QUALIFYING EXAM Answers LOGIC

January 20, 1989

ELEMENTARY

1. Prove that for every infinite regular cardinal, κ , there is a cardinal λ such that $\lambda = \omega_{\lambda}$ and λ has cofinality κ .

Solution. For each ordinal, $\alpha \leq \kappa$, define θ_{α} by recursion as follows: $\theta_0 = \omega$; $\theta_{\alpha+1} = \omega_{\theta_{\alpha}+1}$; $\theta_{\gamma} = \sup\{\theta_{\alpha} : \alpha < \gamma\}$ for limit γ . Let $\lambda = \theta_{\kappa}$. λ has cofinality κ because it is the supremum of a strictly increasing κ -sequence. Also,

$$\lambda \leq \omega_{\lambda} = \sup\{\omega_{\theta_{\alpha}} : \alpha < \kappa\} \leq \sup\{\theta_{\alpha+1} : \alpha < \kappa\} = \lambda$$

so $\lambda = \omega_{\lambda}$.

2. Suppose T is a consistent theory which has fewer than 2^{ω} non-isomorphic countable models. Prove that there is a sentence, ϕ , in the language of T, such that $T \cup \{\phi\}$ is complete.

Solution. Suppose there is no such ϕ ; then clearly $T \cup F$ is not complete for any finite set, F, of sentences. For $s \in 2^{<\omega}$, define T_s so that

- 1. $T_{\emptyset} = T$ (\emptyset is the empty sequence).
- 2. T_s is consistent and $T \subseteq T_s$.
- 3. For some sentence, ϕ_s , $T_{s0} = T_s \cup \{\phi_s\}$ and $T_{s1} = T_s \cup \{\neg \phi_s\}$.
- (3) is possible because no finite extension of T is complete. Now, for $f \in 2^{\omega}$, let $T_f = \bigcup_{n \in \omega} T_{f|n}$, and let \mathcal{A}_f be a countable model of T_f . Then these \mathcal{A}_f are not elementarily equivalent, hence not isomorphic. Thus, T has \mathbf{c} non-isomorphic countable models.
- 3. Suppose that $f: \omega \to \omega$ and $g: \omega \to \omega$ are recursive functions such that f(m) < g(n) whenever m < n. Prove that either the range of f or the range of g (or both) is recursive.

Solution. Assume that the range of f is not recursive; so, of course, it is infinite. Then $i \in ran(g)$ iff

$$\exists n \leq (\mu m(f(m) > i)) \ (i = g(n)).$$

MODEL THEORY

1. Let T be the theory, in the binary relation symbol, E, whose models are exactly those structures, $A = \langle A, E_A \rangle$ such that E_A is an equivalence relation on A. Prove that T is ω -stable.

2. Prove that transitive closure is not first-order definable, even on finite structures. That is, suppose that the language contains one binary relation symbol, R, and let $\phi(x,y)$ be a formula in two free variables, x, y. Prove that there is a structure, $A = \langle A, R_A \rangle$ such that A is finite and the transitive closure of R_A is not equal to $\{\langle a,b\rangle: A \models \phi[a,b]\}$.

Solution. Consider any formula $\phi(x,y)$. For each natural number n, consider the stucture with universe 0,...,2n-1 such that R(x,y) iff y=x+2. Suppose that ϕ defines the transitive closure of R in each of these structures, so that $\phi(x,y)$ iff x < y and y-x is even. Now use the compactness theorem to get an infinite structure \mathcal{A} which has three elements x,y,z such that $\phi(x,y)$, not $\phi(x,z)$, and there is an automorphism of \mathcal{A} which leaves x fixed and sends y to z, a contradiction.

3. Let \mathcal{A} be any model of Peano arithmetic and κ any cardinal such that $\kappa = \kappa^{\omega}$. Prove that \mathcal{A} has an elementary extension, \mathcal{B} , such that for some $b \in \mathcal{B}$, $\{c \in \mathcal{B} : \mathcal{B} \models c < b\}$ has size exactly κ . Warning: A can have more than κ elements.

