LOGIC QUALIFYING EXAM August 1979

Do 5 problems, at most 3 from Part A.

A. Elementary Problems.

- Al. Let κ and λ be infinite cardinals such that $\lambda \leq \kappa$. Prove in ZFC that κ has exactly κ^{λ} subsets of power λ .
- A2. For each set a let $G(a) = \text{the least ordinal not in } \{G(b): b \in a\}.$ Show that there is a formula $\varphi(x,y)$ of ZF such that for all a and b, G(a) = b iff $\varphi(a,b)$.
- $\underline{A3}$. Let T and U be consistent theories such that every universal consequence of T is consistent with U. Show that there exist models M of T and P of U such that P is a submodel of M.
- $\underline{A4}$. Assume the twin prime conjecture is true, i.e. there are infinitely many p such that p and p+2 are prime. Prove that in every non-standard model M of Peano arithmetic there is an infinite x such that $M \models (x \text{ and } x+2 \text{ are prime})$.

B. Model Theory.

Let N be the standard model of number theory.

- \underline{Bl} . Let D be a free ultrafilter over ω . Prove that the ultrapower Π_D^-N is isomorphic to a proper initial segment of $\Pi_D^-(\Pi_D^-N)$.
- <u>B2</u>. Show that for each infinite cardinal κ , the theory of N has models of arbitrarily large cardinality which are κ^+ -saturated but not κ^{++} -saturated.
- <u>B3.</u> Let T be the theory with unary relations U_0 , U_1 , U_2 , ... and the axioms $\forall x (U_{n+1}(x) \rightarrow U_n(x))$, $n = 0, 1, 2, \ldots$. Show that T is ω -stable and find its Morley rank.
- <u>B4.</u> Let $M = \langle A, <, R_n \rangle_{n < \omega}$ be an ω -homogeneous model such that < well-orders A. Show that A has at most 2^{ω} elements.

C. Set Theory.

- \underline{Cl} . Show that in ZFC one can prove the consistency of ZFC-P (ZFC without the power set axiom).
- <u>C2</u>. Assume V = L. Prove that the class of α such that $L_{\alpha} = V_{\alpha}$ is c.u.b. in the class of all ordinals.
- C3. Assume Martin's Axiom plus $2^{\omega} > \omega_1$. Show that there is no Borel measure on ω^1 such that every point has an open neighborhood of measure zero but ω^1 has measure one.
- <u>C4</u>. A set $X \subseteq \omega_2$ is called <u>fat</u> iff for every c.u.b. set $C \subseteq \omega_2$, there is a closed set $D \subseteq C \cap X$ of order type $\omega_1 + 1$. Assuming V = L, prove that there exists $X \subseteq \omega_2$ such that both X and $\omega_2 X$ are fat.

D. Recursion Theory.

- D1. Show that the set $\{m \in \omega : \sin m > 0\}$ is recursive.
- $\underline{D2}$. Let φ_e be the e^{th} partial recursive function. Show that there are distinct a, b, c ϵ ω such that $\varphi_a(b) = c$, $\varphi_b(c) = a$, and $\varphi_c(a) = b$.
- $\underline{D3}$. Show that the set of Gödel numbers of true sentences of arithmetic is not arithmetical.
- $\underline{D4}$. A set $A \subseteq \omega$ is \underline{simple} if A is r.e., ωA is infinite, and for all $n \in \omega$, if W_n is infinite then $A \cap W_n$ is nonempty. Prove that if C is r.e. but not recursive then there is a simple set A such that C is not Turing reducible to A. $(W_n$ is the n^{th} r.e. set).