LIMITS IN THE UNIFORM ULTRAFILTERS

JONI BAKER AND KENNETH KUNEN

ABSTRACT. Let u(x) be the space of uniform ultrafilters on . If & is
regular, then there is an x € u(x) which is not an accumulation point
of any subset of u(k) of size x or less. x is also good, in the sense of
Keisler.

1. INTRODUCTION

If k is any infinite cardinal, we have u(k) C k* C (k. Here, k has the
discrete topology, so its Cech compactification, Gk, is the space of ultrafilters
on k, and k* = Bk\k is the the space of nonprincipal ultrafilters on . Then,
we use u(k) to denote the space of uniform ultrafilters; that is, x € u(x) iff
every set in x has size k.

In studying limits, one is naturally led to P-points and weak P-points:

Definition 1.1. If 0 is an infinite cardinal and x is a point in o topological
space X, then:

[ x¥s a Py-point in X iff the intersection of any family of fewer than 6
neighborhoods of x is also a neighborhood of x.

[x ks a weak Py-point in X iff x is not a limit point of any subset of
X\{x} of size less than 6.

So, a P-point is a P,,-point, and a weak P-point is a weak P, -point. In
any 17 space, every Py-point is a weak Py-point. The main theorem of this
paper is:

Theorem 1.2. If k is regular, then there is an x € u(k) which is a weak
P,.+-point in u(k), and hence a weak Py-point in Bk.

This is best possible as a ZF(C result. Note that for x € X C Y, if x is
a weak Ppy-point in Y, then x is a weak Py-point in X; but not conversely,
in general. If x € u(k), it cannot be a weak P, +-point in [k, or even in k*
if 2<% = k; and, x cannot be a weak P, ++-point in u(k) if 2 = k™. The
“hence” in the theorem is correct because by regularity of k, no x € u(k)
can be a limit of a subset of Sr\u(k) of size less than .

For k = w (where u(w) = w*), the theorem is already known (Kunen
[5]). By a still earlier result of W. Rudin [6], it is consistent with ZFC that
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there is even a P-point in w*, although the existence of P-points is also
independent (Shelah). The theorem for kK = w can be improved in various
models of -~CH. For example, if MA holds, then Rudin’s proof yields a
P.-point (and hence a weak P.-point) in w*. However, it is consistent with ¢
arbitrarily large that there are no weak P,,-points in w* (add random reals
or Cohen reals to a model of CH).

For k > w, we do not know about the consistency of possible strength-
enings of this theorem (along the k = w lines), except for the following two
elementary remarks: First, if £ is regular and larger than w but less than
the first (2-valued) measurable cardinal, then there are no P-points in u(k).
Second, it is consistent with 2% > k* that there are no weak P,.++-points
in u(k); just use Cohen forcing (with conditions of size less than x) over a
model of GCH.

We do not know if the theorem holds for singular x. However, the exis-
tence of a weak P,-point in [k is already known, and this holds for singular
k as well. In fact, it is well-known (see Section 2) that if x € u(x) is £T-good
in the sense of Keisler, then x is a weak P,-point in Gk, and hence also in
u(k). Such good ultrafilters exist (Keisler [3] under GCH and Kunen [4] in
ZFC). The x in Theorem 1.2 will be kT-good, and we shall add another
ingredient to the inductive construction of [4] to make it also a weak P, +-
point in u(x). Not every k™-good ultrafilter is a weak P, +-point in u(k);
for a counter-example, use the product of two good ultrafilters.

In Section 2, we first observe that the notion “good” is really a topological
notion which makes sense for a point x in an arbitrary space X. Every x* -
good point is a weak P,+-point. However, one cannot prove in ZFC that
there is an x € w(x) which is KT T-good in u(k) (Theorem 2.8). So, we
shall weaken “k*T-good” to “s™-mediocre”. Every point which is both -
mediocre and kT-good is a weak P_.-point. The rest of the paper is then
devoted to showing that such points exist in u (k).