Solution. Let D be a nonprincipal ultrafilter over ω . Form an elementary chain \mathcal{A}_{α} , $\alpha < \kappa$, by starting with $\mathcal{A}_0 = \mathcal{A}$, taking unions at limit stages, and taking the ultrapower modulo D at successor stages. Let $b \in A_1$ be the equivalence class of the function $f(n) = n^{\mathcal{A}}$, and for $\alpha > 0$ let $S_{\alpha} = \{c \in A_{\alpha} : \mathcal{A}_{\alpha} \models c < b\}$. S_1 has size 2^{ω} . S_{α} strictly increases with α , so S_{κ} has size at least κ . Using $\kappa = \kappa^{\omega}$, show by transfinite induction that for each $\alpha \leq \kappa$, S_{α} has size at most κ . Thus S_{κ} has size κ as required.

RECURSION THEORY

1. Prove that there are uncountable $X,Y\subset\mathcal{P}(\omega)$ such that for all $x\in X$ and $y\in Y$,

$$\forall c \subseteq \omega((c \leq_T x \land c \leq_T y) \rightarrow c \equiv_T \emptyset)$$

Solution. It is enough to produce a perfect set $P \subset 2^{\omega}$ such that all distinct x, y in P have the desired property; then just take X and Y to be uncountable disjoint subsets of P. P will be the set of all paths through a perfect tree, $T \subset 2^{<\omega}$. Construct T by induction, looking at all pairs, a, b, of Gödel numbers of oracle Turing machines, infinitely often. Make sure that for each such a, b, there are arbitrarily large n such that either: (1) for all paths x, y through T which diverge by level n, $\phi_a^x \neq \phi_b^y$, or (2) (if (1) is impossible) for all paths x, y through T which diverge by level n, ϕ_a^x and ϕ_b^y are recursive.

- 2. Suppose that $g:\omega\to\omega$ is a total function and $g\leq_T 0'$. Prove that there is a total recursive $f:\omega\to\omega$ such that for all $n\in\omega$, $W_{f(n)}\equiv_T W_{g(n)}$.
 - 3. Suppose $A \subseteq \omega$ is r.e. and $A <_T 0'$. Prove the there are r.e. $B, C \subseteq \omega$ such that:
 - 1) B and C are Turing incomparable.
 - 2) $A <_T B$ and $A <_T C$.
 - 3) $A' \equiv_T B' \equiv_T C'$.

2. By the Limit Lemma fix recursive $h: \omega x \omega \to \omega$ such that $\forall e[g(e) = \lim_{s \to \infty} h(e,s)]$. Fix a recursive f such that for all x and e:

$$\phi_{f(e)}(x) = \begin{cases} 1 & \text{if } \exists s \ge x [\phi_{h(e,s)}(x) \downarrow] \\ \uparrow & \text{otherwise} \end{cases}$$

Then for any n,

$$W_{f(n)} = domain (\phi_{f(n)}) = * domain (\phi_{g(n)}) = W_{g(n)}.$$

Since the symmetric difference of $W_{f(n)}$ and $W_{g(n)}$ is finite, certainly $W_{f(n)} \equiv_T W_{g(n)}$.

3. Construct D and E such that $B=A\oplus D$ and $C=A\oplus E$ are the desired sets. As usual in infinite injury arguments, define

$$\hat{\Phi}(e, Y, x, s+1) = \begin{cases} \Phi(e, Y_s, x, s+1) & \text{if } \Phi(e, Y_s, x, s) \downarrow \\ \uparrow & \text{otherwise} \end{cases}$$

During the construction, meet the following requirements:

$$\begin{split} &S_{e,B} \colon \ \hat{\Phi}(e,A \oplus D) \neq E \\ &S_{e,C} \colon \ \hat{\Phi}(e,A \oplus E) \neq D \end{split}$$

to guarantee that B and C are Turing incomparable, and attempt to meet the "pseudo-requirements"

$$\begin{aligned} & Q_{e,B} \colon \ \exists^{\infty} s \ \hat{\Phi}(e, A \oplus D \ , e \ , s) \downarrow \ \Rightarrow \ \hat{\Phi}(e, A \oplus D \ , e) \downarrow \\ & Q_{e,C} \colon \ \exists^{\infty} s \ \hat{\Phi}(e, A \oplus E \ , e \ , s) \downarrow \ \Rightarrow \ \hat{\Phi}(e, A \oplus E \ , e) \downarrow \end{aligned}$$

to guarantee that $B' \equiv_T A' \equiv_T C'$. Define the S-restraint functions

$$\hat{R}_B(e,x,s) = \left\{ \begin{array}{ll} \mu t \, \forall \, y [\ t \leq y \leq s \ \Rightarrow \ \hat{\Phi}(e,\, A \oplus D \ , \, x \ , \, y) \ \downarrow] & \text{if} \quad \hat{\Phi}(e,\, A \oplus D \ , \, x \ , \, s) \ \downarrow \\ 0 & \text{otherwise} \end{array} \right.$$

