Qualifying Exam in LOGIC January 20, 1983

INSTRUCTIONS: Do four questions; at most two elementary.

NOTATIONS:

- 1. $\{\varphi_{e} \mid e < \omega\}$ is a standard enumeration of all partial recursive functions.
- 2. $W_e = df dom \varphi_e$
- 3. $W_{e,s} = {x \le s | \varphi_e(x) \text{ converges in } \le s \text{ steps}}$
- 4. $D_y = \{x_1 < x_2 < \dots < x_n\}$ where $y = 2^{x_1} + 2^{x_2} + \dots + 2^{x_n}$.

POLICY ON MISPRINTS

The Doctoral Exam Committee tries to proofread the exams as carefully as possible. Nevertheless, the exam may contain misprints. If you are convinced a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.

I. Elementary Questions

- 1. Find a set S of sentences in an uncountable language such that
 - a) for all $n \in \omega$, S has a finite model of size $\geq n$.
 - b) S has no countably infinite models.
- 2. Let L be a fixed finite language. If S,T are consistent sets of sentences of L, say $S \Rightarrow T$ iff $S \models \varphi$ for all $\varphi \in T$. Show:
 - a) If T is r.e. and consistent, there is a complete Π_1^0 (co-r.e.) S with S \Longrightarrow T.
 - b) There is an r.e. consistent T with no complete r.e. S such that $S \Rightarrow T$.
- 3. Prove the following or give a counterexample: Let S_n, T_n ($n \in \omega$) be sets of sentences. Assume that for all n, $S_n \cap S_{n+1}$, $T_n \cap T_{n+1}$, and there is a model, \mathcal{U}_n such that $\mathcal{U}_n \models T_n$ and $\mathcal{U}_n \not\models S_n$. Then there is a L such that $L \models \cup_{n \in \omega} T_n$ and $L \not\models \cup_{n \in \omega} S_n$.

II. Recursion Theory

1. Prove or disprove:

- 2. Let $\{U_{e,s} \mid e,s < \omega\}$ satisfy:
 - i) $U_{e,s} \subset U_{e,s+1}$; and
 - ii) $\exists F$ recursive $\forall e,s [U_{e,s} = D_{f(e,s)}]$.

Let $U_e = df = 0$ U_e , U_e . Prove there is a recursive U_e such that for all U_e , U_e ,

- 1) $W_{g(e)} = U_{e}$; and
- 2) $W_{g(e),s+1} \subset U_{e,s}$.

Hint: Recursion Theorem.

3. Suppose a recursive f satisfies

$$\forall n,m \ [W_{f(n)} \neq \{0,1,2,\dots,m-1\}]$$
.

Prove that there is a recursive g satisfying:

- 1) $\forall_{i} \exists_{j} [W_{i} = W_{f(j)} \text{ or } W_{i} = W_{g(j)}]$;
- 2) $\forall i,j [W_{f(i)} \neq W_{g(j)}]$; and
- 3) $\forall i \neq j [W_{g(i)} \neq W_{g(j)}]$.

Hint: Construct $\{A_i\}_{i \le \omega}$ such that there is a recursive g , $A_i = W_{g(i)}$ for all i .

III. Model Theory

- 1. A model A is almost- ω -homogeneous iff there is an $\overline{a} \in |A|^{<\omega}$ such that (A,\overline{a}) is ω -homogeneous. Prove that if every countable model of a theory T is almost- ω -homogeneous, then every model of T is almost- ω -homogeneous.
- 2. If Γ, Σ are complete types of a theory T, say that $\underline{\Gamma}$ forces $\underline{\Sigma}$ iff whenever Γ is realized in a model, then Σ is realized too. Suppose T is a complete theory with the property that if Γ forces Σ then either
 - i) Σ is principal; or
 - ii) $\Gamma(x_1, \dots, x_n) \subseteq \Gamma(x_1, \dots, x_n)$ for some $1 \le i_1 \le i_2 \le \dots \le i_m \le n$. Suppose $\Gamma(x)$ is a complete 1-type. Prove that there is a homogeneous model of T omitting $\Gamma(x)$.
- 3. Assume that R,S $\subset \omega \times \omega$ are recursive, $\langle \omega,R \rangle \cong \langle \omega,S \rangle$, and $\langle \omega,R \rangle$ is homogeneous. Prove that there is an $f \in \Delta_3^0$ such that $f: \langle \omega,R \rangle \cong \langle \omega,S \rangle \ .$

IV. Set Theory

1. Let M be a countable transitive model for ZFC + GCH. Assume that $\mathbb{P} \in M$, \mathbb{P} is a partial order, and $(\mathbb{P} \text{ is c.c.c.})^M$. Let G be $\mathbb{P}\text{-generic}$ over M. Show that the following holds in M[G]:

$$\forall F \subset {}^{\omega_1}\omega_1(|F| \ge \omega_3 \to \exists f, g \in F(f \ne g \land |\{\alpha < \omega_1 : f(\alpha) = g(\alpha)\}| = \omega_1)) .$$

- 2. If X is a set of real numbers, call X a <u>Bernstein set</u> iff $|x| \geq \omega_1 \quad \text{and} \quad X \quad \text{has no perfect subsets.} \quad \text{Suppose that} \quad \mathbf{x}_{\alpha} \quad \text{,} \quad \text{for} \quad \alpha < \omega_1 \quad \text{,} \quad \text{are distinct real numbers.} \quad \text{Show that there is a closed} \quad \text{unbounded} \quad \mathbf{C} \subseteq \omega_1 \quad \text{such that} \quad \{\mathbf{x}_{\alpha} : \ \alpha \in \mathbf{C}\} \quad \text{is a Bernstein set.}$
- 3. Assume MA + \neg CH . For each limit $\gamma \in \omega_1$, let A_{γ} be a cofinal ω -sequence. Show that there are $B_n \subseteq \omega_1$ for $n \in \omega$ such that each $B_n \cap A_{\gamma}$ is finite and $\bigcup_{n \in \omega} B_n = \omega_1$.