The proof follows the standard pattern from [4, 5]; one constructs an
ultrafilter in 2% steps with the aid of a matrix of sets. However, the matrix
used here is a little more complicated than the standard ones, and it requires
some argument to prove that it really exists. Section 3 proves some general
results on constructing matrices, and Section 4 constructs the actual matrix
we need. Then, Section 6 uses this matrix to prove Theorem 1.2. Regularity
of k is used only to prove that the matrix exists; the construction of the
ultrafilter given the matrix works for any «.

NOTATION: When discussing subsets of k, A C* B means that |A\B| < &,
A =* B means that A C* B C* A, and A L B means that |AN B| < k.
P(rk)/<rk denotes the quotient algebra of P(x) modulo the ideal {A € P(x) :
|A| < k}. Then [A] € P(k)/<k is the equivalence class of A € P(x). For
Kk =w, we use P(w)/fin for P(w)/<w.

2. GOOD AND MEDIOCRE POINTS

The following notation for intersections will be used throughout this pa-
per:
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Definition 2.1. Given sets X, for o <0 and p € [0]°°: Xz = Naep Xa-

Definition 2.2. A point x in the topological space X is 8T -good iff, given
neighborhoods U, (r € [0]<%) of x, there are neighborhoods V, (a < 0) of x
such that Vi C U, for each non-empty r € [0]<%.

V will play no role in our arguments, but it would be natural to let it
be X when we are discussing subsets of X.

Definition 2.3. A point x in the space X is T -mediocre iff, for some fized
collection of one-to-one functions g : B — 0 (3 < 07): whenever Ug (€ < )
are neighborhoods of x, there are neighborhoods Vo, (o < 67) of x such that
Va NV CUyy(a) whenever a < B <07,

Every wi-mediocre point is w1-OK (in the sense of [5]), but past w;, the
notions of “mediocre” and “OK” diverge.

Lemma 2.4. Every AT -good point is A\ -mediocre.

Proof. Fix a collection of one-to-one functions pg : 8 — X (8 < AT).
Let Us (£ € X) be any neighborhoods of the point x. Now define new
neighborhoods U} (r € [AT]<¥) of x by setting Ufa,pt = Ups(a) Whenever
a < 8 < AT, and setting all other U = X. Apply ATt-goodness to get

Va (@ < AT). Then Vo NV3 C UL, 51 = Upy(a)- O

It is a folklore result that every x-good point in a T; space is a weak
P;-point (see, e.g., Dow [1]). Examining that proof, we see that in fact
mediocrity suffices:

Lemma 2.5. If x € X is a weak P,-point which is also k' -mediocre, then
x 15 a weak P,_+-point.

Proof. Let 3 : f — k (8 < k1) be as in Definition 2.3. Given Y = {y; :
¢ € k} C X\{x}, we wish to show that x is not in the closure of Y. For
¢ € K, let Ug be a neighborhood of x which misses {y, : n < {}. Now, fix
neighborhoods V, (a € k™) of x such that V, NV C Ups(a)-

Then for some «, V, NY = (): If not, then we can find £ € k and E C
with |E| = k™ such that Vo € F (y¢ € V). Let 8 be any element of F such
that |E NG| = k. So, pg(£ N ) is unbounded in k. Choose ae € E N 3 such
that ¢g(a) > ¢. Then Vo, NVg C Uy, (a) which misses {y; : n < pg(a)}. So
y¢ & Vo NV, but this is a contradiction, since o, 3 € E. O

Lemma 2.6. If x is kT -good in the T} space X, then x is a weak P,-point
mn X.

Proof. Observe that for all A\ < k: x is At "-good, and hence (by Lemma
2.4) A*t-mediocre. Now, use Lemma 2.5, and show, by induction on X < &,
that x is a weak Py+-point for all A < k. O

Clearly, if x € X C Y and x is k7-good in Y, then x is kT-good in X;
and there are trivial examples to show that the converse is false. However,
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Lemma 2.7. If s is reqular and x € u(k) is k" -good in u(k), then x is
kT -good in Bk.

