Qualifying Examination in Logic September 1978

INSTRUCTIONS: Do five problems, at most two from part A.

Do not use the continuum hypothesis.

Glossary:

|x| = cardinality of x.

 $cf(\lambda) = cofinality of \lambda$.

 $R(\alpha) = \{x : x \text{ has rank } < \alpha\}$.

 $\text{u is } \omega \text{-homogeneous if whenever } (\mathfrak{A}, \mathsf{a}_1, \cdots, \mathsf{a}_n) \equiv (\mathfrak{A}, \mathsf{b}_1, \cdots, \mathsf{b}_n) \; ,$ we have $\forall \mathsf{c} \exists \mathsf{d} \; (\mathfrak{A}, \mathsf{a}_1, \cdots, \mathsf{a}_n, \mathsf{c}) \equiv (\mathfrak{A}, \mathsf{b}_1, \cdots, \mathsf{b}_n, \mathsf{d}) \; .$

 \mathbf{Q} = set of rational numbers.

 \lozenge (S) means that $S \subseteq \omega_1$ and there is a family of sets $A_{\alpha} \subseteq \alpha$, $\alpha \in S$, such that for all $A \subseteq \omega_1$,

$$\{\alpha \in S : A \cap \alpha = A_{\alpha}\}$$

is stationary in ω_1 .

 \Diamond means $\Diamond(\omega_1)$.

ZF is Zermelo-Fraenkel set theory.

A. Elementary Problems

- Al. Let $\mathbb{C} = \langle \mathbb{C}, +, \cdot, 0, 1 \rangle$ be the field of complex numbers and let $\mathbb{R} \subseteq \mathbb{C}$ be the set of real numbers. Show that \mathbb{R} is not definable in \mathbb{C} .
- A2. Let $\square HF = \langle HF, \in \rangle$ be the structure of hereditarily finite sets. State and prove a version of Tarski's Theorem on Truth which applies to $\square HF$.
- A3. Let T be a universal theory. Assume $T \models \forall x \exists y \ P(x,y)$. Show that there are terms $t_1(x), \dots, t_n(x)$ such that $T \models \forall x \ \bigvee_{m=1}^{\infty} P(x, t_m(x))$.
- A4. Let κ be a cardinal and let

$$\lambda = \sup \{2^{\alpha} : \alpha < \kappa\}$$
.

Show that $cf(\lambda) = cf(\kappa)$ or $cf(\lambda) > \kappa$.

- A5. Find the mistake in the following proof.
 - a) For each finite $S \subseteq ZF$, $ZF \vdash (\exists \alpha)(\langle R(\alpha), \in \rangle)$ is a model of S).
 - b) $ZF \vdash$ (If every finite $S \subseteq ZF$ has a model, then ZF has a model).
 - c) By a) and b) ZF (ZF has a model).
 - d) By Godel's second theorem and c), ZF is inconsistent.

B. Model Theory

Bl. Let T be the theory with the axioms

$$\begin{cases} \forall y \exists x \ y = F(x) \\ \forall x \forall y \ F(x) = F(y) \rightarrow x = y \end{cases}$$

Show that every complete extension of T is ω -stable and has Morley rank at most two.

B2. Let $\mathfrak{U}=\langle A,<,\cdots\rangle$ be an ω -homogeneous model for a countable language such that < well orders A. Prove that A has cardinality at most 2^{ω} .

In problems B3-B5, let T be a countable complete theory whose models are infinite.

- B3. Prove that T has a family of countable models \mathfrak{U}_S , $S \subset \omega$, such that if S is a proper subset of T then \mathfrak{U}_S is a proper elementary submodel of \mathfrak{U}_T . Hint: Use indiscernibles.
- B4. Show that T has an ω -homogeneous model of power ω_1 with only countably many types. Hint: Similar to Vaught's two-cardinal argument.
- B5. (Shelah). Let S be a set of fewer than 2^{ω} types $\Gamma(x)$ which are maximal consistent with T and locally omitted by T. Prove that T has a model which simultaneously omits each $\Gamma(x) \in S$.

Hint: Represent the Henkin construction by a binary tree.

C. Recursion Theory

- Cl. Find a function $d:\omega \times \omega \to \mathbb{Q}$ such that:
 - a) d is recursive.
 - b) d is a metric.
 - c) the set $\{n \in \omega : n \text{ is isolated in the space } (\omega, d)\}$ is not recursive.
- C2. Show that there is a set of Turing degrees $\{d_q: q \in \mathbb{Q}\}$ such that q < r implies

$$0 < d_q < d_r < 0$$
' .

- C3. Let $f: \omega \to \omega$ be recursive. Show that there is a function $g: \omega \to \omega$ such that f is primitive recursive in g and g has a primitive recursive graph.
- C4. Let C(X) be a Σ_1^1 predicate with no Δ_1^1 solutions. Prove that the set of solutions of C(X) has cardinality 2^{ω} .

The following problems are based on the topics course in admissible sets.

C5. Let α be the first admissible ordinal $> \omega_1$. Show that L_{α} has property Beta. Conclude that there is a Δ_2^1 ordinal α which is admissible but not recursively inaccessible such that L_{α} has property Beta. (You may assume any theorem proved in Barwise's book.)

C6. Let $\mathbb{M} = \langle M, \langle, p, R, \dots, R_{\ell} \rangle$ be a structure where \langle well-orders M and p is a pairing function. Using the relation between $HYP_{\mathbb{M}}$ and inductions on \mathbb{M} prove the following uniformization theorem:

For every inductive relation R there is an inductive relation $S \subseteq R$ such that dom(R) = dom(S) and, for all $x \in dom(R)$

 $\exists ! y S(x,y)$

D. Set Theory

- D1. Prove that ZF Con(ZFL-P), where ZFL-P is ZF with the axiom of constructibility but not the power set axiom.
- D2. Show that forcing with IP collapses \aleph_{ω} to ω , where IP is the set of all partial functions $p:\aleph_{\omega}\to 2$ with $|\text{domain }p|<\aleph_{\omega}$.
- D3. For α a limit ordinal less than ω_1 , let C_{α} be a cofinal ω -sequence in α . Show that there is an uncountable set $X \subset \omega_1$ of limit ordinals such that

$$(\forall \alpha, \beta \in X) (\alpha < \beta \rightarrow \alpha \not\in C_{\beta})$$

D4. Assume \lozenge . Show that there is an $S \subset \omega_1$ such that $\lozenge(S)$ and $\lozenge(\omega_1 \backslash S)$. Hint: Consider the ideal,

$$I = \{S \subset \omega_1 : \text{not } \diamondsuit(S)\} .$$

D5. Let M be a countable, transitive model of ZFC, let M[G] be a \mathbb{P} -generic extension of M where \mathbb{P} is c.c.c. in M. Let X,Y \in M. Show that for every $F \in M[G]$ with $F: X \rightarrow Y$ there is a $f \in M$ such that for every $x \in X$, we have $f(x) \subset Y$, $(|f(x)| \leq \omega)^M$ and $F(x) \in f(x)$.