive formula ¢(xy,...,Tn, Y, 21,...,2m) of L,
and some fixed dy,...,d,, € A, we have:

=

1. Foradll ay,...,a,, b€ A, A= ¢(db,d) iff F(@) =b, and
2. The logical sentence ¥ Ay (T, y, cf) s provable from the positive logical
sentences true of d in 2.

A function defined by a term is a special case of a positively definable func-
tion, since here @(xq,...,ZTn, Y, 21, ., Zm) 1S Just 7(x1, ..., Ty, 21, -+ - Zm) = Y.
Note that VZ 3y o (7, y, Jj is not a positive sentence, so its truth in 2 does
not imply its truth in b2(. However, if it happens to be provable from positive
sentences true in 2, then VZ3ly qﬁ(f,y,@(cf)) will be true in b by Lemma
2.3.9, so that ¢(Z,y, @(cf)) will define a function in b2(. This function will be

continuous, since its graph is closed by Lemma 2.3.8. Hence,

Theorem 2.8.5 Assume that L C L', A is a topological L' structure, and
A=2A"[L. Assume also that every symbol of L'\L is either a constant symbol
or denotes a function on A which is positively definable on A by a formula

of L. Then every compactification compatible with A is compatible with A" as
well; hence, bA = (bA') [ L, and the topologies A* and A'* are the same.

For example, for groups, b(A;-) = b(A;-,i,1), since i is positively definable
on (A;-) (using y = i(z) iff x -y = 1). Theorem 2.8.5 applies because the
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sentence Yz3ly(x -y = 1) is provable from positive facts true about 1 in (A4;-)
(namely, the associative law, Vz(z-1 = z), and Vz3y(z-y = 1)). This argument
also works for some (but not all) varieties of loops (see Lemma 3.2.1). A
similar argument (see Lemma 3.4.1) shows that b(A; V,A) = b(A4; A) = b(A4; V)
whenever (A;V,A) is a total order; but this does not hold in general for
distributive lattices, and in fact fails for boolean algebras, although for boolean
algebras, it is true that b(A;V,A) = b(A;V, A, ); see Theorem 3.5.19.

One must take a bit of care in stating Theorem 2.8.5. Say £’ = {p, L, R}
and £ = {L, R}, and let 2’ be a discrete infinite pairing (see Section 2.1).
Then b2’ is also a pairing, so it is homeomorphic to its square, whereas in 2 =
(A; L, R), all functions are unary, so b2l = A, which is not homeomorphic
to its square. On A, the function p is definable by a positive L-formula,
é(x1, x2,y) (namely, 1 = L(y) & xo = R(y)), but Vo zo3lyo(z1, x2,y) is not
provable from the positive logical sentences true in 2, and in fact is false in
b2. For an example with loops, see Example 3.2.2.

Note that there is no Lowenheim-Skolem theorem for languages. That is,
if 2 is countable but £ is uncountable, there need not be a countable Ly C £
such that the topology ([ Ly)# is the same as 2#; see Example 3.6.4.

2.9 Products

The product of two topological structures is a topological structure in a natural
way, and the product of two compactifications is a compactification of the
product.

Lemma 2.9.1 Suppose that A and B are topological structures for L. Then
bA x bB < b(A x B), and hence the product topology, A* x B¥, is coarser
than (A x B)*.

For semigroups with an identity element 1, we have b2 x bB = b(2( x B);
deLeeuw and Glicksberg [16] does this in the commutative case, Holm [14]
does it for groups, and Husek and de Vries [15] has a common generalization
to [16, 14]. The key idea is to use the 1 to build compactifications of the factors
from compactifications of the product. In Lemma 2.9.3, we abstract what is
needed for this idea to work in our current setting, and then we describe some
cases where we can prove b2 x bB = b(2 x B) by using other results in this
paper, even though Lemma 2.9.3 does not apply directly. One cannot assert
in general that bR x bB = b(A x B); this fails for infinite sets (L = ), since
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BA x B 2 3(A x B), and hence it fails for semigroups without a 1, since if
x -y =0 for all x,y, then b2A = GA.

Definition 2.9.2 An element e of a structure A is an idempotent iff for
all functions f of arity > 1, we have e = f(e,e,---,e). If o is some binary
function on A, then e is an identity element with respect to o iff eox = roe = x

forall x € A.

Lemma 2.9.3 Suppose that A and B are any topological structures for L, and
there are binary operations og and osg on A and B respectively, defined by the
same term of L (in the sense of Definition 2.8.2). Suppose further that there
are idempotents Oy € A and O € B such that Oy, Og are identity elements
in A, B respectively, with respect to og, o respectively. Then bA x bB =
b(A x B), and hence the product topology, U* x B#  is the same as (A x B)#.

Proof. We suppress the subscripts 2l and B. Since o is defined by the
same term in both 2 and ‘B, it is defined likewise on 2 x B and on any
compactification of these structures. So, by Lemma 2.8.3, we may deal with
o and 0 as if they are symbols of £; likewise, we may assume that £ has no
constant symbols other than 0. Let ® = Pg5 : A X B — X = b(A x B).
It is sufficient to produce compactifications ¢ : > — Y and X : 8 — Z and
prove that ® < ¢ x X. Let ¢(a) = ®(a,0) and X(b) = ®(0,b); these are
homomorphisms into X because 0 is an idempotent and £ has no constant
symbols other than 0. Let Y = cl(ran(y)) € X and Z = cl(ran(X)) C X.
Now, by definition of “<”, it is sufficient to produce a continuous I' : X x X —
X such that T'((¢) x X)(a,b)) = ®(a,b) holds for all (a,b) € A x B. So,
let T'(y,2) = y o z. Then, applying the fact that 0 is an identity element,
L((¢ x X)(a,b)) = L(i(a), X(b)) = @(a,0) o ©(0,b) = ©((a,0) o (0,b)) =
®((a00),(00b)) = P(a,b). O

This lemma obviously applies groups and loops. It also applies to rings
(with o as +), since 0 happens to be an idempotent with respect to -, but in
fact, by Lemma 3.1.4, it will apply to every structure which contains a group
operation — or even just a homogeneity — plus arbitrary other functions. Using
this, it will apply also to quasigroups; see Section 3.2.

In a lattice, every element is an idempotent, so that Lemma 2.9.3 applies
immediately whenever the lattice has a least element 0 (which is an identity
element with respect to V) or a greatest element 1 (which is an identity element
with respect to A). However, it turns out that b2 x bB = b(2 x B) does hold
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for all semilattices and all lattices; see Sections 3.4 and 3.5. In fact, our
counterexamples to Lemma 2.9.3, if one drops the assumption on idempotent
(Example 3.6.8), or if one drops the assumption on identity (Example 3.6.9),
both seem a bit unnatural, so perhaps there is a better version of Lemma 2.9.3
which applies to a wider class of structures.

2.10 C, Theory

A number of facts about Bohr topologies may be proved using notions of C,
theory. We recall some relevant definitions; see Arkhangel’skii [3] for further
details.

Definition 2.10.1 If H, K are topological spaces, then C,(H, K) is the set of
continuous functions from H to K, given the topology of pointwise convergence
(i.e., regarding C,(H, K) as a subset of K™ with the usual product topology).

All compactifications in the sense of Section 2.2 may be viewed in the
context of C), theory as follows:

Definition 2.10.2 A compactification (X, 1) of a set A is a C,(H, K) com-
pactification iff ¢ is equivalent to some (Y, ), where K is compact Hausdorff,
0:A— Cy(H,K), and Y is the closure of ran(p) in K.

Note that Y need not be a subset of C,(H, K). Every compactification
of Ais a Cy(H,[0,1]) compactification for some (discrete) H, since every
compact Hausdorff space can be embedded in a cube. We shall see that
Cp(H,[0,1]) compactifications have additional properties when H has some
additional properties, such as compactness. First, we note (Lemma 2.10.4)
that we can often replace K by [0, 1].

Definition 2.10.3 @ is the Hilbert cube, [0, 1]“.

Lemma 2.10.4 If K is compact and second countable, then every C,(H, K)
compactification is equivalent to a Cp(H X (w + 1), [0,1]) compactification.

Proof. We start with ¢ : A — C,(H, K). Since K can be embedded in @,
we may as well assume that K = @Q. Now, define I' : Q" — [0, 1)7*«+1) 5o
that ['(x)(h,n) = (z(h))n - 27" and I'(z)(h,w) = 0. Observe that I" is 1-1 and
continuous, and that I' takes C,(H, Q) into Cp(H X (w + 1), [0,1]). Then, ¢
is equivalent to the C,(H x (w+ 1), [0, 1]) compactification, I'o¢. O

In the case of Bohr topologies, a natural H to use is Hom(, X):
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Definition 2.10.5 If and X are L-structures, then Hom(2, X) is the set of
homomorphisms from A into X. If X is given a topology, then Hom(2(, X) C
X4 is given the usual product topology.

Lemma 2.10.6 If X is a compact L-structure and A is a discrete L-structure,
then Hom(%A, X) is closed in X, and is hence a compact Hausdorff space.

Definition 2.10.7 An Eberlein-Grothendieck space is any topological space
homeomorphic to a subspace of C,(H, |0, 1]) for some compact H.

Theorem 2.10.8 If L is countable and 2 is a nice L — structure (Definition
2.6.5), then (DA, ®y) is a C,(H, [0, 1]) compactification for some compact H,
where w(H) < max(|A|,Rg).

Proof. Fix a compact second countable L-structure X with {X} ade-
quate for . By Lemma 2.6.3, the Bohr compactification of 2 is equivalent
to the evaluation map ¥ : %A — X7om@&X)  where ¥(a)(p) = ¢(a). Note
that ran(¥) C C,(Hom(2, X), X), so that the Bohr compactification is a
Cp(Hom(, X), X') compactification. Finally, let H = Hom(2(, X) x (w + 1),
and apply Lemma 2.10.4. O

So, Theorem 2.10.8 implies that if 2 is nice and A% is Hausdorff, then
2A# is an Eberlein-Grothendieck space. Note that we are not claiming that
cl(ran(®y)) is a subset of C,(H, [0, 1]); that would imply that b2( is an Eberlein
compactum (see §I11.3 of [3]); if 2 is a group, then b2 is a compact group,
which cannot be an Eberlein compactum unless it is second countable (see
Theorem II1.3.12 of [3]).