Proof. Viewing x as an ultrafilter on s, we prove xT-goodness in Bk by
fixing U, € x for r € [k]|<¥ and producing V; € x for £ < & such that each
Vi;) € U,. Now, k'-goodness in u(x) only gives us W € x such that each
Wg C* Uy. So, define Vi = We \ U{W7\U; : max(r) = £}. Then each
Vi € U,. Each Vi =" W¢ (since & is regular), so each V¢ € x (since x is
uniform). O

We shall prove Theorem 1.2 by producing an x € u(k) which is both
kT-good and k*-mediocre in u(k) (and then applying Lemmas 2.6 and 2.5),
but then x will also be k*-good in Sk (the usual sense of “good” in model
theory). An obvious improvement of this result would be an ultrafilter which
is KT 1-good in u(k), but one cannot produce that in ZFC:

Theorem 2.8. If k is reqular, 28 = k™, and kK > w, then no countably
incomplete x € u(k) is k™ -good in u(k).

Proof. Choose AY € x for n < w < a < kT so that every w-sequence of
elements of x is of the form (AY € x : n < w) for some . Then choose
By € x so that BY C A%, N,BY =0, and B} D> B > B D ---. If
x were kT T-good in u(k), we could choose D, € x for a < k' so that
D,nNnD, C* By, whenever n < w < a < kT. Now, fix a > w such that
each D, = A7}. Then each D, N By C D, N A} = Do N Dy C* By, 4, so
D, L By\By, |, and hence D, L |,(By\By ) = Bf, a contradiction,
since Dy, By € x. O

Note that this theorem fails for k = w, since every P-point is ws-good.
Likewise, if k is measurable, then every normal ultrafilter on k is a P,.+-point,
and hence k*T-good, in u(k).

3. MATRICES

Ultrafilters on k are often constructed with the aid of a matrix of sets
consisting of 2 independent rows, each row being an instance of some base
matrix, M. Since M is sometimes a bit complicated, it may help to give an
abstract discussion of such matrices:

Definition 3.1. An abstract matrix is a triple, M = (B, J,P), such that
B is a boolean algebra, J is an ideal in B, and P C B\J. A 0 x M
independent matrix in a boolean algebra A is a sequence (hq : av < 0), where
each ho : B — A is a homomorphism, hy(b) = 0 whenever b € J, and
Nio<n Pa, (be) # 0 whenevern € w, each by, ... b, € P, and the oy, ... , o <
0 are distinct.

Of course, one can always reduce this to the case J = {0} by replacing
B by B/J, but the definition as stated is closer to the way matrices are
specified in practice, where it is simpler to take B to be a free algebra. For
example, say we want to specify A disjoint elements. Let B be the free
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algebra generated by {b, : @ < A}. Let J be generated by all b, A bs
for « < B < A. Let P (the positive elements) be {b, : @ < A}. Then a
6 x M independent matrix in the boolean algebra P(k)/<k consists of 6
independent copies of A almost disjoint sets. With this M, taking A = ™
and k regular, Dow [1] showed that there is a 2" x M independent matrix
in P(k)/<k. Generalizing this, we show, for any M, how to construct a
2% x M matrix if we are given m x M matrices for each m € w.

Definition 3.2. L = L, = {y < k : v = 0 or v is a limit}. F C w" is
mildly independent iff f(y+m) < m for all v € Lym € w,f € F, and
whenever n < w and fo,... ,fn € F are oll distinct, there is a ¢ < Kk such
that fo(&),. .., fn(&) are all distinct.

Lemma 3.3. For any infinite s, there is a mildly independent F C w® with
|F| = 2".

Proof. Fix G C w" which is independent in the usual sense with |G| = 2
(Engelking and Karlowicz [2]). So, for all distinct go,...,g, € G and all
10y ... ,in € w, there are k different @ < k such that gy(a) = iy for £ =
0,...,n.

If k > w, then fix g € G. Each |g~'{m}| = k = |L|, so by permuting the
index set x, we may assume that g(y +m) = m for all v € L and m € w.

