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ELEMENTARY

1. Prove that for every infinite regular cardinal, k, there is a cardinal A such that
A = w) and A has cofinality x.

Solution. For each ordinal, @ < «k, define 8, by recursion as follows: 0y = w;
Ooti = wo,+1; 04 = sup{f, : @ < 4} for limit . Let A = 0,. A has cofinality x because it
is the supremum of a strictly increasing k-sequence. Also, '

AL wy=sup{wg, ta< k) <sup{lop1:a<k}=2x,
S0 A = wj.

2. Suppose T is a consistent theory which has fewer than 2 non-isomorphic countable
models. Prove that there is a sentence, ¢, in the language of T', such that T' U {#} is
complete.

Solution. Suppose there is no such ¢; then clearly T U F' is not complete for any

finite set, F', of sentences. For s € 2<%, define T, so that

1. Tp =T (0 is the empty sequence).

2. T, is consistent and T' C T,.

3. For some sentence, @5, Too = T U {¢s} and Tpy = T U {—¢s}.
(8) is possible because no finite extension of T' is complete. Now, for f € 2%, let Ty =
Unecw Tf|n, and let A5 be a countable model of Ts. Then these ﬂf are not elementarily
equivalent, hence not isomorphic. Thus, T' has ¢ non-isomorphic countable models.

3. Suppose that f : w — w and ¢ : w — w are recursive functions such that f(m) <
g(n) whenever m < n. Prove that either the range of f or the range of g (or both) is
recursive.

Solution. Assume that the range of f is not recursive; so, of course, it is infinite.
Then ¢ € ran(g) iff

dn < (um(f(m) > 1)) (i = g(n)).




MODEL THEORY

1. Let T be the theory, in the binary relation symbol, E, whose models are exactly
those structures, A = (4, E4) such that E,4 is an equivalence relation on A. Prove that 7'
is w-stable.

Solution. It suffices to show that for every ¢ommsimbte model A = (A, E) of T and every
countable subset B of A, the structure (4,b: b € B) has countably many elementary types
in one variable. To do thls show that two elements z, y s:re-eem : 2

“#@ﬂ@é—B}—m&—ﬂmﬁ have the same elementary type if elther =y € B :va and

yEb for some b € B but z,y ¢ B, or zEb and yEb fail for all b € B but the E classes of ©
and y have thé same size.g a, e heth mEinite |

2. Prove that transitive closure is not first-order definable, even on finite structures.
That is, suppose that the language contains one binary relation symbol, R, and let ¢(z,y)
be a formula in two free variables, z,y. Prove that there is a structure, A4 = (A, Ry4) such
that A is finite and the transitive closure of R4 is not equal to {{(a,b) : 4 = ¢[a,d]}.

Solution. Consider any formula ¢(z,y). For each natural number n, consider the
stucture with universe 0,...,2n — 1 such that R(z,y) iff y = =+ 2. Suppose that ¢ defines
the transitive closure of R in each of these structures, so that ¢(z,y) if z < y and y — »
is even. Now use the compactness theorem to get an infinite structure A which has three
elements z,y, 2 such that ¢(z,y), not ¢(z,2), and there is an automorphism of A which
leaves z fixed and sends y to z, a contradiction.

3. Let A be any model of Peano arithmetic and « any cardinal such that k = k. Prove
that A has an elementary extension, B, such that for some b€ B, {c € B: B |= ¢ < b} has
size exactly k. Warning: A can have more than x elements.

Solution. Let D be a nonprincipal ultrafilter over w. Form an elementary chain
Aay, o < K, by starting with Ao = A, taking unions at limit stages, and taking the
ultrapower modulo D at successor stages. Let b € A; be the equivalence class of the
function f(n) = nf, and for o > 0 let S, = {c € Ay : Aa = ¢ < b}. Sy has size 2%,
Sq strictly increases with ¢, so S has size at least k. Using k = x%, show by transfinite
induction that for each o < k, S, has size at most k. Thus S, has size k as required.




RECURSION THEORY
1. Prove that there are uncountable X,Y C P(w) such that forallz € X and y € Y,

Ve Cw((c<rzAc<py)—>c=r0)

Solution. It is enough to produce a perfect set P C 2 such that all distinct z,y in
P have the desired property; then just take X and Y to be uncountable disjoint subsets
of P. P will be the set of all paths through a perfect tree, T C 2<%, Construct T' by
induction, looking at all pairs, a, b, of Gddel numbers of oracle Turing machines, infinitely
often. Make sure that for each such a,b, there are arbitrarily large n such that either: (1)
for all paths z,y through T which diverge by level n, ¢% # ¢¥, or (2) (if (1) is impossible)
for all paths z,y through T which diverge by level n, ¢= and $i are recursive.

