2.ogic

January 1943

A Model Theory

Al. Let T be the theory of all models (A, E) where E is an equivalence relation. Prove that T is westable.

- A2. Let T be a theory in a countable language. Suppose that for some infinite cardinal x, every model of T of power x is atomic. Prove that every model of T is atomic.
- A3. Prove that every infinite saturated model has a proper elementary submodel to which it is isomorphic.
- 'i. Give an example of a model OL for a countable language such that Ol has power wil but every proper elementary submodel of Ol is countable.

B. Set Theory.

- B1. Let N be a transitive class containing all the ordinals, such that for each α , N \cap R(α) \circ N. Assume that \langle N, \in \rangle satisfies the comprehension axiom softens. Prove that \langle N, \in \rangle is a model of ZF.
- B2. Assume the axiom of choice and that the union of fewer than 2^{44} sets of reals of Lebesgue measure 0 is of Lebesgue measure 0. Prove that 2^{44} is regular.
- B3. Outline a proof of the consistency of Lumin's hypothesis $(2^{\omega} = 2^{-1})$ with the exions of ZFC.
- B4. Assume that ZF is consistent. Show that there is a finite subthecry T of ZF such that in ZF it cannot be proved that T U "there is an uncountable inaccessible cardin..." is consistent.

C. Recursion Theory.

Cl. Let T be a recursively exiomatized theory in a countable language such that T is Ko-categorical. Prove that T has a recursive model.

O2. Let A be a N 1 subset of w. Show that either O' is hypererithmetical in A or A is hyperarithmetical.

C3. Show that there is a sequence f_{α} , $\alpha < \omega_{\beta}$, of functions mapping ω into e such that whonever a < β < ω_1 , f_{α} is recursive in f_{β} but f_{β} is not recursive in fa.

C4 Let {\varphi_0, \varphi_1, \varphi_2, \dots\) be an r.e. set of sentences of first order of godel numbers to rie.). Prove that there is a logic (i.e. the of sentences $\{\psi_0,\psi_1,\psi_2,\dots\}$ such that for each n,ψ_n is logically equivalent to φ_n . 4. Miller Xr. gerikler)

(derstuder!