Now, let F = {f Ag: f € G\{g}}, where (f Ag)(£) = min(f(£),9(£)).
If Kk = w, let I(m) =m for each m, and let F = {f AI: f € G}. O

Theorem 3.4. Assume that k is reqular and uncountable and let M =
(B,J,P) be an abstract matriz. Assume that for each m € w, there is an
m X M independent matriz in P(k)/<k. Then there is a 2" x M independent
matriz in P(k)/<k.

Proof. To simplify the notation, assume that J = {0} (replace B by B/J).

For each m, let (A" : j < m) be an (m + 1) X M independent matrix.
Choose H}" : B — P(k) so that hl*(b) = [H}"(b)] and H"(V') = k\H]"(b);
these H;" need not be homomorphisms. Let 7 C w" be mildly independent
with |F| = 2%. Let D = {(&,n) : £ < n < k}. Then |D| = k. Define
kg :B — P(D)/<k by:

ki (b) = [D n U{{’y+m} x HF o (D) :WEL,me}]

Fix f; we shall show that k; is a homomorphism. It preserves complements
by our choice of the H]m, so fix by, by, b3 € B with bs = by A be. For each m
and j, Hj"(b3) =" Hj"(b1) N Hj"(b2), so since k > w, there is a fixed ( < &
such that H"(bs)A(H]" (b1) N HJ"(b2)) C ¢ for every m, j. It follows that in
P(D)/ <k, k(bs)Alkp(bi) Aks(b) < (D (1 x )] = 0.

To prove independence of the £y, fix non-zero by, ... ,b, € P and distinct
fo,---, fn € F. By mild independence of F, fix v € L and m € w such that
fol(y +m),..., fu(y +m) are all distinct. Then A,,, ks, (be) > [{y +m} x

Ne<n H}?Z(%m)(bé)] > 0. O
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We do not know whether this theorem holds for kK = w, although it does
hold in the case that |B| < wi, in which case one can drop the hypothesis
on the m x M independent matrices. First:

Lemma 3.5. Suppose that |B| < wy and h; is a homomorphism from B into
P(w)/fin for each j < w. Then one can choose Hj : B — P(w) such that
each hj(b) = [H;(b)], each H;(b') = w\H;(b), and for each finite subalgebra
A C B, Hj | Ais a homomorphism from A into P(w) for all but finitely
many j.

Proof. Write B as a continuous increasing union of countable boolean al-
gebras, B = U, Ba- By induction on «, define all the H; [ B,. Let
By ={0,1}, and let H;(0) = 0 and H;(1) = w. Since there is no problem at
limits, we can fix o and explain how to extend the H; to B,1. Now, write
Bay1 as an increasing union of finite boolean algebras, Boy1 = U, o, An,
with Ay = {0,1}. We may assume that we have ng < n; < ng < --- with
sup, n; = w and each Hj | (An; NB,) a homomorphism. Since A,; is finite,
one can extend Hj [ (Ap, N By) to Ay, so that it is still a homomorphism.
Now that we have H; defined on B, U A, ;» we can extend it to all of Byi1
by the Axiom of Choice. O

Theorem 3.6. Let M = (B,J,P) be an abstract matriz, with |B| < wy.
Then there is a 2 x M independent matriz in P(w)/fin.

Proof. Let the h7* : B — P(w)/ fin be as in the proof of Theorem 3.4. This
is possible because every boolean algebra of size wy (in particular, the direct
sum of m copies of B/J) can be embedded into P(w)/ fin.

Now, follow the proof of Theorem 3.4, but choose the H;" : B — P(k) as
in Lemma 3.5, so that whenever by = by A by, we have H]m(bg) = H]m(bl) N
H]’T"(bg) for all but finitely many m, j. Define the k in precisely the same
way, although D can also be w X w now. O

4. THE HAT TRICK

Definition 4.1. A hat function is a function ~ : [kT]<¥ — [k]<¥ satisfy-
mng:
Lg=>pCq

o~

P

q
0.
If g : B — K is one-to-one for each 3 < k™, the derived hat function is
defined by: p={pg(a): o, EDP N a < (B}.

We have three goals in introducing this notion: First, to simplify the
the construction of a mediocre point by referring to ~ rather than to the
sequence (pg : B < k). Second (Lemma 4.10), to get an mx M independent
matrix immediately from a 1 x M independent matrix. Third (Section 5), to
unify the notions of “good”, “mediocre”, and “OK” into one kind of point.