If 2 is not nice, then we cannot just use one X, but as long as the lan-
guage is countable, we can apply Theorem 2.6.4 to compute b2l using only
Hom(2, X) for various second countable X. Each such X can be topologically
embedded into ), and then the functions of X can be continuously extended
to functions on all of (), so that one can compute b2l by just considering topo-
logical structures with domain (). This fact enables us to prove for b2l some
(but not all) of the theorems true for nice structures. We can code all second
countable compactifications of a discrete structure 2 as follows:

Definition 2.10.9 For symbols s € L, let Fy = Q) when s is a constant, and
let Fy = C(Q™, Q) whenever s is a function symbol of arity n > 0. Give
C(Q", Q) its usual metric topology. Let P = Pr = ], Fs, with the usual
product topology.
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Note that elements p € P are the compact L-structures with domain
(). The co-ordinate py, for s € L, is what we were formerly calling s,, the
interpretation of the symbol s in the structure p.

Definition 2.10.10 If A is any discrete L-structure: Homq(A) C Py x Q4
is the set of pairs (p, ) such that ¢ : A — p is a homomorphism.

Here, “homomorphism” means that ¢(cy) = p. for each constant ¢ € L,
and that ¢(fa(ar,...,a,)) = prle(ar),...,¢(a,)) for each f € L of arity
n > 0 and each ay,...,a, € A. Unlike the Hom(2, X) of Definition 2.10.5,
Homg(2l) is not compact, but it still of a type useful for C), theory. Recall
that a Polish space is a separable complete metric space. A more general
class of spaces are the ones of type K,4; these are spaces which are Fs sets
in some compact Hausdorff space. Every Polish space is K,s because it can
be embedded as a G5 in (). Both classes, Polish and K,s, are closed under
countable products and closed subspaces.

Lemma 2.10.11 Homg(Q) is closed in P; x Q4. Hence, Homq(2) is of type
K,s whenever L is countable, and is Polish whenever A is also countable.

Theorem 2.10.12 If L is countable and A is any discrete L — structure,
then (DA, ®y) is a C,(H,[0,1]) compactification, where w(H) < max(]A|, Np)
and H is of type K,5. If A is countable, then H is Polish.

Proof. Let D = Qo™i Make D into a compact L-structure, D, by
setting co(p, ) = pe and (fo(di, -+, dn))(p, ) = ps(di(p,¥), -+, du(p, ©))-
Define ® : A — D so that (®(a))(p,¢) = ¢(a). Observe that & : A — D is
a homomorphism, and that ran(®) C C,(Homq(2A),Q) € D. So, ® (that is
(cl(ran(®)), ®)) is a compactification of A. In fact, it is the maximal (Bohr)
compactification, since it dominates every compactification ¢ of 2l into a struc-
ture p with domain Q; that is, (p, ¢) <r ®, where I' : D — @ is just projection;
['(d) = d(p, p). This shows that b is a C,(Homgq(2), Q) compactification.
Now, let H = Homg(2l) x (w+1). O

We now study some aspects of C}, theory which are relevant to Bohr topolo-
gies. We shall see that the nice and non-nice structures for a countable lan-
guage share most of the same basic properties, but the following theorem is
an exception, and can sometimes be used to prove that a structure is not nice.
This type of argument was discovered twice: once by L. T. Ramsey [30] in
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the context of Bohr topologies on abelian groups, and once by Arkhangel’skii
(see [3], Theorem II1.2.2) in the context of C), theory. We give a proof, since
neither reference has precisely the form we wish to quote.

Theorem 2.10.13 Suppose that A is an FEberlein-Grothendieck space. Then
foreach E C A, p € A, andn € w, we may choose a finite subset, T(E,p,n) C
E with the following property: Whenever p € FE, for each n, then p €

cl(Upew T (En,p,n)).

Proof. We may assume that A = C,(H, [0, 1]), where H is compact. For
p € A, finite n, € > 0, and wuy,...,u, € H, let U(p;uy,...,u,;€) be the set
of all @ € A such that |a(u;) — p(u;)| < € for each i = 1,...,n. Then the
U(p;uq,...,uy;€) form an open base at p.

Fix E,p,n. If p ¢ E, we set T(E,p,n) = 0. If p € E: For each & =
(w1, ..., u,) € H", we may choose a point a(d) € U(p;d;2 ™) N E. Since each
a € A is continuous, {¢ € H" : a(@) € U(p; ¥;27™)} is an open neighborhood
of @ in H". By compactness, finitely many of these open neighborhoods
cover H™, so we may choose T(FE,p,n) to be a finite subset of E such that
Ulp;v;2 ") NT(E,p,n) # () for all ¢ € H".

Now, if p € E,, for each n, then we have ensured that every neighborhood
of p meets (J, ., T(En,p,n). O

In particular, as in [3], the Fréchet — Urysohn fan (or hedgehog), defined
in Definition 3.6.5, is not an Eberlein-Grothendieck space, so that Example
3.6.7 will provide a countable structure for a finite language which is not nice.

However, we shall see now that two other consequences of this theorem
turn out to apply also to non-nice 2.

First, Theorem 2.10.13 implies that every Eberlein-Grothendieck space has
countable tightness, but in fact

Lemma 2.10.14 C,(H,[0,1]) has countable tightness whenever H™ is Lin-
delof for all n.

This is Theorem I1.1.1 of [3]; the proof is as above, but choose countable
sets rather than finite sets, and apply the result with all F,, = FE. Note that
whenever H is K, 4, all H" are also K,5, and hence Lindel6f, so

Corollary 2.10.15 A% has countable tightness whenever L is countable.

Second,
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Definition 2.10.16 A topological space X has the splitting property iff when-
ever E.C X and p € E\E, then there are disjoint R,S C E such that
peRNS.

One may apply Lemma 2.10.13 to prove that Eberlein-Grothendieck spaces
have the splitting property: let R = | J,., R, and S = |J, ., Sn, where Ry =
So = 0, each R,,; = R, UT(E\(R, US,),p,n), and each S,; = S, U
T(E\(Rps1 U S,),p,n). In the case of A¥ for an abelian group A, this was
exactly the argument of L. T. Ramsey [30]. However, the splitting property
is weaker:

Lemma 2.10.17 If H is a K5 space, then C,(H, [0, 1]) has the splitting prop-
erty.

Proof. Fix p € E\E. Since all H" are Lindeldf, we may assume that E is
countable (by Corollary 2.10.14). Let Z = {R C E : p ¢ R}. Then Z is an
ideal on F. Also, using the fact that H is K, s, one may show that Z is an
analytic subset of P(E) (which we identify with 2%). It follows that Z cannot
be a prime ideal, so we can find disjoint R, S ¢ Z. O

Corollary 2.10.18 If the language is countable and A¥ is Hausdorff, then
A# has the splitting property.

If 2 is an infinite abelian group, then there is an infinite D C A such
that D (the closure of D in bA) is homeomorphic to 3D [11]. This is also
true of some (but not all) semilattices and distributive lattices (see Example
3.5.20). By Corollary 2.10.18, no such D can have any limit points in A%.
The methods of [11] and [21] easily show that if E is any infinite subset of
the discrete abelian group A, then there is an infinite D C E such that D
homeomorphic to 8D; hence w(E) = 2% if E is countable. For various other
structures, including some non-abelian groups (see Section 3.3), such closures
can have countable weight. However, by Corollary 2.10.20 below, such closures
cannot have weight strictly between R, and 2%,

Theorem 2.10.19 Let H be a Polish space, E C C,(H, [0,1]) with |E| = X,
and let X be the closure of E in the cube [0,1]". Then either w(X) < Ry or
w(X) = 2%,
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Proof. This proof is patterned after the proof that every uncountable
analytic set has size 2%. Let k = w(X); then x < 2% because X is separable.
Assume s > Ny, and we shall show that k = 2%. We consider the Banach
space C'(X) = C(X,R), with [|-|| the usual sup norm, and d(-, -) the associated
metric distance. Note that k = w(C(X)). For each u € H, let 7, : X — [0, 1]
be projection. We shall produce a perfect P C H such that {m, : u € P} is
discrete in C'(X), proving w(C(X)) > 2%.

Let M = {m, : u € H} C C(X). By the Stone-Weierstrass Theorem, the
algebra generated by M is dense in C'(X), so that M cannot be separable. It
follows that we can fix an € > 0 such that whenever S is a countable subset
of M, there is a 7, € M with d(m,,S) > e.

Call Z C H small iff there is a countable S C M such that d(m,,S) < €
for all u € Z. So, H is not small, and the small subsets of H form a o-ideal.

Fix an integer N > 0 such that 1/N < €¢/2. Let I; = [i/N, (i + 1)/N],
for © < N. Observe that if Z C H is non-small, then for some a € E and
some 7,7 < N, we have i + 1 < j and the sets {u € Z : a(u) € [;} and
{u € Z : a(u) € I;} both non-small: If not, then for each a € E, let P,
be the set of ¢ such that {u € Z : a(u) € I;} is non-small. Note that P, is
either a singleton or a set of two adjacent integers, so if J, = |J{I; : i € P,},
then J, is an interval of length either 1/N or 2/N. But then Z = {u € Z :
Va € Ela(u) € Jo|} UUueple € Z ¢ a(u) ¢ Jo}, which expresses Z as a
countable union of small sets, a contradiction.

It follows that we may choose, for each s € 2<%, a closed Z, C H and an
as € E such that:

1. Zy=H.
2. diam(Zs) < 1/n whenever s has length n > 0.
3. Z is not small.
4. For some i,5: i+ 1 < j,and Zy = {u € Z, : as(u) € I;} and Zy =
{ue Zs:as(u) € I;}.
Here, diam refers to the diameter with respect to some (fixed) complete metric
on H. By (2), for each f € 2, there is a uy € H with [, Zf My = {ur}.

By (4), ||7u; — mu, |l > 1/N whenever f, g are distinct. Thus, M has a discrete
set of size 2% so k = 2%, O

Corollary 2.10.20 If 2 is any structure for a countable language, (b, @) is
its Bohr compactification, and E is a countable subset of A, then the weight
of the closure of ®(F) in bA is either 2% or countable.
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Proof. By Corollary 2.7.4, we may assume that A is countable. Now, apply
Theorems 2.10.12 and 2.10.19. O

Question 2.10.21 Suppose that A is a nice discrete structure for a countable
language, E is a countable subset of A, and a € E is not isolated in E (with
the topology inherited from A% ). Must X(a, E) be either 2% or countable?

