Logic Ph D Qualifying Exam

Jewery, 1972

Instructions.

Majors and Minors: Do five problems, at most three from one section.

Third area: Do four problems.

A. Model Theory.

A1. The diagram of a model $\mathcal{O}(1)$ is the set $\mathcal{O}(\mathcal{O}(1))$ of all atomic and negated atomic sentences true in $(\mathcal{O}(1), a)_{a\in A}$. A model $\mathcal{O}(1)$ of a theory $\mathcal{O}(1)$ is said to complete $\mathcal{O}(1)$ if $\mathcal{O}(1)$ is complete. Prove that if $\mathcal{O}(1)$ completes $\mathcal{O}(1)$ then every elementary submodel $\mathcal{O}(1)$ of $\mathcal{O}(1)$ completes $\mathcal{O}(1)$.

A2. Let $O7 = \langle A, <, ... \rangle$ be a model where < is a linear ordering with no last element. Prove that there is an elementary extension \mathcal{L} of O7 such that every subset of \mathcal{B} of power $\leq k_{47}$ has an upper bound.

A3. Let $L(R_0,R_1,\ldots)$ be the language formed by adding countably many relation symbols R_0,R_1,\ldots to the countable language L. Let T be a complete theory in $L(R_0,R_1,\ldots)$ and T_n the set of all consequences of T in $L(R_0,\ldots,R_n)$. Let $\Sigma(x)$ be a set of formulas of L. Suppose each T_n has a model which omits $\Sigma(x)$. Prove that T has a model which omits $\Sigma(x)$.

A. Model Theory (Continued).

A4. Let $\mathcal{O}_{\mathbb{Z}} = \langle w, + \rangle$ be the standard model of additive number theory and let D be a non-principal utrafilter over w. Prove that in the ultrapower $\Pi_{\mathbb{D}} \mathcal{O}_{\mathbb{Q}}$ there is an element a $\neq 0$ such that for all positive n < w, there is a b with $(n + \cdots + b) = 0$.

B. Set Theory.

Bl. Prove without using Gödels Theorem that ZF is not finitely axiomatizable.

BZ. If $2^{10} = \frac{10^{10}}{2}$ prove $\frac{10^{10}}{3} = \frac{10^{10}}{3}$. You may use the following facts only: $(2^{10})^{10} = 2^{10}$, $\frac{10^{10}}{3} = \frac{10^{10}}{3}$ is regular.

B3. Let M be a transitive model of ZF + "every uncountable cardinal is singular". (A cardinal is an initial ordinal.) Show that no transitive set N with $M \subseteq N$, $M \cap Ord = N \cap Ord$, satisfies $ZF \div AC$.

B4. Show that for every infinite ordinal α , there is a countable transitive set A with $\langle R_{\alpha}, \epsilon \rangle \equiv \langle A, \epsilon \rangle$.

C. Recursion Theory.

C1. Call a formula $\varphi(x)$ strongly finite if in every model M of Peano arithmetic, only a finite number of m 4 M satisfy φ . Prove that the set of Gödel numbers of strongly finite formulas is r.e.