Qualifying Exam

LOGIC

August 26, 1982

Do FOUR of the following problems, at most two elementary.

I. Elementary Questions

- 1. Classify each of the following classes (with regard to first-order logic) as
 - a) finitely axiomatizable (give the axioms)
 - b) axiomatizable but not finitely axiomatizable (give the axioms and a proof that no finite set of axioms suffices).
 - c) not axiomatizable (give proof).
 - i) The class of finite linearly ordered sets, (A,<)
 - ii) The class of infinite linearly ordered sets, (A,<)
 - iii) The class of densely linearly ordered sets, (A,<)
 - iv) The class of well-ordered sets, < A , <> .
- 2. Prove the following or give a counter-example. Let S be a decidable (i.e., recursive) set of sentences in propositional logic, using proposition letters P_n (n ϵ ω). Then $\{\varphi\colon S \vdash \varphi\}$ is decidable.
- 3. Give a counterexample to the following statement:

If α, γ are ordinals and $A \subset \gamma$, $A \cong \alpha$ and $(\gamma-A) \cong \alpha$, then $\gamma = \alpha + \alpha$ or $\gamma = \alpha$.

II. Model Theory.

- Which of the following properties of complete theories and/or models are preserved under the operation of taking reducts (explain):
 - i) % -categoricity;
- iv) being prime;
- ii) ^ℵ₁-categoricity;
- v) being saturated;

iii) ω -stability;

- vi) having only finitely many countable models.
- 2. Assume T is a complete theory, $\{\Gamma_{\eta} | \eta \epsilon 2^{<\omega} \}$ and $\{A_{\eta} | \eta \epsilon 2^{<\omega} \}$ are types and models of T respectively, satisfying:
 - i) if $\eta \subset \xi$, then A_ξ realizes Γ_η and $\Gamma_\eta \subset \Gamma_\xi$; and

Prove then that T has 2 pairwise non-isomorphic countable models.

- 3. Suppose M < M' , a,b $\in |M|$, c $\in |M'|$, p,q types over M , $\varphi(\mathbf{x},\mathbf{a}) \text{ a formula with parameters from } |M| \cup \{\mathbf{a}\} \text{ satisfy:}$
 - i) a realizes p and b realizes q in M';
 - ii) $p(\bar{x}) \cup q(\bar{y})$ is a complete type; and
 - iii) $\varphi(\mathbf{x},\mathbf{a})$ is a complete formula for the type over $|\mathbf{M}| \cup \{\mathbf{a}\}$ realized by c .

Prove then that $\varphi(\mathbf{x}, \mathbf{a})$ is also a complete formula for the type that \mathbf{c} realizes over $|\mathbf{M}| \cup \{\mathbf{a}, \mathbf{b}\}$. [Hint: Otherwise there is $\mathbf{c}' \in \mathbf{M}'' \geq \mathbf{M}'$ realizing the same type as \mathbf{c} over $|\mathbf{M}| \cup \{\mathbf{a}\}$, but not over $|\mathbf{M}| \cup \{\mathbf{a}, \mathbf{b}\}$. Proceed from there!].

III. Recursion Theory.

- 1. Prove that there is no recursive f satisfying:
 - i) $W_{f(n)}$ codes a well order, $n < \omega$;
 - ii) if W_n is a well order, then $W_n = W_{f(n)}$, $n < \omega$. $[A \subseteq \omega \text{ codes a well order if } \langle \operatorname{ran} A \cup \operatorname{dom} A, \{(x,y) | \langle x,y \rangle \in A \} \rangle$ is a well order, where $\operatorname{ran} A = \{y | \exists x (\langle x,y \rangle \in A) \}$ and $\operatorname{dom} A = \{x | \exists y (\langle x,y \rangle \in A) \} \}.$

[Hint: One way to do this uses the recursion theorem].

- 2. Suppose C is a non-recursive Δ_2^0 set. Prove that there is a simple set A such that $C \not\leftarrow_T A$. Hint: Use the limit lemma to represent C as $\lim_{s \to \infty} C_s$, where $\{C_s\}_{s < \omega}$ is a recursive sequence.
- 3. Suppose A is a countable, saturated structure realizing recursive types $\Gamma_1, \Gamma_2 \ . \quad \text{Prove that there is a decidable structure realizing} \quad \Gamma_1 \quad \text{and} \quad \Gamma_2 \ .$
- 4. Suppose $\{A_s\}_{s<\omega}$ is an effective enumeration of A , where each A_s is recursive, and $\forall e\{[\exists^\infty s \{e\}^N_s(e)\downarrow\} \rightarrow \{e\}^A(e)\downarrow\}$.

 Prove A is low, i.e. A' = 0'.

Logic Q.E. Page 4

IV. Set Theory.

- 1. Let (A,<) be a linear order such that $\forall x \in A$ $(x \cong A \text{ or } A-x \cong A)$. Show A is a well order or an inverse well order.
- 2. Call F a $\underline{\mathrm{mad}\ f}$ (maximal almost disjoint family of subsets of ω_1) iff $i) \quad F \subseteq P(\omega_1) \ .$
 - ii) $\forall x \in F \ (|x| = \omega_1)$.
 - iii) $\forall x, y \in F \quad (x \neq y \rightarrow |x \cap y| < \omega_1)$.
 - iv) F is maximal with respect to (i) (iii) .

Assume: M is a countable transitive model of ZFC , $F \in M$, and $(F \text{ is a mad f})^M$. Show that F remains a mad f in any ccc forcing extension of M .

- 3. If $f,g \in \omega^{\omega}$, we say f < g iff $\{n: g(n) \leq f(n)\}$ is finite. Let α be the least ordinal which is not the type of a chain in the partial order, $(\omega^{\omega}, < g^*)$. Prove that α is a regular cardinal.
- 4. Assume that there is an ordinal α such that $R(\alpha) \models ZFC$, and let α be the smallest such. Prove that α is a strong limit cardinal and that $cf(\alpha) = \omega$.