Qualifying Exam

in

LOGIC

August 25, 1983

INSTRUCTIONS: Do four questions; at most two elementary.

NOTATIONS AND DEFINITIONS:

- 1. A \triangle B = df (A-B) \cup (B-A) .
- 2. M is maximal iff M is r.e. and $\omega-M$ is cohesive, i.e. $\omega-M$ is infinite and $\forall e[W_e \cap (\omega-M)]$ is finite or $(\omega-W_e) \cap (\omega-M)$ is finite].
- 3. $\{W_e \mid e < \omega\}$ is a standard enumeration of all r.e. sets.
- 4. $\{\mu_e \mid e < \omega\}$ is a standard enumeration of all partial recursive functions.

I. Elementary Questions

1. Let L be a first order language. Suppose T_i , $i < \alpha$ are theories in L such that every L-structure is a model for exactly one of the T_i 's. For what $\alpha \leq \omega$ does it then follow that each of the T_i 's is finitely axiomatizable?

2. Let T_1 and T_2 be theories in the language L . Assume that for every <u>finite</u> set S of models for T_1 , there is a model B for T_2 such that every model in S is isomorphically embeddable in B . Prove that the same is true for <u>all</u> sets S of models for T_1 .

3. Let A and B be models of Peano arithmetic, with A a submodel of B. Let

$$C = \{a \in A : \forall c \in B (c < a \rightarrow c \in A)\}$$

Prove that if $a,b \in C$, then $a+b \in C$ and $a \cdot b \in C$.

II. Recursion Theory

1. Let M be a maximal set. Define

$$E = _{df} \{2n \mid n < \omega\} ;$$

$$A = df \{2n \mid n \in M\}$$
; and

$$B = {df} \{2n+1 \mid n \in M\} .$$

Prove that if $R \subset \omega$ satisfies

- i) R recursive;
- ii) $A \subseteq R$; and
- iii) $B \cap R = \phi$,

then $R \Delta E$ is finite.

2. Suppose $f : \omega \times \omega \rightarrow \omega$ satisfies

i)
$$f(0,y) = y + 1$$
;

ii)
$$f(x+1,0) = f(x,1)$$
; and

iii)
$$f(x+1,y+1) = f(x,f(x+1,y))$$
.

Use the recursion theorem to prove that f is recursive.

[Hint: A negative requirement might be (for lowness)

$$N_e: \exists s \mu_{e,s}^{A_s} (e) \downarrow \mu_e^{A}(e) \downarrow$$
.

III. Model Theory

1. Let L be the first order language whose only non-logical symbols are unary predicate symbols P_i , $i < \omega$. Find complete theories T_1, T_2 that are not \aleph_0 -categorical, do have infinite models, and such that i = 1 satisfies and i = 2 fails to satisfy:

For all countable $A, B \models T_i[A \leq B \text{ or } B \leq A]$.

 $A \leq B$ means: there exists an elementary embedding from A into B.

- 2. Assume that $\{\Gamma_i \mid i < \omega\}$ is a set of complete types of a complete first order theory T satisfying:
 - i) \forall i,j \exists k $[\Gamma_i(\bar{x}) \cup \Gamma_j(\bar{y}) \subset \Gamma_k(\bar{x},\bar{y})]$; and
 - ii) $\forall i \forall \varphi \in L(T) \exists j [(\exists \overline{y} \varphi(\overline{x}, \overline{y})) \in \Gamma_{\underline{i}}(\overline{x}) \rightarrow \Gamma_{\underline{i}}(\overline{x}) \cup \{\varphi(\overline{x}, \overline{y})\} \subset \Gamma_{\underline{j}}(\overline{x}, \overline{y})]$.

Prove that there is a model $\mbox{ A} \models \mbox{ T}$ realizing exactly the set of types $\{\Gamma_{\mbox{i}} \mid \mbox{ i } < \omega\}$.

[Hint: Henkin construction].

3. Let $\mathfrak U$ be a structure for a language L. Let $\varphi_n(x)$ for $n \in \omega$ be formulas in L_A (where L_A is L plus a new constant symbol for each element of A). Assume $\mathfrak U = \mathfrak L^\omega/U$, where U is a non-principal ultrafilter on ω . Show that

$$|\{a \in A : \mathcal{U} \models \bigcap_{n} \varphi_{n}(a)\}|$$

is either finite or $\geq 2^{\omega}$.

IV. Set Theory

1. Let F be a family of finite sets with $|F|=\lambda>\omega$. Show that there is an $r\subset \cup F$ and a $G\subset F$ with $|G|=\lambda$, $|r|<\lambda$, and

$$\forall_{x,y} \in G (x \neq y \rightarrow x \cap y \subset r)$$
.

Caution: λ may be singular.

- 2. Assume there exists a strongly inaccessible cardinal. Show that there is an uncountable transitive model for $ZFC+V \neq L$.
- 3. Let $\,M\,$ be a countable transitive model for $\,$ ZFC $\,$ and let $\,$ $\,$ $\,$ De a partial order in $\,$ M $\,$ Show

 $M = \bigcap \{M[G] : G \text{ is } \mathbb{P}\text{-generic over } M\}$.