QUALIFYING EXAM IN LOGIC
January, 1991

INSTRUCTIONS: Do any four problems. Use a separate packet of paper for
each problem, since not all of your answers will be graded by the same person. You
should not hand in more than four problems; if you do more, only the first four will be
graded.

If you think a problem has been stated incorrectly, mention this to the proctor
and indicate your interpretation in your solution. In such cases, do not interpret the

problem in such a way that it becomes trivial.

NOTATION: w is the set of natural numbers. All languages are understood to
be languages in first order predicate logic. The universe of a model % is denoted by A.
A set XY is cofinite in Y if Y—X is finite. The cofinality of a linearly ordered set
(S, <) is the least cardinal x such that for some T CS of size «, (VseS)}(FteT)s <t.
The coinitiality of (S, <) is defined similarly but with s>t. If A\BCw, A=, B means
that A is Turing equivalent to B, and A < B means that A is Turing reducible to B

and not A.._—._T B. Wy is the domain of the partial recursive function with Godel
number x. A®™ s the nth jump of A. AoB is the disjoint wunion
{2¥:xe A}u{3¥:yeB}. ZFC is Zermelo-Fraenkel set theory with choice. MA is
Martin’s Axiom, CH is the continuum hypothesis, and GCH is the generalized
continuum hypothesis.




ELEMENTARY PROBLEMS

El. Let T be a theory in a finite language which has no infinite models. Show
that T is decidable.

E2. Let % be elementarily equivalent to the model (w,0,s) where s is the
successor function. Show that for every formula ¢(x) in the language of %, the set
{ae A:%|=¢[a]} is either finite or cofinite in A.

MODEL THEORY

M1. Let T be a theory with infinite models in a countable language. Prove that

T has a countable model % which has 2 distinct elementary submodels.

M2. Let « and X be infinite regular cardinals. Prove that the standard model of
arithmetic has an elementary extension ﬁl:(A,+m,*m, gm) such that (A —w, gu) has

coinitiality s and cofinality A.

RECURSION THEORY

R1. Show that there is no partial recursive function ¢(x) on w such that for all x,
Wy # 0 implies that ¢(x) is defined and equals min{y:y € Wy}.
R2. Show that there are r.e. sets A and B such that for all n,
Al T gt 1) B™ . T 0@tV and AR B0 = T gin+1),
Hint: Use the Sacks Splitting Theorem, the Robinson Jump Interpolation Theorem,

and the Recursion Theorem.

SET THEORY

S1. Let M be a countable transitive model of ZFC + GCH. Show that there is a
forcing extension of M satisfying ZFC+ GCH together with the statement that not

every subset of w; is constructible from a subset of w.

S2. Assume MA and -CH. Let X be a set of real numbers of size ®;. For each
x e X, let Sy be an w-sequence of elements of X which converges to x. Prove that
there is an uncountable Y C X such that Y nSy is finite for all x € X.



SET THEORY

S1. Let M be a countable transitive model of ZFC + GCH. Show
that there is a forcing extension of M satisfying ZFC' + GC H together with
the statement that not every subset of w; is constructible from a subset of
w.

Solution: In M, let P be finite partial functions from w; to 2. Since
(in M) P is ccc and has size wy, M[G] still satisfies GCH. Every element of
M[GNP ]is of the form rG for some P name 7. In particular, G ¢ M[GNP |
for any o < wy. In M[G}, if z C w, then z € M[G’@ P | for some a < wy,
so G ¢ Mlz], so G ¢ L|z]. Thus,if A={a€w;: G(a) =1}, then Ais

a subset of w; not constructible from any subset of w.

S2. Assume MA and —CH. Let X be a set of real numbers of size R;.
For each z € X, let Sz be a simple sequence in X which converges to z.
Prove that there is an uncountable Y € X such that Y NSz is finite for all
z e X.

Solution: Let S = {Sz : z € S}. Let P be the set of all pairs,
p = (ap, Fp) such that ap is a finite subset of X and Fp is a finite subset of
S. Say ¢ < piff ag2 ap, Fg 2 Fg, and

VS € FpVz € (ag\ap)(z ¢ S) .

Dense sets: Say X = S {Xa: o € w1}, where each Xq is countable. If
G megts {p: ap\Xa # @} for each o and {p : S € Fp} for each S € §, then
Y = p2 @p satisfies the requirements of the problem.

ccc: Suppose A is an uncountable antichain in P. By the standard A-
system and thinning arguments, we may assume that the ap for p € A form
a A-system, and then that the root is empty. We may then assume that
A= {pt: £ <w}, where apg = {z'...2%}. Let T¢ = Fpg. Thinning
again, we may assume o > { implies zh & T¢ Now, fix o < wj such that
whenever Iy ... Iy are rational intervals, if there exists a £ such that each
:1:7’5 € I; (¢ = 1...n), then there is such a £ less than a. Since T has

countable closure, we may find a £ such that each :z:"’E ¢ Tq, and then fix

rational neighborhoods I; of each z% missing T. Now, by our assumption
on a, we can choose £ < a — but then p¢ and py are compatible.
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