QUALIFYING EXAM LOGIC August, 1989

INSTRUCTIONS: Do any four problems, including at most two elementary problems. Please use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

NOTATION: ω is the set of natural numbers. R is the set of real numbers. Q is the set of rational numbers. $\Pi_D M_i$ is the ultraproduct of the models M_i modulo D. ϕ_n is the partial recursive function with index M_i is the domain of ϕ_n .

ELEMENTARY PROBLEMS

E1. Let f(n) be the n^{th} digit after the "." in the decimal expansion of e. (So f(1) = 7, f(2) = 1, f(3) = 8). Prove that the function f is computable.

E2. Let S be the set of all finite sequences of elements of ω . If $s,t\in S$, we say that $s\to t$ iff t is obtained by replacing one term of s by a finite (possibly empty) sequence of smaller natural numbers. So, for example,

$$(5,5) \rightarrow (4,1,3,4,5) \rightarrow (4,1,3,2,1,3,5)$$
.

Prove that there is no infinite subset $\{s_n:n\in\omega\}\subseteq S$ such that $s_0\to s_1\to s_2\to s_3\to\cdots$.

E3. Let g(n) be the number of distinct prime divisors of n, with g(0) = g(1) = 0. Prove that in every nonstandard model M of Peano Arithmetic, there is an element b such that in M,

$$b > g(b) > g(g(b)) > g(g(g(b))) > \cdots$$

SET THEORY

- S1. Assume that $2^{\omega} = \omega_2$ and $2^{\omega} = \omega_4$. Prove that there is an almost disjoint family of ω_4 uncountable subsets of ω_1 . Here, "almost disjoint" means that the intersection of any two distinct elements of the family is countable.
- S2. Define a relation \leq on the set of all ω_1 -Suslin trees by saying that $X \leq Y$ iff the 1 condition of Y forces that there is an uncountable chain in X. Prove that \leq is transitive.

MODEL THEORY

- M1. Let T be the complete first order theory of the model $\mathbf{M} = (\mathbb{R}, \mathbb{Q}, \leq , q)_{\mathbf{q} \in \mathbb{Q}}.$ Prove that every model of T has a proper elementary submodel.
- M2. Let κ be the first cardinal such that $\mathrm{cf}(\kappa) > \omega$, and $\lambda < \kappa$ implies $\lambda^\omega < \kappa$. Let L be the language which is formed by adding to first order logic the extra quantifier (Qx) where (Qx) $\theta(x,\cdots)$ holds if and only there exist at least κ x's such that $\theta(x,\cdots)$. Let D be an ultrafilter over a countable set I. Prove that for any family of models M_i , $i \in I$ and any sentence θ of L,

 $\Pi_{\mathbf{D}}\mathbf{M}_{\mathbf{i}} \models \theta \text{ if and only if } \{\mathbf{i} \in \mathbf{I} : \mathbf{M}_{\mathbf{i}} \models \theta\} \in \mathbf{D}.$

RECURSION THEORY

R1. Prove that for every partial recursive function f(x,y) there exists $n \in \omega$ such that

$$W_n = \{f(n,y) : y \in \omega \text{ and } f(n,y) \text{ is defined}\}.$$

R2. Prove that the set

$$\{x \in \omega : \phi_X \text{ is total and } \lim_{n \to \infty} \frac{\phi_X(n)}{n} = \infty\}$$

is complete Π_3^0 .