QUALIFYING EXAM IN LOGIC August, 1990

INSTRUCTIONS: Do any four problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

NOTATION: ω is the set of natural numbers. $\mathbb R$ is the set of real numbers and $\mathbb Q$ is the set of rational numbers. The universe of a model $\mathbb M$ is denoted by A. If $\mathbb M$ is a model and $\mathbb X\subseteq A$, $\mathbb M_X$ is the expansion of $\mathbb M$ formed by adding a constant for each $\mathbb X\in \mathbb X$. If $\mathbb A,\mathbb B\subseteq \omega$, $\mathbb A\equiv_{\mathbb T}\mathbb B$ means that A is Turing equivalent to B. A' is the jump of A, and $\mathbb A\oplus\mathbb B=\{2^{\mathbf a}3^{\mathbf b}:\mathbf a\in\mathbb A\text{ and }\mathbf b\in\mathbb B\}$. ZF is Zermelo-Fraenkel set theory, and PA is Peano arithmetic. $\mathbb K^{<\kappa}=\bigcup\{\kappa^\alpha:\alpha<\kappa\}$. CCC denotes the countable chain condition.

ELEMENTARY PROBLEMS

- E1. Show that in the theory $ZF-\infty$ consisting of all axioms of ZF except the axiom of infinity, the consistency of PA is not provable.
- E2. Prove that the complete theory of the model $(\mathbb{R}, \mathbb{Q}, \leq)$ is decidable.

MODEL THEORY

- M1. Prove that there exists a saturated dense linear order of cardinality κ if and only if $\kappa = \kappa < \kappa$.
- M2. Let T be an $\forall\exists$ theory in a countable language which has infinite models. Prove that T has a model $\mathfrak A$ of power 2^ω such that whenever $\mathfrak A\subseteq \mathfrak B\models T$, every countable set of existential formulas with constants from A which is satisfiable in $\mathfrak B_A$ is satisfiable in $\mathfrak A_A$.

RECURSION THEORY

- R1. Prove or disprove: If A and B are r.e., then $A' \oplus B' \equiv_T (A \oplus B)'$.
- R2. Let A be hypersimple and define

$$B = (\langle m, n \rangle : m \le n \text{ or } m \in A \}.$$

Prove that B is hypersimple but not hyperhypersimple.

SET THEORY

- S1. If P and Q are partial orderings in a countable model M of ZFC such that P is countably closed and Q is CCC in M, then Q is CCC in the generic extension of M over P.
- S2. Prove that there is a subset $S \subseteq \mathbb{R}$ of power 2^{ω} such that it and its compliment meet uncountable Borel subset of \mathbb{R} .