Note that Example 3.6.7 provides a counter-example for non-nice struc-
tures. Question 2.10.21 seems to be open even for abelian groups, but observe
that in that case we must have X(a, F) > p (the least cardinal x such that
M A(k) fails for some o-centered partial order; see, e.g., Fremlin [10]); oth-
erwise, there would be a subsequence S of E which converges to a, which is
impossible, since there must be a subsequence of S whose closure in bA is
homeomorphic to SN.

3 Specific Structures

We now consider these generalities for some specific structures. We consider
two general types of structures. One is homogeneities (see Definition 2.1.5)
and related structures, such as loops and groups. The other is semilattices
and distributive lattices, and special varieties thereof, such as total orders
and boolean algebras. In addition, in Section 3.6, we describe some special
structures cooked up to provide counter-examples.

3.1 Homogeneities

These give us enough structure to prove that products and cardinal functions
work out nicely.

Lemma 3.1.1 Let (X; f,g) be a compact homogeneity, and fiz a “basepoint”
0. For each open neighborhood W of 0, let Uy = {(z,y) : f(z,0,y) € W}.
Then the set of all Uy, for W an open neighborhood of 0 in X, is a basis for
Ain X x X.

Proof. Fix any open V with A C V C X x X. By compactness, W =
X\ {f(z,0,y): (z,y) ¢ V}isopen. Then 0 € W and A CUy CV. O

This plus Lemma 2.5.1 implies the following corollary, which also follows
from the fact that X is dyadic:
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Corollary 3.1.2 Let (X; f,g) be any infinite compact homogeneity. Then
w(X) = X(X).

Lemma 3.1.3 Suppose A = (A; f,g,---) is any topological structure with b
infinite and (A; f, g) a homogeneity. Then w(A#) = X(AF) = w(bA) = X (b2).

Proof. We may assume that A% is Hausdorff (or else, pass to a quotient
by Lemma 2.3.11), and now we may identify 2 as a sub-structure of b,
with the induced topology. By homogeneity, all points of A have the same
character in 2%, and all points of b2 have the same character in b2A. We
already know (Corollary 3.1.2) that w(b2() = X(b2(). Since A is dense in b2
and the spaces involved are all regular, X(2%) = x(b2) = w(bA). Finally,
X(A7) < w(AF) < w(dA) = X(A¥). O

Note that every element of a homogeneity is an idempotent with respect
to f,g (that is, f(x,x,x) = g(x,x,x) = x). Using this:

Lemma 3.1.4 Suppose that L contains 3-place function symbols f, g, and that
A and B are topological L structures, and are homogeneities (with respect to
f,9)- Then b(A x B) = b2 x bB, and hence the topology (A x B)* is the

same as the product topology, A# x B#.

Proof. We may assume that £ also contains a symbol 0 (interpreted
arbitrarily in 2(,8). Define z oy = f(0,x,¢(0,0,y)), and note that z o0 =
Oox = x. Thus, the result would follow by Lemma 2.9.3, except that 0 may fail
to be an idempotent with respect to the other functions besides f, g. To fix this
problem, let £; be obtained from £ by replacing each function h € L\{f, g}
with a new symbol A’ of the same arity, and let £ = £ U L. Interpret A’
in A and B by the formula h'(xq,...,z,) = f(R(0,...,0),0,h(zq,...,2,)), SO
that 0 will be idempotent with respect to h'. We have now defined, in the
obvious way, structures 2, B for £; and 2, B, for L5. Lemma 2.9.3 applies
immediately to show b(2; xB;) = b; x bB;. But also, we can retrieve h from
R’ by the formula h(zy,...,x,) = ¢g(0,h(0,...,0), ' (x1,...,2,)), so applying
Lemma 2.8.3, we get b2, = b2y = b2, and likewise for B and A x B. O

The following lemma, together with Lemma 2.2.6, implies that a compact-
ification of 2 is completely determined by its induced topology on A:

Lemma 3.1.5 Suppose that A = (A; f,g) is a topological homogeneity, and
that (X, @) and (Y1) are two compactifications of A compatible with A. If
Tp C Ty, then (X, ) < (Y, ).
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Proof. Define I' C Y x X by: ' = cl{(¢(a),p(a)) : a € A}. If we can
show that in fact I" is a function, we will have (X, v) <r (Y, ). So, fixy € YV’
and z,z € X with (y,z) € I and (y, z) € I'. We shall show that x = 2.

Let D be a directed set, with the nets ((¢(aq), p(aq)) : @ € D) con-
verging to (y,z) and ((¢(ba), ¢(ba)) : @ € D) converging to (y,z). Fix a
“basepoint” 0 € A. In Y, we have ¢(f(aqa,0,b.)) — f(y,(0),y) = ¥(0),
so in A, f(aa,0,b,) — 0 in the topology 7, and hence in 7, so that in
X, ((a,0.b0)) — @(0). But also, ¢(f(aa,0,ba)) = F(1,0(0),2), 50
f(z,9(0),2) = ¢(0),s0 2 = 2. O

Remark 3.1.6 Note that this lemma does not give us a simple criterion for
deciding whether a given topology 7 on A is indeed of the form 7, for some
compactification (X, ¢); the lemma only says that this compactification is
unique if it exists. In the case of groups, the criterion is simply that 7 be
totally bounded, in the sense that for each open set U C A, we have all of A
covered by a finite number of translates of U; then T corresponds to a totally
bounded uniformity; see Remark 2.4.1. It is not clear to what extent this can
be generalized to other varieties of loops.

The fact that homogeneities are homogeneous give us:

Lemma 3.1.7 Suppose that L contains 3-place function symbols f, g, and
that A is a discrete L-structure which is a homogeneity (with respect to f,g).
Suppose also that there is a homomorphism v from A onto the discrete L-
structure B, where |B| = Ry and B% is Hausdorff. Then A# is homeomorphic
to w x A* (i.e. to a disjoint sum of w copies of the space A¥ ).

Proof. Note that if X is any countably infinite homogeneous Hausdorff space,
then X is homeomorphic to wx X . If we examine the proof of this fact, applied
in the case X = B#, we shall see that in this case, the homeomorphism lifts
to A# via the continuous (by Lemma 2.3.10) ¢ : A# — B#.

First, we observe that if U,V are any non-empty open subsets of B#, then
Yp~Y(U) and ¥~%(V) are homeomorphic open subsets of 2#. To prove this,
apply homogeneity of 8% (and the fact that there are no isolated points) to
choose points u,,v, € B and clopen sets U,,V, C B (for n € w) so that:
Up € Uy, v, € V,, U is the disjoint union of the U,, V is the disjoint union
of the V,,, and each U, is homeomorphic to V;, via the map z — f(un, vy, x).
Then choose p,,q, € A with ¥(p,) = u, and ¥(q,) = v,. Now, ¥~ '(U,)
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will be homeomorphic to ~'(V,) via the map y ~ f(pn,qn,y), so that
Y=Y (U), = (V) are homeomorphic.

Finally, apply homogeneity again to partition B into non-empty clpoen sets
W, (for n € w). Then each ¢»~'(WW,) and ¢~'(B) = A are homeomorphic, so
that we have 2# partitioned into w sets homeomorphic to A#. [

This lemma is most useful when 2 is an abelian group, in which case
we get 1, B for free (see Lemma 3.3.3). For non-abelian groups, we cannot
delete the assumption about ,B. For example, let A = SO(3), viewed as
a discrete group. By van der Waerden [34], bA = A¥ is just SO(3) with
its usual compact topology (i.e., SO(3) is self-Bohrifying (Definition 2.3.14)).
Thus, A* is not homeomeorphic to w x A¥.

3.2 Quasigroups and Loops

Every quasigroup (A4;-,\,/) has a loop operation, defined via isotopy, as in
Bruck [5]. That is, fix any a,b € A and define:

zoy=(z/b)-(a\y) ; (*)

then o is a loop operation with identity a - b. It follows (see Hofmann [12] or
Chapter IX of [7]) that every topological space X which supports a continuous
quasigroup operation (X;-,\,/) also supports a continuous loop operation.
However, it need not be the case that we can read the quasigroup operation
back from the loop operation. For example, if A is infinite and o is any loop
operation on A, then there are 214! different quasigroup operations which yield
o via (%), at most |A| of which can be first-order definable from o. So, we are
not able to reduce the Bohr compactification of a quasigroup to the Bohr
compactification of a loop.

Likewise, every quasigroup has a defined homogeneity: set f(z,y,2) =
z - (x\y) and g(x,y,z) = z/(y\x); in the case of groups, this reduces to
f(x,y,2) = g(z,y,2) = 20~ 'y. Hence, topological quasigroups are homoge-
neous. Furthermore, b(A;-,\,/) =b(A;-,\,/, f,9) by Lemma 2.8.3, so apply-
ing Lemma 3.1.4 we have b( x B) = bA x bB for quasigroups. It is not clear
whether b(A;-,\,/) = b(A; f, g) in general, although this is certainly true for
loops.

If (X;-,\,/) is a quasigroup and X has a compact Hausdorff topology
which makes the function - continuous, then \ and / must be continuous
also, since their graphs are closed. However, one cannot in general identify
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b(A;-,\,/) with b(A;-), since the - of b(A;-) may fail to be a quasigroup
operation (see Example 3.2.2 below). In the case of IP-loops, one can make this
identification. An IP-loop, or a loop with the inverse property, is a loop with a
unary function i satisfying the equations x/y = z -i(y) and y\z = i(y) - = (so
that also 1/y = y\1 = i(y)). Clearly, for these we have b(A;-,\,/) = b(A4;-, 1),
but one can drop the 7 as well:

Lemma 3.2.1 Suppose that (A;-,\,/) is an IP loop and ¢ : A — X is a
compactification of the set A which is compatible with -. Then ¢ is compatible
with \ and / also. Hence, b(A;-) = b(A;-,\,/).

Proof. We apply Theorem 2.8.5; it is sufficient to show that the inverse
operation, 7, is positively definable from - and 1. Now, we can define 7 by
y =i(z) & x-y = 1. Furthermore, the statement Vz3ly[z - y = 1] is provable
from Vz[z1 = 1z = 2| and Vo32Vy[z(zy) = (yx)z = y|, which are positive
statements about - and 1 which are true in all IP loops. O

This lemma does not hold for loops in general, as the next example shows.
This example also shows that some care must be used in applying Theorem
2.8.5. In any loop, one may define / and \ by positive formulas involving
just - ; that is, y = x;/x9 & yxe = x1; but one may not be able to prove
Vi zo3lylyzy = x1] from positive statements true about - and 1 in the loop.

