Qualifying Exam Logic Aug 27 1987

Instructions: Do any four problems, but at most two elementary. Please use a separate packet of paper for each problem since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.

DEFINITIONS

- 1. $\omega = N =$ the set of natural numbers.
- 2. $A \leq B$ means A is elementarily embeddable in B.
- 3. $c^{<\omega}$ are all finite sequences from c .
- 4. $\{W_e^{\,\,(n)}\mid e<\omega\}$ is the standard enumeration of all r.e. subsets of ω^n . $W_e=W_e^{\,\,(1)}$.
- 5. $K = \{e \mid e \in W_e\}$.
- 6. Tr $\subset \omega^{<\omega}$ is a tree iff $\forall \alpha, \beta \in \omega^{<\omega}$: if $\alpha \subset \beta$ and $\beta \in Tr$, then $\alpha \in Tr$.
- 7. $A \leq B$ means A is an elementary submodel of B.
- 8. A \leq_{T} B means A is Turing reducible to B .

Elementary

- 1. Given a countable set of students and a countable set of classes. Suppose each student wants one of a finite set of classes, and each class has a finite enrollment limit. Use the compactness theorem to prove that if each finite set of students can be accommodated, then the whole set can.
- 2. Let T and U be first order theories in a language L. Suppose that for each finite subset $T_o \subseteq T$ and $U_o \subseteq U$ there are models $A_o \models T_o$ and $B_o \models U_o$ such that B_o is a submodel of A_o . Prove that there are models $A \models T$ and $B \models U$ such that B is a submodel of A.
- 3. Given a partial order < A,< > with no infinite decreasing sequences. Prove that there is a well order < A, < > such that < < < < < <.
- 4. Let κ be an uncountable cardinal of countable cofinality. Show there exists $< f_{\alpha}: \omega \rightarrow \kappa \mid \alpha < \kappa^{+} > \text{ such that for all } \alpha \neq \beta \text{ and for all but finitely many } n, \ f_{\alpha}(n) \neq f_{\beta}(n)$.

Recursion Theory

- 1. Prove that there is no recursive g such that for all $e < \omega$:
 - 1) $W_{g(e)}$ is finite; and
 - 2) if W_e is finite, then $W_e = W_g(e)$.
- 2. Given an infinite r.e. set A, construct a low simple set S containing the complement of A.
- 3. Prove

$$\forall A \subseteq N \exists B, C \subseteq N \exists e [A = \phi_e^B = \phi_e^C \text{ and } B \mid_T C].$$

- 4. Prove that there exist a minimal triple of Turing degrees such that no two of the degrees form a minimal pair.
- [A , B, C are a minimal triple iff $_{\rm df}$ they are non-recursive and $\forall D[$ D $\leq_{\rm T}$ A,B,C \rightarrow D recursive]]

Model Theory

- 1. Let A be an infinite model of a countable language. Prove that for each b ϵA , Th(A) is ω -categorical iff Th(A,b) is ω -categorical.
- 2. Let A be a model with the property that each subset U of A is a relation of A and each function $f\colon A\to A$ is a function of A. Suppose A \prec B and there is an element beB such that B has no proper submodels containing b. Prove that there is an ultrafilter D over A such that B $\cong \Pi_D A$.
- 3. Let T be a complete theory with infinite models in a countable language and let κ be an infinite cardinal. Prove that T has models A and B of power κ where B is a proper submodel of A and there is an automorphism f of A such that

 $\mathbb{B} \prec f(\mathbb{B}) \prec f(f(\mathbb{B})) \prec f(f(f(\mathbb{B}))) \prec \dots$

 $A = \mathbb{B} \cup f(\mathbb{B}) \cup f(f(\mathbb{B})) \cup f(f(f(\mathbb{B}))) \cup \dots$. Hint: use indiscernibles.

4. Prove that for any consistent complete theory T there is a model $A \models T$ such that

 $\forall a,b \in A \ [a,b \ realize \ the \ same \ l-type \ in \ A \ iff$

 $\exists \theta(x,y) [\ A \models \theta(a,b) \ \text{and} \ \forall \sigma(x) [\ T \vdash \forall x,y [\theta(x,y) \rightarrow [\sigma(x) \leftrightarrow \sigma(y)]]]]],$ where '\theta' and '\sigma' range over formulas of L(T).

Set Theory

- 1. Assume CH and let Lim be the set of limit ordinals less than ω_1 . Show that there exists < A $_{\alpha}$ | α ϵ Lim > such that for every α ϵ Lim , A $_{\alpha} \subseteq \alpha$ and for $\alpha \neq \beta$, A $_{\alpha} \cap A_{\beta}$ is finite, but there does not exist $X \in [\text{Lim}]^{\omega} 1$ and $\alpha < \omega_1$ such that for every $\gamma \neq \beta \in X$, $A_{\gamma} \cap A_{\beta} \subseteq \alpha$.
- 2. Assume there exists an uncountable transitive model of ZFC. Show there exists an uncountable transitive model of ZFC+V \neq L. Hint: Consider forcing with P = $(2^{\kappa})^{L}$ for appropriate α , κ .
- 3. Let $P=FIN(\omega_2)$ be the partial order of functions with finite domain contained in ω_2 and range $\{0,1\}$. Show that in the generic extension obtained by forcing with P that there does not exist a linear order of cardinality ω_1 such that every other linear order of cardinality ω_1 can be embedded.