$$\hat{R}_{C}(e,x,s) = \begin{cases} \mu t \forall y [\ t \leq y \leq s \ \Rightarrow \ \hat{\Phi}(e, A \oplus E \ , x \ , y) \downarrow] & \text{if} \ \hat{\Phi}(e, A \oplus E \ , x \ , s) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

and the Q-restraint functions

$$\hat{\mathbf{r}}_B(\mathbf{e},\mathbf{s}) = \hat{\mathbf{R}}_B(\mathbf{e},\mathbf{e},\mathbf{s}) \ \text{and} \ \hat{\mathbf{r}}_C(\mathbf{e},\mathbf{s}) = \hat{\mathbf{R}}_C(\mathbf{e},\mathbf{e},\mathbf{s}) \ .$$

At stage s, we will also have $x_{B,s}$ and $x_{C,s}$ that are potential witnesses for meeting the S-requirements. The construction now is similar to the finite injury construction of incomparable r.e. degrees, except that when attempting to add elements to say D at stage s, both \hat{R}_B and \hat{r}_B are respected. The proofs of the appropriate lemmas is also similar, except that they proceed on the "true" stages of the construction. Attempting to meeting $Q_{e,B}$ makes the jump of $A \oplus D$ as low as possible, i.e. A'.

SET THEORY

1. Prove, without using the Axiom of Choice, that ω_2 is not the union of countably many countable sets.

Solution. Suppose $\omega_2 = \bigcup_{n \in \omega} A_n$. Define $f : \omega_2 \to \omega \times \omega_1$ as follows: If $\alpha \in \omega_2$, $f(\alpha) = \langle n, \xi \rangle$, where n is least such that $\alpha \in A_n$, and ξ is the order type of $\alpha \cap A_n$. Note that f is 1-1. But this is a contradiction, since even without AC, $\omega \times \omega_1$ has cardinality ω_1 .

2. Suppose that \mathcal{X} is a family of ω_1 countable sets and n is a fixed natural number such that $|x \cap y| \leq n$ whenever x and y are distinct members of \mathcal{X} . Prove that \mathcal{X} can be written as

$$\mathcal{X} = \{x_{\alpha} : \alpha < \omega_1\} ,$$

where for each $\alpha < \omega_1$,

$$x_{lpha}\capigcup_{eta$$

is finite.

Solution. Say we have,

$$\mathcal{X} = \{y_{\alpha} : \alpha < \omega_1\} ,$$

where each $y_{\alpha} \subset \omega_1$. By the Löwenheim-Skolem argument, there is a club, C, of limit ordinals such that whenever $\gamma \in C$, $\alpha < \gamma \Rightarrow y_{\alpha} \subseteq \gamma$, and $\alpha \geq \gamma \Rightarrow |y_{\alpha} \cap \gamma| < n$ (this is possible since each n-element subset of γ is contained in at most one y_{α} . It follows that

n+1

$$y_{\alpha} \cap \bigcup_{\beta < \alpha} y_{\beta}$$

is finite whenever α is of the form $\gamma + k$ for $\gamma \in C$ and k finite. Thus, we can get the x_{α} by re-indexing: Enumerate C as $\{\gamma_{\xi} : \xi < \omega_1\}$, and let $\{x_{\omega \cdot \xi + k} : k \in \omega\}$ enumerate $\{y_{\alpha} : \gamma_{\xi} \leq \alpha < \gamma_{\xi+1}\}$.

3. Assume that M is a countable transitive model of ZFC, $\kappa \in M$, P is the partial order of finite partial functions from κ into 2, and G is P-generic over M. Let $f \in \omega^{\omega} \cap M[G]$. Prove that there is a $g \in \omega^{\omega} \cap M$ such that $\{n : f(n) < g(n)\}$ is infinite.

Solution. $P = Fn(\kappa, 2)$. Fix a countable (in M) set $I \subseteq \kappa$ such that $f \in M[G \cap Fn(I, 2)]$. Let τ be a Fn(I, 2)-name for f. In M, let $Fn(I, 2) = \{p_k : k \in \omega\}$; for each n, choose g(n) big enough so that for all k < n, p_k has an extension which forces $\tau(n) < g(n)$. Then no condition can force $\{n : \tau(n) < g(n)\}$ to be finite.