Example 3.2.2 Let A denote the rational points in the circle group T, and let
¢ : A — T be the identity map. Then there is a commutative loop operation o
on A such that ¢ is compatible with o, but not with its \ and /. Furthermore,
the o of b(A;0) is not a quasigroup operation.

Proof. View T as R/Z, so that A = Q/Z. If f : R — R is continuous and
periodic with period 1, we can define o on T by:
zoy=x+y+ f(z)f(y) (modl) .

Fix an irrational v € (0.4,0.6). Then, choose f, together with rationals: 0 =
ag < ayp < g <y << by <b <by=1sothata, ~vandb, \, v, and

1.0 < f(z) < 0.1 for all z, and f(y) = 0.1, but f(x) < 0.1 for all
z € [0,1]\{}.

2. On each [ay, a,41] and [b,41, by,], f is linear, with slope in QN [—10, +10].

3. flag) = f(a1) = f(b1) = f(bo) =0

4. f has slope exactly -10 on [bg, by].
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So, 0 : T x T — T is a continuous function, and, by item (2), o takes A x A
to A. For any ¢ € [0,1], define L.(x) = x + ¢+ f(z)f(¢). Then L.(0) = ¢
and L.(1) = 1+ ¢ by item (3). If ¢ is rational, then L. has positive slope by
items (1) and (2) so L., viewed as a map on Q/Z, is invertible. Hence, o is a
quasigroup operation on A. It is a loop because 0 is an identity element. But
also, by items (1) and (4), L,(x) = x + v+ f(x) - 0.1 is constant on [b, by],
so that o is not a quasigroup operation on 7. Hence, \ and / on A do not
extend continuously to functions on 7'; that is, the closures of their graphs in
T3 fail to be functions.

Now, let @ : (A;0) — (X;0) =b(A;0),andlet T : X — T with['® = ¢. In
T, let d be the constant value of L., on [by, by]. In X, let U = I'"*(by, by), and fix
any 0 with I'(0) = . Let V =00oU. If v = Jox € V, then I'(v) = yol'(x) = d.
Hence, T'(V) = {d}. If (X;0) were a quasigroup, then V" would be open, and
we could cover X with translatesof V: X =xz;0V U---Ux, o V. But then
T =T(X) = {T(x1) od,...,T(an) od}. O

3.3 Groups

If G is any topological group, then it has a defined homogeneity, so that
w(G#) = X(G*) = w(bG) = X(bG) by Lemma 3.1.3. In some cases, we can
compute this cardinal. Most notably:

Theorem 3.3.1 If G is any discrete infinite abelian group, then w(bG) = 21|
and [bG| = 22

Of course, the fact that [bG| = 2% follows immediately from homo-
geneity (see Lemma 2.5.1). This theorem is due to Kakutani [18], but was
improved by Hartman and Ryll-Nardzewski [11], who showed that G contains
an I set, A, of size |G|. This set has the property that A is discrete in G¥,
and is C*-embedded in bG (equivalently, its closure is homeomorphic to SA).

This theorem can fail for non-abelian groups, since by von Neumann and
Wigner [26], there are discrete groups G in all infinite cardinalities such that
G* is indiscrete (so w(bG) = 1). Furthermore, by Moran [24], there is a
countably infinite group G such that G# is Hausdorff and w(bG) = ¥y. Note
that for countable G, w(bG) cannot be strictly between Ry and 2% by Corollary
2.10.20.

For Moran’s G, the topology of G* is characterized as the unique countable
regular space with no isolated points of weight N,. This raises the general
question:
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Question 3.3.2 If G, K are groups, G¥*, K* are Hausdorff, and |G| = |K]|,
when are G#, K% homeomorphic (just as topological spaces)?

In the case of abelian groups, this is an old question of van Douwen, and
some partial results are known: Say |G| = |K| = > N,. Then G#, K# are
Hausdorff and have all the same cardinal functions; for example, w(G#) =
w(K#) = 2%. However, there are examples (for each k) where G# and K# fail
to be homeomorphic (see [20]). But there are also cases where GG, K are non-
isomorphic but G#, K# are homeomorphic. Two classes of such examples are
known. One class is provided by Comfort, Herndndez, and Trigos [8]. Another
is provided by:

Lemma 3.3.3 If G is a discrete infinite abelian group, then G¥ is homeo-
morphic to w x G#. Hence, if G is a subgroup of the abelian group K and
(K : G] is finite, then G* and K% are homeomorphic.

Proof. Note that there must be a countably infinite B and a homomorphism
1 from G onto B. To see this, choose C, D, such that C' < G, C < D, D is
divisible, and |C| = |D| = Rg; then, let ¢ : G — D extend the identity map
on C, and let B = ran(v). Thus, the result follows from Lemma 3.1.7. O

3.4 Semilattices

In this discussion, we emphasize A-semilattices, which are structures of the
form (A; A) where A is associative, commutative, and idempotent (z Az = x).
These define a partial order by x < y < x Ay = x. Of course, we may
apply our results to V-semilattices, which have exactly the same axioms, but
the binary function is called V and the order is called >. So, in discussing
lattices, the results apply both to the A and the V.

For total orders, it makes no difference whether we consider the structures
to be lattices or semilattices:

Lemma 3.4.1 If A is totally ordered by <, and N\ and \V are the corresponding
lattice operations, then b(A;V,A) = b(A; A) = b(A; V).

Proof. Apply Theorem 2.8.5. V is positively definable from A by

X1 \/IL'Q =Y g 7,/}(x1,x2,y) )
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where 9 is
r1 ANy =x1 AND x5 Ay =129 AND (y:xl ORy:x2>

The statement Va1 293ly ¢ (21, 9, y) is provable from positive statements (such
as Vey(zr Ay =z OR z Ay =y)), which are true about A in A. O

In any lattice, the V is first-order definable from the A (since < is), but it
may not be positively definable, and we need not have b(A;V,A) = b(A; A);
see Theorem 3.5.19.

Bohr topologies for abelian groups are handled via the Pontryagin Duality
Theorem. There are similar duality theorems for a number of other algebraic
varieties; see Davey [9]. Among these are the Priestly duality [28][29] for
bounded distributive lattices and the duality of Hofmann-Mislove-Stralka [13]
for semilattices. In these dualities, the two element lattice or semilattice, 2,
plays the role of the circle group for abelian groups. Using homomorphisms
into 2, one can prove that the Bohr topology for semilattices and distributive
lattices is Hausdorff.

Now, the Pontryagin duality is with all compact abelian groups, and this
enables us to prove that the circle group is adequate for abelian groups. How-
ever, the dualities for the lattice varieties are with compact zero-dimensional
structures, so we do not get the analogous result that 2 is adequate for these
varieties, since the Bohr topology is computed using homomorphisms into all
compact structures. So, Hom(2,2) will give a fairly explicit description of
bo2 (see Definition 2.3.15) for all semilattices (Theorem 3.4.17) and for all
distributive lattices (Theorem 3.5.14). Then, we shall examine some cases
in which b2l = by®A. In particular, this holds for boolean algebras and total
orders, so that 2 is adequate for discrete boolean algebras and discrete total
orders.

Of course, 2 is not adequate for compact total orders, since the order may
be connected. It is easy to see that [0, 1] is adequate for compact total orders,
and we shall show that if 2 is any discrete lattice or semilattice, then [0, 1] is
adequate for 2 iff 2 is adequate for 2.

Definition 3.4.2 A compact semilattice (X;A) has the Lawson property iff
the semilattice [0,1] is adequate for X.

Many equivalents are known for this property; see [6]. Not every compact
semilattice has the Lawson property (by Lawson [22]), and this implies that
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there is a discrete semilattice 2 for which b2 < b2 (see [6] and Lemma
3.4.12).

We begin by listing some elementary properties of compact orders and
semilattices; see, e.g., [6][13] for proofs.

Definition 3.4.3 A compact order is a pair (X; <), where X is a compact
Hausdorff space and < is a partial order on X which is closed in X x X. IfS C
X, then S| ={z € X : Jy € S[z < y]} and St ={zr € X : Iy € S[z > y|}.
If v € X, then x| = {z}] and 1 = {z}1.

For example, the < induced by a compact semilattice is a compact order,
by continuity of A.

Lemma 3.4.4 Suppose (X; <) is a compact order and F is a closed subset of
X. Then F| and F1 are closed.

Lemma 3.4.5 Suppose that (X;A) is a compact semilattice.

1. If U C X is open then UT is open.

2. If K C X is closed, E C X, and x Ny € K for all distinct x,y € K,
then all limit points of E lie in K.

3. If E C X s infinite and x Ny = ¢ for all distinct x,y € E, then c is the
unique limit point of E.

4. If K C X s clopen, and M 1is the set of minimal elements of K, then
M is finite, Kt = |J{m?: m € M}, and m? is clopen for each m € M.

5. Suppose that {x, : o < k} C X. Let D be [k]<* ordered by subset, and
for each d € D, let x4 = N{zo : @ € d}. Then N{z,: o < K} exists in
X, and the net (xq: d € D) converges to it.

6. If (Y; N) is another compact semilattice and ¢ : X — 'Y is a continuous
homomorphism, then for any {zq : o < K} € X, we have (N, Ta) =

Nacr ¢(Ea)-

By (5)(6), compact semilattices are complete, and homomorphisms be-
tween them are complete homomorphisms. (4) is essential to the duality
results with compact 0-dimensional semilattices. We do not need the details
of this theory, but we do need that homomorphisms into 2 separate points
(Lemma 3.4.7).
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Definition 3.4.6 If (X;A) is a semilattice and b € X, define v, : X — 2 so
that vy(z) is 1 if x > b and 0 if x 2 b.

Lemma 3.4.7 Fach vy, is a homomorphism. If (X; A) is a compact 0-dimen-
sional semilattice, and x,y € X with x # y, then for some b € X: , 1is
continuous and v,(x) # V(y).

Proof. To get a continuous 7, (so bt is clopen), use Lemma 3.4.5.4. O

Now, just the fact that 7, is a homomorphism lets us prove:

Lemma 3.4.8 If A = (A4; A) is a discrete semilattice, then A% is Hausdorff.
If C C A is a chain, then C is relatively discrete in A%.

