Qualifying Examination in Logic

Page 1

A. Elementary problems

- 1. State the Completeness Theorem for first-order logic and give a sketch of its proof.
- 2. Let T be a theory in a countable language with at least one function symbol, and assume that T has an infinite model. Show that T has a countable model which is not finitely generated.
- 3. Show $|\pi_n \omega_n| = (\omega_n)^{\omega}$ (cardinal exponentiation).
- 4. Assume ZFC is consistent. Show that there is a recursive extension T of ZFC such that T is consistent and

 $T \vdash \neg Con(T).$

5. For ordinals α , β , define

 $\alpha \notin \beta = \sup \{Y: \exists A \subset Y \ (\text{type}(A) = \alpha \text{ a type}(Y-A) = \beta \}\}$:
Compute $(\omega^3 + \omega) \notin (\omega^2 + 1)$, and prove your answer is correct.

B. Model Theory

- 1. Let \mathcal{Z} be an infinite model and let $\kappa \geq |\mathcal{X}|$ be such that $\kappa^{\omega} = \kappa$. Show that there is a $\mathcal{X} > \mathcal{X}$ such that $|\mathcal{Y}| = \kappa$. Note. There is no restriction on the cardinality of the language.
- 2. Let T be the complete theory of the model

$$(Q; <, 1, \frac{1}{2}, \frac{1}{3}, \dots, -1, -\frac{1}{2}, -\frac{1}{3}, \dots)$$

where $\mathbb Q$ is the set of rationals. Determine how many non-isomorphic countable models. Thus, and identify the prime and countable saturated models. Note. The language has one binary relation plus a constant symbol for each of $1, \frac{1}{2}, \frac{1}{3}, \dots, -1, -\frac{1}{2}, -\frac{1}{3}, \dots$

è

3. Show that there is no set of sentences T, in the language of group theory, such that the models of T are precisely the free groups with ≥ 2 generators.

C. Recursion Theory

- 1. Define a E b iff a ϵ W_b^1 . Show that there is a recursive $S \subset \omega$ and a recursive total order $< \epsilon$ of S isomorphic to the rationals such that for $a,b\in S$, $a\in b$ iff a< b.
- 2. Show that there is a recursive total order whose well-founded initial segment has type ω_{λ}^{CK} .
- 3. Show that there is no r.u. set $A \subset \omega$ such that for all $a \in \omega$, if φ_0^1 is total then φ_0^1 is 1-1 iff $a \in A$.

D. Set Theory

- 1. For $x, y \in P(\omega)$, dufine $x \neq_L y$ iff $x \in L[y]$. Show that it is consistent with ZFC + GCH that there is an $F \subset P(\omega)$ such that $|F| = \omega_1$ and the elements of F are pairwise incomparable under \leq_L .
- 2. Assume MA + 7CH. Let $X_{Q} \subset \{0,1\}$ for $G < \omega_1$, and assume each X_Q is Letusque measurable and has positive measure. Show that for some $L \subset \omega_1$, $|A| = \omega_1$ and $\bigcap_{G \in A} X_Q$ has positive measure.
- 3. Assume BA Co, (V=L[A]). Prove CH.