Definition 4.2. A step-family (over k, with respect to ~ ) is an indezed
collection of subsets of k, {Es : s € [K]<“} U {4, : @ < KT}, satisfying:
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S1. E;NE; =0 for each distinct s,t € [k]<%.

S2. A L U{E;s : s 2 b} for each p € [T]<¥.

S3. pC s = |Am N Ey| =k for each p € [k7]<“ and s € [k]<¥.
Definition 4.3. If F is any filter on &, then F* = {X C k: k\X ¢ F}.
FR = FR(k) is the Fréchet filter, {X C k: |[k\X]| < K}.

So, FRT = [k]".
Definition 4.4. Given any index set I and filter F on k, the indezed col-
lection {E : s € [k]<¥, i€ I} U{A", : a <k", i €I} is an independent
matrix of |I| step-families (over k) with respect to F, ~ iff:

1. For each fived i € I, {E' : s € []<“YU{AL : a < KT} is a step-family.

2. Given n € w, Po,P1,--- »Pn1 € [ET]Y, 50,81, ,8n_1 € [K]<Y, and
distinct 19,91, ... ,in—1 € I, if each pp C sy then
i i i i in—1 in— +
(AmEsg) N (AmEsi) AN (AﬂEsnjl) e Ff. (%

Theorem 4.5. If s is reqular and ~ is any hat function, then there is an
independent matriz of 25 step-families over r with respect to FR(k), ~

The rest of this section is devoted to proving this theorem, which will get
used in the construction in Section 6. So, ~  will be fixed and the filter F
will be understood to be FR. We also assume that x is regular, in which
case the following lemma is easily proved:

Lemma 4.6. Given A¢ C k for £ < k, there are sets Bg C k such that:
4] =* B
[CA4) C* A, = B: C By,
4l 1 A, = Ben B, =0.

Corollary 4.7 ((k, ) separation property). Given subsets S¢ ({¢ < k) and

T, (n < k) of K such that each S¢ L Ty, there is some W C K such that
VE (W D* Se) and ¥V (W L Tp).

Proof. By Lemma 4.6, we can assume that actually each S¢ N'T,, = 0, and
then we can set W = (J; Sk. O

The following lemma does most of the work involved in getting a single
step-family:
Lemma 4.8. Assume that Q is a subset of [kT]<% which is closed downward

and which contains O. Then there are X, C k for a < kT such that for all
pERT]Y, |Xgl=r < peEQ.

Proof. Let (kT)<“! denote all the strictly increasing finite sequences from
kt. Choose Y,,Z3 € []* (for 0 € (k7)<¥T, maxo < a < ) so that
Yy = &, and for each o:
C Y, whenever maxo < B < kT
Im G* Zg whenever maxo < a < f8 < KT
LY)-o= Zg\Zngl'
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Then note that Y,~, CY,, and o # 8 = Y,~, L Y,~3. So, the Y, form a
tree of subsets of £ with root Y{y = . Each node Y, has kT almost disjoint
children, Y,~, (maxo < a < x*). The Zf let us achieve an instance of
(k, k™) separation (see (5) below), when all we have is (k, k) separation.

Now, we choose the sets X by induction on 3. Let X5 = {0 € (kF)<“T:
maxo = 3 A rano € Q}. Using (k, k)-separation, choose Xg so that:

(1) TEEﬁiXﬂ o*Y;

(2) (peB*Y A pU{B}€Q)= X3 L X

(3) o€ (B = X5 L Z5,,

(4) (0 €(B)<T A o™ B &%) = X5 L Z5
Only (1) and (2) are needed to show that the X, satisfy the lemma, but (3)
and (4) are necessary in order to continue the induction. (3) implies:

(5) B¢ranT A B <maxT = Xg LY.

To see this, write 7 = 0™y~ p where o € (8)<“", v > 3, and p fills out the
rest of 7. Then Y; C Y,~, C ZJ C* Z7,, so apply (3).