Proof. 2% is Hausdorff because the +, separate points.

Now, let C' be a chain, and fix b € C. Then 7, '{1} is a clopen set
containing b and no smaller element of C. Define another homomorphism
Y(x) = sup{7.(z) : ¢ € C & ¢ > b}. Then 1»"1{0} is a clopen set containing b
and no greater element of C. [

It is immediate from Lemma 3.4.7 that we may compute by2l by taking
the \/ (in the lattice of compactifications) of all homomorphisms into 2. But
in fact we get the same thing if we consider all homomorphisms into [0, 1]:

Lemma 3.4.9 Suppose that (A;A\) is a semilattice and ¢ : A — X is some
compactification of A, where (X;A) is a compact semilattice which is totally
ordered. Then ¢ < by(A4;N).

Proof. Let Y = X X 2, ordered lexically. So, Y is obtained by doubling all
the points of X. Let I' : Y — X be the undoubling; y(z,i) = x. Then T is
continuous. The map ¢ lifts to ¢ : A — Y defined by ¢ (a) = ¢(a,0). Then
¢ (as a map into cl(ran(¢))) is a compactification of A and ¢ <p 1. Since Y
is O-dimensional, 1) < bo(A; A). O

Corollary 3.4.10 b2 = \/(Hom(2,2)) = \/(Hom(, [0, 1])) for each semi-
lattice 2.

Here, the \/ is in the lattice of compactifications.

Corollary 3.4.11 If (A;A) is a discrete semilattice and b(A; A) has the Law-
son property, then b(A; A) = by(A; ), and is hence 0-dimensional.
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Conversely, as in [6], pp. 22-23:

Lemma 3.4.12 If (A;A) is a discrete semilattice and b(A;N) = bo(A; N),
then every compactification of (A; A\) has the Lawson property.

Proof. Since b(A;A) is a compact 0-dimensional semilattice, it has the
Lawson property (by Lemma 3.4.7). Now, just use the fact that the Lawson
property is preserved under continuous homomorphic images; this fact is easily
proved from the equivalents to the Lawson property given in [6]. O

Corollary 3.4.13 There is a countable discrete semilattice (A; N) such that
bo(A; A) < b(A;N).

Proof. By Lawson [22], there is a compact second countable semilattice
(X; A) which does not have the Lawson property. Let A be a countable dense
sub-semilattice of X, and apply Lemma 3.4.12 O

Corollary 3.4.11 may be used to prove that b(A; A) = by(A; A) when A has
finite breadth:

Definition 3.4.14 For n finite, a semilattice (A;A\) has breadth < n iff
whenever E. C A and n < |E| < Xy, there is an F C E with |F| = n
such that N\F = \ E.

Lemma 3.4.15 If (A; A) has breadth < n, then b(A; A\) = by(A4; A).

Proof. b(A;A) also has breadth < n, since this property is expressed
by a positive logical sentence. Thus, b(A; A) has the Lawson property by [6]
Theorem 2.30. O

The clopen sets in a topological space form a semilattice (in which A is
N). Every semilattice can be isomorphically embedded into such a semilattice.
The standard way of doing this, as indicated in the proof of the next lemma,
can be used to compute by%.

Lemma 3.4.16 Let (B;A) be a semilattice. Then there is a compact 0-dimen-
stonal Hausdorff space X and a sub-semilattice A of the clopen sets of X such
that B is isomorphic to A, and such that for K € A,

K\ J{LeA:LpK}#0 (%)
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Proof. Let X = Hom(B,?2), which we regard as a subset of 2”, with the
usual product topology. Define U(b) = {¢ € X : ¢(b) = 1}. Then U is a
1-1 homomorphism from B into the semilattice of clopen subsets of X, so A
is just the range of W. (%) holds because each K = W(b) in A contains the
element ~y, and 7, ¢ W(a) for any a 2 b. O

Condition (*) implies that ¥ is not a lattice homomorphism; that is, if
a £ band b £ a and a V b happens to exist, then ¥U(a) U ¥(b) is a proper
subset of ¥(a Vv b). For the analogous embedding to use for lattices in the
computation of the Bohr compactification, see Section 3.5.

Theorem 3.4.17 Suppose that (A;\) is a sub-semilattice of the semilattice
of clopen subsets of the compact Hausdorff space X, and assume that (x) above
holds. Give P(X) the usual product topology by identifying it with 2%. A is
also a sub-semilattice of P(X). Let Z be the closure of A in P(X). Then

Proof. It is sufficient to show that whenever ¢ : A — 2 is a semilattice
homomorphism, ¢ extends to a continuous homomorphism on P(X), and
hence on Z. Let E=(|{K € A: o(K) =1} \U{L € A: (L) =0}. By (%)
and compactness, E # (), so fix x € E. Define ¢ : P(X) — 2 so that ¢(S) =1
iff € S. Then v extends ¢ and is continuous with respect to the product
topology on P(X). O

In particular, for total orders, A is a chain of clopen sets, and we get its
closure by taking unions and intersections. Note that an increasing union of
clopen sets is open but not closed, while a decreasing intersection of clopen
sets is closed but not open. This gives us the following simple description of
bA, which may also easily be verified directly from the basic definitions:

Lemma 3.4.18 If A is a total order, then A¥ is discrete, and bA = byA is
computed as follows: First, let A CY, whereY 1is the Dedekind completion.
Then, replace each element y € Y\A by two points {y*,y~}, except in the
cases that y is the first or the last element of Y. Finally, for each point
z € A, add a new point 2 directly above z if z is a limit from above, and also
add a new point z= < z if z is a limit from below. So, if z is a limit point
from both sides, it becomes a triple of points: z= < z < zT.

Then, applying the standard Hausdorff analysis of total orders:
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Corollary 3.4.19 If A is a countably infinite total order, then X(bA) = Ro.
If A contains a copy of the rationals, then w(bA) = [bA| = 2%, If not, then
w(bA) = |bA| = Ny.

One way to ensure byA = bA is to bound the breadth (Lemma 3.4.15). In
the opposite direction, we may bound the chain length. In fact, if all chains
in A are finite, then we shall show (Theorem 3.4.23) that byA = bA = A;
that is, there is a natural compact topology on A which makes the semilattice
self-Bohrifying (see Definition 2.3.14).

Lemma 3.4.20 Let A be any Hausdorff topological semilattice. Then each at
is closed. If a < b and there is no ¢ with a < ¢ < b, then al \ b1 is closed.

Proof. at = {z : x Aa = a} is closed by continuity of A. If a1\ b1 fails to be
closed, then there is an = € b such that x € ¢l(af\ b1). Then, by continuity
of A, we have b=0Ax € cl(bA (aT\ bT)). However, b A (at\b0T) ={z:a <
z < b} = {a}, so we would have b € cl{a}. O

Lemma 3.4.21 Let (A;A) be a semilattice with no infinite chains. Let T be
the coarsest topology which makes all at clopen. Then

1. T is Hausdorff.

2. Fach a € A has a base consisting of sets of the form at\ (byTU---Ub,T),
where n € w and each b; > a.

3. T 1is compact.

4. T is coarser than every other Hausdorff topological lattice topology on
A.

Proof. (1) is clear, and holds in any partial order.

Next, note that since A has no decreasing w-sequences, it is actually a
complete semilattice. Hence, A must have a least element, 0. Also, if a,c € A
have some upper bound, they must have a least upper bound, a V c.

Now, for (2), use the fact that the af and A \ b1 form a sub-base for T,
plus the fact that a;7T N ay? is either O or (a; V az)7.

Suppose (3) fails. Then A = 01 is not compact in the topology 7. Since
A has no increasing w-sequences, there is some maximal a € A such that a7 is
not compact in the topology 7. Let U be any open cover of a1 with no finite
subcover, and let a € at\ (iTU---Ub,T) C U € U, where each b; > a. But
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then, by maximality, we can get a finite subcover for each b;1, and hence for
aT, yielding a contradiction.

For (4), suppose that 7 is a topological lattice topology. It is sufficient to
prove that each b1 is clopen in 7. If not, then fix b such that b1 is not clopen,
but d7 is clopen for all d < b, and then fix a < b such that there is no ¢ with
a < ¢ < b. We then get a contradiction by applying Lemma 3.4.20 to 7'. O

The following tree orders provide a class of such semilattices: Let I be any
set and let A be any sub-tree of I<¥ which is well-founded (that is, -3f €
I“Vn(f I'n € A)). A has the usual tree order, with the empty sequence at the
bottom. Of course, a semilattice with no infinite chains need not be a tree.
Still, by Lemma 3.4.21, its intrinsic compact topology is uniquely determined
by the order in a fairly simple way. The next lemma describes how such a
semilattice looks when embedded in a larger compact semilattice.

Lemma 3.4.22 Let (A; A) be a sub-semilattice of the compact lattice (X; N),
with A dense in X. Assume that A has no infinite chains. Then bt = {z € X :
b <z} is clopen in X for each b € A.

Proof. Since A has no infinite chains, it must have a 0, which is then the
least element of X as well (since {x € X : A0 = 0} is closed and contains
A). Then 01 = X is clopen in X. Thus, if the lemma fails, then we can fix
a,b € A such that a < b, at is clopen in X, b7 is not clopen in X, and there
is no ¢ € A with @ < ¢ < b. Then at \ b1 fails to be closed, so there is an
x € b1 such that = € ¢l(af\bT). Since at\ b1 is open in X and A is dense, we
have z € cl((at\ bF) N A). Then, as in the proof of Lemma 3.4.20, we have
b=bAzeclbA((aT\bT)NA)=cl{a}. O

Theorem 3.4.23 For a semilattice, (A; \), the following are equivalent:

1. A has no infinite chains.
2. A has a compact topology, T, such that (A; N\, T) is self-Bohrifying.

Proof. (2) = (1): If C is a chain, then so is C. If C'is infinite, then C cannot
be discrete in the topology 7, but it is relatively discrete in bA by Lemma
3.4.8.

