Qualifying Exam Logic Jan 15, 1987

Instructions: Do any **four** problems, but at most **two** elementary. Please use a separate packet of paper for each problem since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.

Elementary

1. A set of sentences Σ is independent iff

$$\forall \sigma \in \Sigma \left[\Sigma - \{\sigma\} \right] \not\vdash \sigma$$

Prove that if Γ, Σ are sets of formula satisfying:

- (a) $\Sigma \cap \Gamma = \emptyset$;
- (b) $|\Gamma| \leq |\Sigma|;$
- (c) $\forall \sigma \in \Sigma \left[(\Sigma \cup \Gamma) \{\sigma\} \not\vdash \sigma \right]$

Then $\Sigma \cup \Gamma$ can be axiomatized by a set of independent sentences.

- 2. Find $A \subset B \subset C \subset D$ countable structures in the same language such that: A is isomorphic to C, B is elementarily equivalent to D but not isomorphic to it, and the theory of A is \aleph_0 -categorical.
- 3. Show that the set of validities in the first order theory of pure equality is recursive.
- 4. Let (P, <) be an infinite partial order. Show that P contains an infinite subset of order type ω or ω^* (i.e. converse ω), or an infinite set of pairwise incomparable elements.

Recursion Theory

5. Prove that if f,g are total recursive functions and A is a simple set, then $\exists n \in A$ satisfying

$$W_{f(n)} \cup W_{g(n)} = W_n$$

- 6. Assume A,B r.e. satisfying
 - (a) $A \subset B$;

(b) $\forall n \ [B^{[n]} - A^{[n]} \text{ infinite}].$

Prove $\exists C, D$ r.e. satisfying

- (a) $A \subset C, D \subset B;$
- (b) $C|_T D$.
- 7. Prove that there are no A,B r.e. recursively inseparable sets and simple set S such that $B \leq_m S$.
- 8. Prove there exists recursively incomparable maximal sets.

Model Theory

- 9. Find T_i, Γ_i, L_i i < 2 such that:
 - (a) T_i is complete theory in L_i , i < 2;
 - (b) Γ_i complete non-principal type of T_i , i < 2;
 - (c) $T_0 \cup T_1$ is a consistent theory in $L_0 \cup L_1$; and
 - (d) there exists a $L_0 \cup L_1$ formula $\theta(\bar{x})$ which is consistent with $T_0 \cup T_1$ and for every formula $\psi(\bar{x}) \in (\Gamma_1(\bar{x}) \cup \Gamma_2(\bar{x}))$

 $(T_0 \cup T_1) \vdash \theta(\bar{x}) \to \psi(\bar{x})$

- 10. Assume T is a complete consistent theory such that no complete consistent expansion of T by finitely many constants has a complete principal type. Prove that every model of T has a proper elementary substructure.
- 11. $L(T) = \{\langle c_i : i < \omega \}$. T is a complete consistent theory which says that $\langle i s a$ dense linear order without endpoints and the c_i 's are distinct constants. What are the possible cardinalities of the class of countable isomorphism types of models of T?
- 12. Let T be the theory with countably many unary relation symbols $\{P_n : n \in \omega\}$ and all axioms of the form:

$$\exists x (\wedge_{n \in A} P_n \wedge \wedge_{n \in B} \neg P_n)$$

where A and B are disjoint finite subsets of ω . Show that T is a complete theory.

Set Theory

13. Suppose A_{α} for $\alpha < \omega_1$ are countable and for all $\alpha < \omega_1$:

$$A_{\alpha} \cap (\cup_{\beta < \alpha} A_{\beta})$$
 is finite

Show there exists $X \in [\omega_1]^{\omega_1}$ and a set Z such that for every distinct $\alpha, \beta \in X, A_{\alpha} \cap A_{\beta} = Z$, i.e. an uncountable Δ -system.

14. Assume $MA + \neg CH$ and suppose $a_{\alpha} \subset \omega$ for $\alpha < \omega_1$. Show there exists $X \in [\omega]^{\omega}$ such that for every $\alpha < \omega_1$

either $X \subset^* a_\alpha$ or $X \cap a_\alpha =^* \emptyset$

where * means modulo finite.

- 15. Show there exists an almost disjoint family F of countably infinite subsets of the real line R such that for every uncountable $X \subset R$ there exists a $Y \in F$ such that $Y \subset X$.
- 16. Assume $MA + \neg CH$ and suppose that P is a poset with the ccc. and τ is a term in the forcing language of P such that

 $1 \Vdash \tau \subset \omega_1$ is stationary

Show that for some P-filter G the set

$$\{\alpha < \omega_1 : \exists p \in G \ p \Vdash \alpha \in \tau\}$$

is stationary in ω_1 .