In order to see that (k, x)-separation really applies to get Xz as above, we
need to check that the Y; from (1) are almost disjoint from the Xp) 2541025
from (2,3,4). Fix 7 = 77 € ¥, and note that by the definition of X3, we
have ran(7™0) € Q.

For (1) with (2), fix p € [8]<% such that pU {8} € Q. Since Q is closed
downward, this implies that Ja € p such that o ¢ ranw. By (5) applied
inductively to «, X, L Y, and therefore X@ 1Y,

For (1) with (3) and (4), fix 0 € (8)<“!. Since 7 = 7™ cannot be an
initial sequence of o, there are three cases to consider.

Case 1: Neither of 0 and 7 is an initial sequence of the other: Then
25, CZ5CY, LY,

Case 2: 0 = m: Then (4) cannot happen, and Y; = Y,~5 L 25,

Case 3: o is a proper initial sequence of m. Say @ = 0~ a " p, where
a < B. Then Y; CYo~o = ZZ\Z5,, L Z3.

We now prove: |Xg| = #r <= ¢ € Q. Fixqg € [k Ifq ¢ Q
then write ¢ = p U {#} where  is the maximum element of ¢ and p €
[6]<¢; then (2) implies [Xg| = [Xp N Xl < k. If ¢ € Q, write ¢ =

{ag,a1,... ,ap} where oy < a1 < -+ < ap. Let 0 = (ag, 1, ... ,a). Then
each (o, 1,...,q;) € Yg;, 80 Yo C Y(gg.a;) ©F Xo; by (1). Therefore
Yg g* X@, SO |X@| = K. |

Lemma 4.9. Given any hat function ~ , there exists a step-family, with
respect to ~, {Es:s € [k]YIU{Ay:a < KT}

Proof. Let J{E; : s € [k]¥} = k be any partition of  into sets of size &.
For 3 < k*, we define Ag roughly by defining each Ag N E.

For s € [k]<%, set Qs = {p € [xT]<¥ : p C s}. Then Qs is as in Lemma
4.8, so we can choose subsets X3 of F; such that |X5@| =K < pCs.
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As a first approximation to the Ag, define C = (J{Xj : s € [s]*“}. Then
CsNEs = Xjso |Gy N Es| =k <= pCs. These Cp satisfy part (S3) of
Definition 4.2, but they might fail to satisfy (S2). We have |Cz N Es| < &
whenever s 2 p, but we need |[Cz N U{E; : s 2 p}| < k.

Now, choose Ag (by induction on 8 < k™) such that:

(i) Ag D* CgN E; for all s € [k]<.

(i) Ag L Es\Cp for all s € [k]<¥.
(iii) Ag L U{ApNE::t 2 pU{B}} for all p € [B]<“.
Assuming this can be done, (i) and (ii) give us also:
(iV) A@ NnE;=* C@ N Es.
By (iv), the Ag also satisfy (S3), and (iii) implies that the Ag satisfy (S2).

To prove that such Ag can be chosen, we apply (k,k) separation, but

(,iii) requires us to verify that for all s € [x]<“ and all p € [B]<¥:

Dgs,s == (CsgNEy) nU{A@mEt it ,zﬁpj{\ﬁ}} =" 0.

If s D pﬂ{\ﬁ}, then Dgy = 0, so assume that s 2 pﬂ{\ﬁ} Then Dg, =
Cs N Es N A Applying (iv) inductively, Dg , =* C N F,, which has
size less than k.

Lemma 4.10. If k is reqular, ~ is any hat function, and n < w, then
there is an independent matrixz of n step-families over k with respect to

FR(k), —: {E': se[s]<“, i<n}U{A,: a<kt, i<n}.

Proof. We apply Lemma 4.9, changing the index set to [n x xT]<“. For
Penxkt]<¥andi<n,let P, ={a: (i,a) € P}, and define
P= ({0} x Bo) U({1} x B) U+ U(fn— 1} x Focy).