(1) = (2): First we show that A = byA. We may identify A C X = byA,
and we need to prove that A = X. Let T be the (unique) compact semilattice
topology on A, let 7' be the topology on X, and let 7' [ A be the subspace
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topology 7" induces on A. By Lemma 3.4.22, T C T'[ A. Tt is enough to
prove that 7 = 7' [ A, since then A will be compact in 7" and hence A = X,
since A is dense in X . Since 7" is O-dimensional, it is enough to fix a 7'-clopen
H C X and prove that H N A is T-closed. If not, fix a € A\H such that a
is a 7-limit point of H N a. Since af is clopen in both topologies, we may
assume that H C aT. Let M be the set of minimal elements of H N A. Then
M is infinite; otherwise, J,,c,,(m1 N A) would be a T-clopen set containing
H N A but not a. Also, m An ¢ H whenever m,n are distinct elements of
M. But this contradicts H being 7'-clopen in X: if z € X is a 7'-limit
point of M, then x € H (since H is closed); but also z would be a limit of
{mAn:-mmneM&m#n} C X\H,sox ¢ H (since X\H is closed).

Now we show that A = bA, so we identify A C Y = bA, and we need to
prove that A =Y. In the following, all topological notions refer to the com-
pact topology on Y. Applying Lemma 2.3.16, we know that each connected
component of Y contains precisely one element of A. So, it is enough to fix
a € A, let K be the component of a in Y, and show that K = {a}. Since
A has no infinite chains, we may assume that for all b € A with b > a, the
component of b in Y is {b}, so that at\A C K. Note that K C af, since af
is clopen. Also, if a < y < v and x € K, then y € K; otherwise, y € A and
yT would be a clopen set disconnecting K.

Now, assume K # {a}, and we derive a contradiction. Let Ky be the set of
r € K\{a} such that x < b for some b € A. Ky # 0): If Ky =), then bAz =a
forall b € at N A and all € K\{a}. Fix x € K\{a}. Since x € ¢l(aT N A),
we have =z Az € cl((aT N A) Az) = cl({a}), which is impossible.

For y € Ky, let y© € A be the (unique) minimal element of A N y?1. Note
that if « < x <y € Ky, then z € Ky and 7 < y*. Since A has no infinite
chains, we can fix y € K| so that whenever a < x < y € K, we have 27 = y*.
Since A is dense in Y, we have y € P, where P = AN (at\ y*1). Forp € P,
a < pAy <y;but then a = pAy; if not then (p Ay)™ =y, sope y™t. But

then PAy = {a}, and y=y Ay € P Ay = {a}, which is impossible. O

The following lemma adds a few more remarks on semilattices with no
infinite chains.

Lemma 3.4.24 Let (A;A\) be a compact semilattice with no infinite chains.
Then every sub-semilattice is closed. Hence, the closure of every countable set
is countable, so that A is scattered. Furthermore, A has countable tightness.

Proof. Let S be a sub-semilattice, and suppose a € S. Since there are no
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infinite chains, there is a least element, b, of S N af. But then a = b € S,
otherwise, at\ b1 would be a neighborhood of a disjoint from S.

Let E C Aand p € E. Let S be a countable sub-semilattice such that
p € S and for all n € w and all by,...,b, € S with each b; > a, we have
SNENat\ (tU---UbH) #0. Thenpe SNE. O

Note that the tree orders provide a class of examples which can be con-
structed to have arbitrary Cantor-Bendixon rank. Actually, Lemma 3.4.24
can be proved directly from more general facts. A has countable tightness
because the topology is the same as (A; A)#, which has countable tightness
by Corollary 2.10.15, and to prove that sub-semilattices are closed, one could
apply Theorem 3.4.26 below, since bA = A.

The following lemma says more about af and al in b2.

Lemma 3.4.25 Let A be any semilattice, let X denote either b or by®d, and
identify A as a sub-semilattice of X. Fora € A, we use al and al as computed
in X. Then for each a € A:

1. at is clopen and al is closed in X.
2. ANat is dense in al and AN al is dense in al.

Proof. For (1), we need only show that a? is clopen. By maximality of X it
dominates 7,, so there is a continuous homomorphism I' : X — 2 such that
I'(b) =1iff b > a, for each b € A. Then K = {x : I'(x) = 1} is clopen; we
show that K = a?. Now x > a = o € K because I' is a homomorphism.
Furthermore, AN K is dense in K and Vb € AN K[b> al, so Vz € K[x > a].

For (2), ANat is dense because af is clopen. If z € al, then there is a net
(¢o : @ € D) from A converging to x, and then (¢, A a: o € D) is a net from
ANal converging toz Aa=z. O

Theorem 3.4.26 Let S be a sub-semilattice of A.

1. S is closed in A#°, and hence in A%
2. byS is the closure of S in byA.
3. bS is the closure of S in bA.

Proof. For (1), suppose a ¢ S is a limit point of S. Since at is clopen, it is a
limit point of S Nat. But that is impossible, since there is a homomorphism
from A to 2 which takes (SNat)t to 1 and everything else (including a) to 0.
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For (2), it is sufficient to show that every ¢ € Hom(S,2) extends to some
1 € Hom(A,2). So, let ¢(a) = 1iff a > s for some s € S with ¢(s) = 1.

For (3), we apply Lemma 2.7.1, with C the class of all compact semilattices.
Let ¢ : S — X. Let X* be the compact semilattice (in the Vietoris topology)
of all closed non-empty £ C X such that £ = E|. Define ¢* : S — X* by
©*(s) = ¢(s)|. Then ¢* is equivalent to . We can extend ¢* to ¢ : A — X*
by defining ¢ (a) = (cl(p(al N S)))|. O

Such use of the hyperspace is a standard trick in this subject; see, e.g.,
Theorem 1.2 of [22]. Note that in (3), we cannot always extend ¢ itself to
some 1) : A — X. For a counter-example, consider S = X = {0, a,b}, where
a,b are incomparable, and let A = {0,a,b, 1}.

Corollary 3.4.27 For semilattices, b(A x B) = bA x bB and by(A x B) =
bUA X boB

Proof. If A and B both have a 1, this is immediate from Lemma 2.9.3 (the
same proof works for by). If not, simply extend them to semilattices with a 1
by adding a new element on top, and apply Theorem 3.4.26.

3.5 Distributive Lattices

It is easy to find lattices (A;V,A) whose Bohr topology is indiscrete. For
example, we may let A = {0,1}U{a, : n € w}, where 0 is the smallest element,
1 is the largest element, and the a; are incomparable. Suppose ¢ were a non-
constant lattice homomorphism into a compact lattice. Then ¢(0) # (1),
whence the ¢(a,) must all be distinct, since ¢(a,,) = ¢(a,) for any m # n
would imply that ¢(1) = ¢(an) V @(an) = vlam) = ¢lamn) A p(an) = ¢(0).
But then, by applying Lemma 3.4.5.3 (both with A and V), {¢(a,) : n € w}
has both ¢(0) and ¢(1) as its unique limit point, so that ¢(0) = (1), a
contradiction.

However, for distributive lattices, we obtain a reasonable theory of b2
which closely parallels the theory for semilattices. Unfortunately, we know of
no way of deriving one theory directly from the other, and in fact the parallel
is not exact; for example, the analog of Theorem 3.4.26.3 turns out to be false
(see Example 3.5.20). So, we shall just prove a sequence of results paralleling
those of Section 3.4, abbreviating the proofs when they are similar. In par-
ticular, we obtain a simple description of by®d, which, as for semilattices, is
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obtained by homomorphisms into 2 (which now denotes the two-element lat-
tice). These homomorphisms separate points, so that A% is always Hausdorff.
In some cases, such as with total orders and boolean algebras, byl = b2, but
this is not true in general, as we shall see using lattices which fail to have the
Lawson property:

Definition 3.5.1 A compact distributive lattice (X;V,A) has the Lawson
property iff the lattice [0,1] is adequate for X.

As with semilattices, every compact distributive lattice without the Law-
son property (these exist by Lawson [22]) yields a discrete distributive lattice
2 for which by < b (see Lemma 3.5.9).

For discrete distributive lattices, there is no analog to the simply defined
homomorphisms v, of Definition 3.4.6, but lattice filters do give rise to point
separating homomorphisms into 2. Ideals and filters are defined as usual; so,
I C Aisan ideal it Ve,y € Z[xVy € I] and Vo € ZVy € Alz Ay € I); filter
is the dual notion. Note that () and A are both ideals and filters in A.

Definition 3.5.2 If (A;V,A) is a lattice, call (Z,F) an ideal-filter pair of
(A;V,A) iff T is an ideal, F is a filter, and T N F = ().

By Zorn’s lemma, every ideal-filter pair (Zg, Fp) in (A;V,A) can be ex-
tended to a maximal pair (Z,F). If A is distributive, then ZU F = A.

Definition 3.5.3 If (Z,F) is a maximal ideal-filter pair in the distributive
lattice (A;V,N), then 077 : A — 2 is defined to be 0 on Z and 1 on F.

Lemma 3.5.4 47 7 is a homomorphism.

Note that allowing ideals and filters to be empty is consistent with the fact
that constant maps into 2 are homomorphisms by our definition.

Lemma 3.5.5 If (A4;V,A) is a distributive lattice, and a,b € A with a # b,
then @(a) # p(b) for some homomorphism ¢ : A — 2.

Proof. Assume a # b. Then (al,bt) is an ideal-filter pair, so let (Z, F)
be a maximal ideal-filter pair with a|l C Z and b1 C F. Then, oz » separates
a and b. [

These homomorphisms enable us to prove, in analogy with Lemma 3.4.8:
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Lemma 3.5.6 If A = (A4;V,A) is a discrete distributive lattice, then A¥ is
Hausdorff. If C C A is a chain, then C is relatively discrete in A¥#.

Proof. 2# is Hausdorff by Lemma 3.5.5.

Let C' be a chain, and fix b € C. Let Zy = b] and let Fy = (J{cT :
c € C &b<c}. Let (Z,F) be a maximal ideal-filter pair with Z, C Z and
Fo C F. Then 6; {0} N C = {a € C : a < b} is relatively clopen in C.
Likewise, {a € C': a > b} is relatively clopen in C, so b is isolated in C'. O

Since for total orders, semilattice and lattice homomorphisms are the same,
Lemma 3.4.9 and its corollaries are essentially unchanged:

Lemma 3.5.7 Suppose that (A;V,A) is a distributive lattice and ¢ : A — X
is some compactification of A, where (X;V,A) is a compact lattice which is
totally ordered. Then ¢ < by(A;V,A).

Corollary 3.5.8 b2 = \/(Hom(2,2)) = \/(Hom(2,[0,1])) for each dis-
tributive lattice A. If bA has the property that the continuous lattice homo-
morphisms into [0,1] separate the points of A, then bA = by2A, and is hence
0-dimensional.