2. Suppose that g : w — w is a total function and g <7 0'. Prove that there is a total
recursive f :w — w such that for all n € w, Wen) =r Wy(n)-

3. Suppose A Cw is r.e. and 4 <7 0'. Prove tht there are r.e. B,C C w such that:
1) B and C are Turing incomparable.
2) A<y Band A <y C.
3) Al =T B! = C'.




2. By the Limit Lemma fix recursive h: wxw — w such that Ve[ g(e) = Lgx&ooh(e,s) ].

Fix a recursive f such that for all x and e:

1 if 3s>x[ ¢ e (x) 1]
¢f(e)(x) = { 1 otherwise (e

Then for any n,

— : —* : —
Wf(n) = dom@m ( ¢f(n) ) =" domain ( ¢g(n)) = Wg(n)'
Since the symmetric difference of Wf(n) and Wg(n) is finite, certainly Wf(n)ET Wg(n) .
3. Construct D and E such that B=A®D and C==A®E are the desired sets. As usual in

infinite injury arguments, define

g d(e,Yg,x,5+1) if ®¥(e,Yg,x,s
Bo Yo x s otl) :{ © S,T’Jr) othe(rv’vi;e’’)l

During the construction, meet the following requirements :

Se,p: ®(e;A®D) # E

Se,c" &(e,A®E) # D

to guarantee that B and C are Turing incomparable, and attempt to meet the “pseudo-

requirements”

Qe,B: 3% d(e, A®D ,e,8) | = d(e, A®D ,e) |

Q‘e,C: 3% $(e, AGE ,e,8) | = d(e, AGE , ) |

to guarantee that B/ = Al =7 C' . Define the S-restraint functions

f{B(e,x,s) =

ptVy[ t<y<s = d(e, A®D ,x ,y) |] if &(e, A®D ,x,s) |
0 otherwise




N _ ) mtVy[t<y<s = d(e, AGE ,x,y) |] if d(e, AOE ,x,8) |
Rlexs) = { 0 otherwise

and the Q-restraint functions

f‘B(e,s) = RB(e,e,s) and f‘C(e,s) = Rc(e,e,s) .

At stage s, we will also have XB,s and XC,g that are potential witnesses for meeting the S-
requirements. The construction now is similar to the finite injury construction of
incomparable r.e. degrees, except that when attempting to add elements to say D at stage s,
both RB and Iy are respected, The proofs of the appropriate lemmas is also similar, except
that they proceed on the “true” stages of the construction. Attempting to meeting Qe,B

makes the jump of A®D as low as possible, i.e. Al




SET THEORY

1. Prove, without using the Axiom of Choice, that wy is not the union of countably
many countable sets. '

Solution. Suppose wy = UnEw Ap. Define f : wg — w X wy as follows: If o € wg,
f(@) = (n, £), where n is least such that & € A, and ¢ is the order type of N A4,,. Note
that f is 1-1. But this is a contradiction, since even without AC, w X w; has cardinality
Wi

2. Suppose that X is a family of w; countable sets and n is a fixed natural number
such that |z N y| < n whenever z and y are distinct members of X. Prove that X can be
written as

X ={zq:a<wi} ,

Ty N U g

p<Lla

where for each a < wy,

is finite.

Solution. Say we have,
X={ya:a<wi} ,

where each yo C wy. By the Lowenheim-Skolem argument, there is a club, C, of limit

ordinals such that whenever y € C, a < 7= yo C 4, and a@ > v = |ya N v| < n (this is

possible since each n-element subset of « is contained in at most one Yo It follows that
Vi

Ya N U Yp
B<a

is finite whenever o is of the form « + k for ¥ € C and k finite. Thus, we can get the
o by re-indexing: Enumerate C as {v¢ : £ < wy}, and let {zy.¢1x : k € w} enumerate
(Wt 7e < o <veqa}

3. Assume that M is a countable transitive model of ZFC, k € M, P is the partial
order of finite partial functions from & into 2, and G is P-generic over M. Let f &
w® N M[G]. Prove that there is a g € w* N M such that {n: f(n) < g(n)} is infinite.

Solution. P = Fn(x,2). Fix a countable (in M) set I C k such that f € M[G N
Fn(l,2). Let 7 be a Fn(I,2)-name for f. In M, let Fn(I,2) = {pk : k € w}; for each n,
choose g(n) big enough so that for all £ < n, pi has an extension which forces 7(n) < g(n).
Then no condition can force {n : 7(n) < g(n)} to be finite.