Then ~ is a hat function from [n X kT]<% to [n x K]<“. So, we have a step-
family with respect to — , {Es: S € [n x k]<“} U{A;q) i <nya<kT}

For each i« <n and s € []<%, let E. = J{Es : S; = s}. Since all the Eg
are disjoint, the E, for each fixed i, are also disjoint. Let Af, = A(; o)-

Fix i < n and p € [s7]<¥; we verify condition (S2) in the definition of
step-family; that is, Al@ 1L \H{E::s 2p}. Now Al@ = A, and

(B s 25 = JiBs : 5 2 (i} xp,

so we apply (S2) with respect to
Observe that for S € [n x k]<¥ and P € [n x k*]<¥, we have

Es = EgNEgN---NE;
— 0 1 n—1

To prove independence (which implies (S3) for each step-family), fix py, s,
for £ < m as in Definition 4.4.2 (here, I = n and iy = £). Assume each
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p; C s;. Define P, S so that P; = p; and S; = s; for each i. Then p C S, so
|Ap) N Es| = K, which implies () in Definition 4.4. O

Proof of Theorem 4.5. We apply Theorem 3.4 (or Theorem 3.6 in the case
Kk = w), but one must use a little care because the definition of step-family
involves infinite unions of the F;. We handle this by adding a “name”, b,
to represent B, := |J{Fs : s 2D t}.
Let B be the free algebra generated by elements a,, for a < k™, together

with elements e and by for s € [k]<“. Let J be generated by:

J1. es A e; whenever s, t are distinct.

J2. e5\b; whenever s 2 t.

J3. (Aaep @a A bp) for each p € [kF]<Y,
Let P contain:

Pl es A Auep
By Lemma 4.10, there is an m x M independent matrix for each finite m.
Hence, there is a 2° x M independent matrix (hy : @ < 2%) in P(k)/<k.

Now, fix a. Since |[k]<“| = k, which is regular, we can apply Lemma 4.6 to
choose representatives EY and Bj* such that hq(es) = [ES], ha(bs) = [BS],
the EY are really disjoint (using (J1)), and E¢ C Bf* whenever s 2 t (using

(J2)). Then condition (J3) ensures that Ay L U{Es : s 2 p}. Condition
(P1) now ensures that p C s = |Ap N Es| = k.

Thus, the matrix gives us 2* independent step-families in the sense of
Definition 4.4. O

aq whenever p C s.

5. HATPOINTS

Using the hat functions, we see that “good” and “mediocre” are different
flavors of the same notion. Throughout,  is a fixed regular cardinal.

Definition 5.1. Let D [kF]Y — [K]<Y be a hat function and let x be
a point in X. Then x is a ~ point in X iff, given neighborhoods U, (r €
[k]<“) of x, there are neighborhoods V, (a < k™) of x such that Vim C Up
for each non-empty r € [KT]<¥.

—

For example, if p = p N k for all p, then x is a ~ point iff x is xKT-good.
In this case, the V,, for a > k are irrelevant.

Lemma 5.2. There is a hat function ~— :[kT]<¥ — [k]<“ such that every
" point is both kT -mediocre and kT -good.

Proof. Let (pg : B < k) be as in Definition 2.3, but assume also that
¢wp(a) = @ whenever @ < f < k. Let ~ be the derived hat function and
let x be a ~ point. Applying Definition 5.1 with » = {«, 3} shows that x
is k*-mediocre. To show that x is k*-good, let W, = V,, N V.. Then for

r e [Iﬂl]<w, Tﬂ{\ﬁ} =71, S0 W = V cU,. O

Remark 5.3. In the definition (5.1) of “hatpoint”, it is sufficient to con-
sider only monotone sequences of neigborhoods, (U, : r € [k]<¥) of x; that
isr Cs= U, DOUs.
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Proof. Replace each U, by ({{Us : s Cr}. O

Keisler’s original definition of “good” had “monotone”, and restricting to
monotone sequences will simplify the construction in Section 6.

In the definition of hat function and hatpoint, one could more generally
consider ~ : [#]<¥ — [k]<¥. For example, fix any 6, let x = w, and define
r={0,1,...,|r|}. Then the ~ points are just the f-OK points from [5].