Note that identifying by2( with \/(Hom(2,2)) here requires the fact (see
[28][29]) that the continuous homomorphisms from a 0-dimensional compact
distributive lattice into 2 separate points.

Analogously to Lemma 3.4.12 and its corollary, we have:

Lemma 3.5.9 If (A;V,A) is a discrete distributive lattice and b(A;V,\) =
bo(A; V, A), then every compactification of (A;V,A) has the Lawson property.

Proof. This follows (as in Lemma 3.4.12) from the fact that the Lawson prop-
erty is preserved under continuous homomorphic images. To see this, use the
fact (see Strauss [32] and Theorem 6 of Lawson [23]) that the Lawson prop-
erty is equivalent to complete distributivity, which is preserved by continuous
homomorphisms by Lemma 3.4.5.6. O

Corollary 3.5.10 There is a countable discrete distributive lattice (A;V,N)
such that by(A; V,A) < b(A;V, ).

For some distributive lattices 2, we do have b(A;V,A) = by(A4;V, ), as in
the lattice version of Lemma 3.4.15:
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Lemma 3.5.11 Let (A;V,A) be a discrete distributive lattice. If (A;A\) has
breadth < n, where n is finite, then b(A;V,A\) = by(A;V,A).

Note that (A;A) has breadth < n iff (4;V) has breadth < n; this is true
because in terms of the order, both are equivalent to the non-existence of
o, ..., Tn, Yo, - - -, Yn such that z; <y, for i # 7, but each x; £ y;. To prove
Lemma 3.5.11, we apply the fact (see [23]) that compact distributive lattices
with finite breadth have the Lawson property.

Analogously to Theorem 3.4.23, we may characterize the self-Bohrifying
distributive lattices. Unfortunately, this characterization reduces to:

Theorem 3.5.12 A compact distributive lattice is self-Bohrifying iff it is fi-
nite.

Proof. It is sufficient to show that if A is a distributive lattice with no infinite
chains, then A must be finite. Let M (z) = {y > z : =32(y > 2 > x)}. Each
M (z) is finite, since otherwise, by distributivity, we would have an infinite
chain of the form yy < yoVy1r < yoVy1 Vys < --- where the y, are
distinct elements of M (z). Also, note that the lack of infinite chains implies
that 1t = {z} U U{yT : v € M(x)}. But then, if A were infinite, we would
inductively construct an infinite chain, 0 = 2y < 1 < x5 < ---, where each
z,T is infinite and x, 1 € M(x,). O

The computation of by for semilattices also works for distributive lattices.
In fact, it becomes somewhat simpler, since now we can use an arbitrary
representation of the lattice in a clopen algebra (see [28][29]):

Lemma 3.5.13 FEvery distributive lattice is isomorphic to a sub-lattice of the
clopen sets of some compact Hausdorff space.

Theorem 3.5.14 Suppose that (A;V, \) is a sub-lattice of the lattice of clopen
subsets of the compact Hausdorff space X . Give P(X) the usual product topol-
ogy by identifying it with 2%. Let Z be the closure of A in P(X). Then
Z =by(A4;V,N).

Proof. Since Z is a zero-dimensional compactification of A, it suffices to
show that Z > by(A;V,A). By Corollary 3.5.8, this will follow if we can
show that each lattice homomorphism ¢ : A — 2 extends to a continuous
homomorphism on P(X), and hence on Z. Let Zy = {H € Z : p(H) = 0}
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and Fp = {K € Z : ¢(K) =1}. If H € 7, and K € Fy, then K ¢ H.
Since elements of Z are clopen subsets of X; it follows, by compactness, that
we may fix a point x € ([ Fo)\(UZy). Let (Z,F) be the principal ideal-
filter pair in P(X) generated by z; that is, Z = {H € P(X) : = ¢ H}
and F = {K € P(X) : z € K}. Then drr : 2¥ — 2 is a continuous
homomorphism extending . O

In particular, we can apply this to boolean algebras. As defined in Sec-
tion 2.1, these are structures of the form (B;V, A, ', 0,1). However, one can
consider them simply as lattices:

Lemma 3.5.15 b(B;V,A,’,0,1) = b(B;V, A) whenever (B;V,A,"',0,1) is a
discrete boolean algebra.

Proof. By Lemma 2.8.3, one can always drop the constants 0,1. To drop
the ’, apply Theorem 2.8.5: One can define 2’ by: 2’ = y < ¢(z,y), where
é(z,y) is the formula x Ay = 0 & =V y = 1. Furthermore, the assertion
Vz3lyp(x,y) is provable from positive logical sentences true in (B;V,A,0,1)
— namely, Vz3yo(z, y) and the axioms for distributive lattices. O

Theorem 3.5.19 below expands on this lemma. First, we identify b8 ex-
plicitly (Theorem 3.5.18).

Theorem 3.5.16 (Strauss [32]) Every compact boolean algebra is continu-
ously isomorphic to {0,1}* for some k.

Corollary 3.5.17 The two-element algebra is adequate for every boolean al-
gebra.

Then, applying Theorem 3.5.14,

Theorem 3.5.18 Let B be the clopen algebra of the compact 0-dimensional
Hausdorff space X. Then bB = byB = P(X), where we identify P(X) with

(0,1},

Now, if B = (B;+,V,A,’) is a boolean algebra (where + is symmetric
difference), we obtain potentially 16 different Bohr compactifications by re-
ducting the language to various subsets of {+,V, A, '}. However, only 5 of
these are distinct, by the following theorem. Note that constants, such as 0, 1,
are irrelevant for computing b8 (by Lemma 2.8.3).
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Theorem 3.5.19 If B = (B;+,V,A, ') is an infinite boolean algebra, and
L C{+,V,A\, '}, then

If L is O or {'}, then b(B | L) = 3B.

If {V,A} C L, then b(B [ L) = bB.

IfF{AV,A}YNL A0 and {+,"} N L # D, then b(B | L) = bB.

The three compactifications, b(B; A), b(B;V), and b(B;+) = b(B;+,"),
are all incomparable with each other, and hence lie strictly between OB
and (B.

v~

Proof. (1) just uses the fact that ' is unary, and (2) is immediate from
Lemma 3.5.15. For (3), just use the fact that either of {V, A} together with 1
and either of {+, '} is sufficient to express every propositional connective.

To prove (4), we first show that b(B;+) £ b(B;A). Since B is infinite,
there is a strictly decreasing w-sequence of elements, by > b; > ---. Then the
b, are independent as elements of the abelian group (B;+), so the closure
of {b, : n € w} in b(B;+) is homeomorphic to AN (see [11] [21]). However,
by Theorem 3.4.17, the closure of {b, : n € w} in b(B;A) is homeomorphic
to w + 1; if we embed B into the clopen subsets of X, then the unique limit
point of {b, : n € w} is [, b, € P(X). The same argument shows that
b(B;+) £ b(B; V).

To show that b(B; V) £ b(B;+), we show that the Bohr topology, (B; +)#,
is not finer than (B;A)#. If b, (for n € w) are distinct elements of B, then
they have some limit point z € b(B;+), so that 0 = z + z is a limit point
of {by, + b : k < n <w} in (B;+)*. However, 0 cannot be a limit point of
any set in (B, V)#, since 0/ = {0} is clopen by Lemma 3.4.25.1 (replacing
the A there with V). Likewise, using 1 + b, + by, with limit 1, we see that
b(B;A) £ b(B;+).

Finally, we show that b(B;A) and b(B;V) are not comparable. Let by,
for n € w, be pairwise disjoint. Then in (B;A)#, the sequence (x, : n € w)
converges to 0 by Lemma 3.4.5.3, whereas, by Lemma 3.4.25.1, {0} is clopen
in (B;V)¥ (note the T and | are reversed). Hence, b(B;V) £ b(B;A), and the
dual proof shows b(B;A) £ b(B;V). O

Example 3.5.20 Suppose that the boolean algebra B contains {d, : n € w}
which are independent in the boolean algebra sense; this is possible iff the
Stone space of B is not scattered. Then the closure of {d, : n € w} in
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b(B;V,A) (and hence also in b(B;V) and b(B;A)) is homeomorphic to N.
Note that b(B;V,A) is 0-dimensional, while b(B; A) and b(B;V) are not; to
see this, let (A; A) be a countable discrete semilattice with by(A; A) < b(A4; A);
by virtue of the d,, we may assume (A4;A) C (B;A); then b(A;A) is not 0-
dimensional, and is a closed subset of b(B;A) (by Theorem 3.4.26.3). Note
that if (S; V, A) is a countable distributive lattice with bo(S; V, A) < b(S;V, A),
we again may assume that (S;V,A) C (B;V,A), and again b(S;V,A) is not
0-dimensional. Now, since b(B;V, A) is 0-dimensional, we see that the analog
of Theorem 3.4.26.3, that bS is the closure of S in bA, is false for distributive
lattices.

We do have the analog of the rest of Theorem 3.4.26:

Theorem 3.5.21 Let S be a sub-lattice of the distributive lattice (A;V, A).

1. S is closed in A#°, and hence in A%
2. byS is the closure of S in byA.

Proof. For (1), fix any a € A\S. To show that a is not in the closure of S, it
is sufficient to produce ¢, v € Hom(A,2) such that ¢(a) =1, ¥(a) = 0, and
for all s € S we have either p(s) =0, ¢(s) = 1. To do this, first choose ¢ such
that p(a) =1 and p(s) = 0 for all s € alNS; this is possible because the filter
at is disjoint from the ideal (a{ N S)|. Then choose v such that ¢)(a) = 0 and
(s) =1 for all s € S such that ¢(s) = 1; this is possible because the ideal
al is disjoint from the filter {s € S : p(s) = 1}1.

For (2), it is sufficient to show that every ¢ € Hom(S,2) extends to some
1) € Hom(A,2). But this is trivial, by Zorn’s Lemma. O

We also have the special case of 3.4.26.3 needed to prove the analog of
Corollary 3.4.27, and in fact we do not even need distributivity here:

Theorem 3.5.22 For lattices, l(Ax B) = bAXbB and by(Ax B) = byAxbyB.

