Elementary Problems.

21.

- If T is a theory in a countable language for and T is Mo-categorical (a) and has no funite models, then T is complete.
- Find a theory T in an uncountable language which has no finite models, is % o-categorical, but is not complete.

next too

- Call a limit ordinal γ indecomposable iff $V\alpha < \gamma$ ($\gamma = \alpha + \gamma$). Show Y is indecomposable iff 3β (Y = ω^{β}).
- E3. Let L be countable and have a 1-place predicate symbol, U. Suppose T has a model OL in which $|U_{OC}| = \aleph_0$. Show T has a model In Ly in which $|U_{\mathcal{L}}| = |\mathcal{L}| = |\mathcal{H}|_1$.
- E4. Let R(0) = 0, R(n + 1) = O(R(n)). Suppose x is transitive and finite. Show 3n (x e R(n)).
- Prove that there are 2 complete extensions of Peano arithmetic.
- Let T be the complete theory of the model (R,E) where xEy iff x y is rational. Prove that T is decidable.

Model Theory.

Ml. Let T be the theory

Vx Vy (f(x) = f(y) -- x = y)

in the language with one function symbol. Prove that every complete extension of T has a countably saturated modal.

Let Or be a model for a countable language and let \$(x) be a set of formulas which is not realized in Cl. Let Is be an ultrapower of Cl. Prove that if $\phi(x)$ is realized in $\mathcal L$ then it is satisfied by infinitely many different elements of L.

Prove that $\langle \omega_1, < \rangle$ and $\langle \omega_2, < \rangle$ are elementarily equivalent. M 9.

Assume II is consistent. Let X be a non-recursive set of natural Prove that ZF has a model OC such that for no a c A is

X= {new: or | nea}.

Recursion Theory.

Rl.

- (a) Show that there are disjoint Σ_{1}^{0} sets which cannot be separated by a recursive set.
- (b) Show that if B_0 , B_1 are disjoint H_1^0 sets then they can be separated by a recursive set.

R2. Let $f_n(x)$ be a recursive function of n and x and suppose that for each x the sequence $\{f_n(x)\}_{n\leq\omega}$ is eventually constant, with value f(x). Show that

Turing -
$$deg(f) \le 0'$$
.

R3. Let

 $W = \{e \mid \varphi_e^2 \text{ is the characteristic function of a}$ recursive well ordering, say $<_e$ }.

Let $\|e\|$ be the order type of \leq_0 . Let X be $\Sigma_1^1, X \subseteq W$. Show that $\{\|e\| \mid e \in X\}$

is bounded by some recursive ordinal.

R4. Let $\mathcal{H}=\{\mathcal{H}_a:a\in I\}$ be given by the following inductive definition.

- (a) For each n, 2^n e I and $H_{2^n} = \{n\}$.
- (b) Poreach e, if $\varphi_{\phi}(n)$ of for all n then 3° ef and 5° ef.

$$H_{30} = \bigcup_{n=0}^{\infty} H_{\varphi_{0}(n)}$$
 and $H_{50} = \bigcap_{n=0}^{\infty} H_{\varphi_{0}(n)}$.

Show that \mathcal{H} is an effective Borel hierarchy (and hence is just the set of hyperarithmetic sets). I. e. show that there is a recursive total function neg(x) such that if $x \in I$ then $neg(x) \in I$ and

$$H_{\text{neg}(x)} = N - H_{x}$$

Set Theory.

- S1. Assume the consistency of ZFC + 1 M. Prove the consistency of ZFC + SM + 11 73 a standard model M for ZFC with $\widetilde{M} \geq \omega_1^{-1}$.
- S2. Work in ZFC + SM. Prove that there are 2 non-isomorphic countable standard models for ZFC.
- S3. Let $\kappa > \omega$ be regular.
- (a) Show that $\{\alpha < \kappa : L_{\alpha} \models ZFC\}$ is not sub-
- (b) If κ is inaccessible, show that $\{\alpha < \kappa : L_{\alpha} \models \text{ZFC}\}$ contains a cub subset.
- S4. Assume \lozenge . Show that there is a family of $2^{\frac{1}{1}}$ almost disjoint stationary subsets of ω_1 .

Set - Theoretic Topology (special request).

The Let X_n be c.c. spaces (new). Give the product, $\pi_n X_n$, the box topology (i.e. basic open sets are of the form $\pi_n U_n$, where each U_n is open in X_n). Show that $\Pi_n X_n$ has the $(2^{N_0})^+ - c.c.$ (i.e., every disjoint family of open sets has cardinality $\leq 2^{N_0}$.

T2. Show that there is a function $F: \mathbb{R} \to \mathbb{R}$ such that F (as a subset of the plane) is not of first category.

T3. Show without using the continuum hypothesis that there is a normal Hausdorff space X such that:

- $|X| = \aleph_1.$
- (2) X has no isolated points.
- (3) In X, the intersection of countably many open sets is open.