6. PROOF OF THEOREM 1.2

Applying Lemmas 5.2, 2.6 and 2.5, Theorem 1.2 is immediate from the
following more general result:

Theorem 6.1. If x is reqular and ~— : [kT]<¥ — [k]<¥ is a hat function,
then there is an x € u(k) which is a ~ point in u(k).

Proof. Apply Theorem 4.5, and fix a matrix of 2% step-families (over k),
{El: s€[k]<¥, i€2f}U{A’ : a < kT, i€ 2"}, which is independent
with respect to FR(k). Assume that for each i, we have, in addition to
(S1),(52),(S3) in Definition 4.2:

S4. | J{EL: s € [K]<¥} = k.
S5. Ai@ C* |J{E: : s D p} for each p € [kF]<¥.

To get (S4), first shrink the A% so that each A’ C |J{E! : s € [k]<“}, and
then expand the E? so that {E? : s € [k]<“} forms a partition of 5. Then,
(S5) follows from (S2,54).

We plan to construct the ultrafilter x by induction, in 2 steps. We have
two basic tasks: making x “ultra” and making x a ~ point. To accomplish
these, let B, C}' be subsets of &, for p < 2,7 € [k]<¥, so that:

CPlk) ={By: 1 <2 A p=0mod 2}.

[Edch (C} : r € [k]<¥) is monotone (see Remark 5.3), and every mono-

tone sequence in P(x)(51°“) appears as (C¥ : r € [k]<¥) for 2% distinct
w such that © =1 mod 2.

We shall construct x as an increasing union of filters: x = J p<on Fu- Set

Fo = FR(k) and Iy = 2%. We define F,, and I, (1 < 2¥) so that:
(1) If p < v then F, CF, and I, D I,.

(2) For limit v+ 7, =, Fp and I, =
(3) Each I,\1,41 is finite. . .
(4) Each F), is afilter on , and the matrix {E? : s € [&]<¥, i € I,} U {4}, :

a < kt, i€ I,} of remaining step-families is independent w.r.t. F,.

(5) If =0 then either B, € F,41 or k\B,, € Fj41.

(6) If u =1 and each CF € F,,, then there are D4 € F,4; for & < k™ such

that Vp € [k+]<¥ [D“@ - Cg]

u<v IM'

As usual in these constructions, there is no problem at limits, so we
proceed to describe the successor step. For & C P(k), let (£)) denote the
filter generated by £.
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If p = 0: If (F, U{B,})) is a proper filter and the matrix of step-families
{El : s € [k]<¥, i € [,}U{A, : @ < kT, i € I,} is independent w.r.t.
(FLU{B.})), then set F1 = (F, U{B,}) and I, 41 = I,. Otherwise, fix
n € w, distinct iy € I, (¢ < n), and py C sy (£ < n), such that:

B, (A nES) 0 (AbynEL) N (At nEr) ¢
Set Fui1 = (Fu U {AL, . ,A} U {Eio,...,Er=t}) and set I,41 =
I\{%0,%1,... ;ip—1}. Then k\B, € F,41, and we leave it to the reader to

check that condition (4) holds for F, 1 and I,,41.

If u = 1: Assume each C¥' (s € [5]<%) isin F,. (Otherwise, set F,11 = F,
and I,41 = I,). Choose i € I, and set I,,;1 = I,\{i}. We shall leave off the
superscripts ¢ and ¢ when they are clear from context. For o < k™, define

D, =AaN U{CS NEs;:sé€ [n]<“’}.

Then for p € [xT]<Y,
Dy = A@OU{CS NE,:s€ [ﬁ]<w}

CULE s 2N U{C N By s € 1]}

=U{c,nE, 525}

cU{Cs:5 25}

=G5,
by monotonicity of (Cp : p € [k]<¥). Set Fjq1 = (FuU{Dqy : @ < 6T}).
To verify condition (4): Any element of 7,41 is of the form B N Dy for

some B € F, and p € [xT]<¥. But D 2 Ap N C5N B, and Cp € Fy, s0
condition (4) for F,1 now follows easily from condition (4) for F,,. O
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