Proof. Let A be A if A has a 1, and let A be A with a 1 added otherwise.
Likewise, define B. Note that A is algebraically closed (Definition 2.7.2) in
A: This is trivial unless A # A. Consider a system of equations over A with
a solution in A. Since A\A = {1}, we may assume our system is of the form
o(z), in just one variable z, and that o(1) is true in A. Say o(z) mentions
elements ay,...,a, € A as constants. Fix b € A with b > a; V---V a,. Then
it is easy to see that o(b) holds in 2L.
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Likewise, B is algebraically closed in B. Tt follows that A x B is alge-
braically closed in A x B. Now use Theorem 2.7.3; note that this theorem
applies also to by, with the same proof. [

Observe that for semilattices, one could not claim that A is algebraically
closed in A, since the equations {x Aa =a , x Ab= b} must have a solution
in A, but need not have a solution in A.

3.6 Counter-examples

We collect here illustrations of some phenomena for which we were not able
to find examples among the more well-known classes of structures.

Example 3.6.1 Let A = (w + 1;V, g), where V is the usual maz operation
on w + 1, and g(m) is m if m is finite and odd, and w otherwise. Give w + 1
the usual ordinal topology. Then 2l is self-Bohrifying (see Definition 2.3.14).

Proof. By Lemma 3.4.18, we know that b(w + 1;V) = w + 1 U {d}, where
m < d < w for all m € w. Thus, the only possibility for b2, other than 2
itself, is this w + 1 U {d}. However, w + 1 U {d} is not possible here, as one
cannot extend ¢ continuously to it: since {z : g(x) = z} is closed, we would
have g(d) = d, but since {z : g(z) = w} is closed, we would have g(d) =w. O

Now, we can make a similar construction with almost disjoint families. If
P, @ are any sets, we say P L Q iff P N Q is finite, and P C* Q iff P\Q
is finite. For us, an almost disjoint family will be a non-empty family F of
countably infinite subsets of some index set I such that P 1 () whenever P, Q)
are distinct elements of F. Note that [ itself need not be countable.

Definition 3.6.2 If F C P(I) is an almost disjoint family, its induced topol-
ogy on I U {oo} is defined by letting U be open iff either oo ¢ U or P C* U
forall P e 1.

Note that I is always open and discrete. If F is a maximal almost disjoint
family (which implies that F is either finite or uncountable), then the induced
topology is just the 1-point compactification. In particular, when F = {[},
the construction described below reduces to the construction in Example 3.6.1.
If F is not maximal, then the induced topology is not compact, but we can
always get it to be contained in a Bohr topology:
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Example 3.6.3 If F C P(I) is an almost disjoint family, then there is an £
with |[£] < max(|F|,Np) and a structure 2 built on A = I U {oo} such that
the topology of ¥ is the topology induced by F.

Proof. £ now has symbols Vp and gp for each P € F. For each P, choose
a bijection 7p from w onto P. Let mp(m)Vp mp(n) = mp(maz(m,n)), and let
zVpy =oo unless x,y € P. Let gp(x) = 0o unless z = wp(m) for some odd
m, in which case gp(z) = .

We first describe what we are claiming to be b2(. Let B = {E € P(I) :
VP € FIP C* E]ORVYP € F[P L E]}. B is a boolean algebra. B is the
finite-cofinite algebra when F is maximal, but is larger otherwise. Let X be
the Stone space of B; so, elements of X are ultrafilters on B. We identify A
with a subset of X by identifying co with the (unique) ultrafilter containing
all E such that VP € F[P C* F], and by identifying each i € I with the
principal ultrafilter generated by {i}. With this identification, the identity
map ¢ defines a compatible compactification; that is, all the gp and Vp extend
naturally to X.

Note that the topology, 7y, is just the topology induced by F. So, we are
done if we verify that this compactification is maximal. Consider any larger
compactification. We may assume it is also an inclusion, A C Y, where Y is
compact, A is dense in Y, and all the gp and Vp extend to Y. The statement
X <Y isexpressed by amap ' : Y — X with I" the identity on A. We must
show that I' is 1-1. Each ¢ € I is isolated in X and hence in Y, so I' is 1-1
on I = I'"Y(I). Also, if E C I and VP € F[P L FEJ], then in X, E = E,
so that I' is 1-1 on I'"'(E). Thus, the only possibility for I to not be 1-1
is that there is some y € Y with I'(y) = oo but y # co. In Y, let y € U
with U open and oo ¢ U; if E = U NI, then cly(E) contains y but not oo,
whereas 0o = I'(y) € clx(F). In Y, each PU {oc0} 2w + 1 (by the argument
of Example 3.6.1, applied to the structure (P U {oo}; Vp,gp)); hence P 1L E
for each P € F. But then E € B and oo ¢ clx(F). O

When F is uncountable, this produces a Bohr topology on A which is
strictly finer than what one obtains by reducting it to some countable sub-
language. In fact,

Example 3.6.4 There is a countable structure 2 for a language £ such that
the topology A¥, viewed as a subset of 24 = P(A), is not analytic. Hence
A fﬁo# is strictly finer than A# whenever £, is a countable sub-language of L.
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Proof. Just use Example 3.6.3 with a countable I and a suitable F. Note
that there are only 2% analytic sets, but, as F varies, one gets 22" different
topologies. [

As in the proof of Lemma 2.10.17, whenever L is countable, the Bohr
topology on any countable subset of A is analytic. Thus, one cannot in general
replace an uncountable language by a countable one on a larger set by coding
it into a larger structure. In the case of Example 3.6.3, one might try to code
all the Vp by one ternary function, taking A now to be I U{oco}UF, but then
the requirement that this new function extend continuously as a function of
P € F will change the Bohr compactification. One can sometimes use coding
to replace a countable language by a finite one, as in Example 3.6.7 below.

Example 3.6.7 is of interest also for the following reason. We have seen
(Corollary 2.10.20) that if 2 is a countable discrete structure for a countable
language, then w(b2A) is either 2% or countable. However, this cannot be
proved of the cardinal functions w(2#) and X(A¥). Following van Douwen,
we use 0 to denote the least cardinality of a dominating family in w“. We
shall produce an 2 with £ finite and w (%) = X(A4¥) = 9; as is well-known,
9 > Ny, and it is consistent to have d < ¢. The topology on our ¥ is just one
of the standard hedgehog topologies:

Definition 3.6.5 H is the hedgehog, (Z xw)U{oco}. The hedgehog topology,
H, on H is obtained by declaring all points in Z X w to be isolated, and giving
oo a base consisting of the sets Ny = {oo}U{(m,n) € Zxw:n > f(m)}, for
each f € W”.

H with this topology is often called the Fréchet — Urysohn fan. If F is the
set of spines, {m} x w, then our topology is just the one induced by F as in
Definition 3.6.2.

Lemma 3.6.6 w(H,H)=X(H,H) =0.

Since H has such a simple description, one can cook up a structure which
has H as its Bohr topology:

Example 3.6.7 There is a finite language L, and a countable discrete struc-
ture, 9, built on H, such that H7 is exactly the topology H. This § is not
nice.
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Proof. If we wanted a countable language, this would just be Example 3.6.3,
taking F to be the set of spines. Let B be the boolean algebra constructed
from F as in the proof of Example 3.6.3. Let £ ={R, L,g,V}, where R, L, g
are unary and V is binary. We shall interpret £ so that 0$) is the Stone space
X of B. We again identify H as a subset of X, so that ¢ : H — X is inclusion.
We must use a little care here. If our structure encodes too much information,
the Bohr topology could wind up to be the coarser metric topology. We shall
use ¢,V to ensure that spine 0 (i.e., {0} X w U {oo}) is indeed homeomorphic
to w + 1. Then, R, L will ensure that all the spines look alike.

In $, interpret R : H — H and L : H — H as right and left shifts:
R(m,n) = (m+1,n); L(m,n) = (m — 1,n); R(c0) = L(c0) = c0. So, R and
L are bijections, and they define automorphisms R* and L* of B, and then by
Stone duality, they define homeomorphisms, R, and L,, of X onto X. So, if
Ue X, R.U) ={beB:R b)) eU}and L.(U) ={be B: L) €U}
R,, L, extend R, L, so that ¢ is indeed compatible with R, L.

In ), interpret V to be the lattice operation on spine 0, and trivial else-
where; that is (0,m) Vv (0,k) = (0, maz(m, k)) and x Vy = oo if either x or
y fails to be in {0} x w. Define ¢g(0,m) to be (0,m) if m is odd and oo if m
is even; g(z) = oo if © ¢ {0} x w. Then both V and g extend to continuous
functions on X. Note that this could have failed to be true if we tried to make
these functions non-trivial on all the spines. It is now easy to verify, as in
Example 3.6.3, that X is indeed b$).

Finally, we show that § is not nice. If it were, then $# = H would
be an Eberlein-Grothendieck space by Theorem 2.10.8. However, this would
contradict Theorem 2.10.13 (take E, to be n'® spine, {n} x w). O

It is not clear what cardinals besides ? can be of the form w(2#). One
cannot choose an arbitrary cardinal between Ny and ¢, however. For example,
suppose the universe is of the form V|G|, where V = CH and G is a ran-
dom real extension. Then whenever 2 is a countable discrete structure for a
countable language, w(A) = X(2) is either countable or ¢ or ? = ;.

Finally, we point out that in Lemma 2.9.3, one cannot drop either the
assumption that 0 is an idempotent or that 0 is an identity element.

Example 3.6.8 For any L, there is an L-structure A in which every element
is an idempotent, such that b(2A x ) is strictly greater than b2 x b.

Proof. Let A be infinite, and define fy(zy,...,z,) = z; for each function
symbol f of £. Then b2 = A and b2 x A) = B(A x A) > fA x fA. O
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Example 3.6.9 There is an L containing a binary operation V, and two L-
structures A and B, such that 2A,*B both contain an identity element with
respect to V, but b(A x B) is strictly greater than bA x bB.

Proof. Let £ = {V, f}, where V is binary and f is unary. Let A = B = w,
and let 2 and B both interpret V as the usual max operation. Let fy(n) be
0 if n is odd and n if n is even, so that b2 is a singleton and A# is indiscrete.
Let fs(n) = n+ 1, so that B = w + 1. Thus, in A¥ x B#, the closure of
{(0,0)} is wx {0}. However, (0,0) is isolated in (2Ax B)#; to see this, consider
¢ :wxXw — {0,1} where ¢(0,0) = 0 and other points map to 1; on {0, 1}, we
interpret V as the usual max operation and let f(0) = f(1) =1. O
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