QUALIFYING EXAM IN LOGIC January, 1991

INSTRUCTIONS: Do any four problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. You should not hand in more than four problems; if you do more, only the first four will be graded.

If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

NOTATION: ω is the set of natural numbers. All languages are understood to be languages in first order predicate logic. The universe of a model $\mathfrak A$ is denoted by A. A set $X \subseteq Y$ is cofinite in Y if Y - X is finite. The cofinality of a linearly ordered set $\langle S, \leq \rangle$ is the least cardinal κ such that for some $T \subseteq S$ of size κ , $(\forall s \in S)(\exists t \in T)s \leq t$. The coinitiality of $\langle S, \leq \rangle$ is defined similarly but with $s \geq t$. If $A, B \subseteq \omega$, $A \equiv_T B$ means that A is Turing equivalent to B, and $A <_T B$ means that A is Turing reducible to B and not $A \equiv_T B$. W_X is the domain of the partial recursive function with Godel number x. $A^{(n)}$ is the n^{th} jump of A. $A \oplus B$ is the disjoint union $\{2^X : x \in A\} \cup \{3^Y : y \in B\}$. ZFC is Zermelo-Fraenkel set theory with choice. MA is Martin's Axiom, CH is the continuum hypothesis, and GCH is the generalized continuum hypothesis.

ELEMENTARY PROBLEMS

- E1. Let T be a theory in a finite language which has no infinite models. Show that T is decidable.
- E2. Let $\mathfrak U$ be elementarily equivalent to the model $(\omega,0,s)$ where s is the successor function. Show that for every formula $\phi(x)$ in the language of $\mathfrak U$, the set $\{a \in A : \mathfrak U \models \phi[a]\}$ is either finite or cofinite in A.

MODEL THEORY

- M1. Let T be a theory with infinite models in a countable language. Prove that T has a countable model $\mathfrak U$ which has 2^{ω} distinct elementary submodels.
- M2. Let κ and λ be infinite regular cardinals. Prove that the standard model of arithmetic has an elementary extension $\mathfrak{A} = \langle A, +^{\mathfrak{A}}, *^{\mathfrak{A}}, \leq^{\mathfrak{A}} \rangle$ such that $\langle A \omega, \leq^{\mathfrak{A}} \rangle$ has coinitiality κ and cofinality λ .

RECURSION THEORY

- R1. Show that there is no partial recursive function $\phi(x)$ on ω such that for all x, $W_X \neq \emptyset$ implies that $\phi(x)$ is defined and equals $\min\{y: y \in W_X\}$.
 - R2. Show that there are r.e. sets A and B such that for all n,

$$A^{(n)} <_T \emptyset^{(n+1)}, \ B^{(n)} <_T \emptyset^{(n+1)}, \ \mathrm{and} \ A^{(n)} \oplus B^{(n)} \equiv_T \emptyset^{(n+1)}.$$

Hint: Use the Sacks Splitting Theorem, the Robinson Jump Interpolation Theorem, and the Recursion Theorem.

SET THEORY

- S1. Let M be a countable transitive model of ZFC+GCH. Show that there is a forcing extension of M satisfying ZFC+GCH together with the statement that not every subset of ω_1 is constructible from a subset of ω .
- S2. Assume MA and \neg CH. Let X be a set of real numbers of size \aleph_1 . For each $x \in X$, let S_X be an ω -sequence of elements of X which converges to x. Prove that there is an uncountable $Y \subseteq X$ such that $Y \cap S_X$ is finite for all $x \in X$.

SET THEORY

S1. Let M be a countable transitive model of ZFC + GCH. Show that there is a forcing extension of M satisfying ZFC + GCH together with the statement that not every subset of ω_1 is constructible from a subset of ω .

Solution: In M, let \mathcal{P} be finite partial functions from ω_1 to 2. Since (in M) \mathcal{P} is ccc and has size ω_1 , M[G] still satisfies GCH. Every element of $M[G\cap\mathcal{P}]$ is of the form τ_G for some \mathcal{P} name τ . In particular, $G\notin M[G\cap\mathcal{P}]$ for any $\alpha<\omega_1$. In M[G], if $x\subset\omega$, then $x\in M[G]$ \mathcal{P} for some $\alpha<\omega_1$, so $G\notin M[x]$, so $G\notin L[x]$. Thus, if $A=\{\alpha\in\omega_1: G(\alpha)=1\}$, then A is a subset of ω_1 not constructible from any subset of ω .

S2. Assume MA and \neg CH. Let X be a set of real numbers of size \aleph_1 . For each $x \in X$, let S_x be a simple sequence in X which converges to x. Prove that there is an uncountable $Y \subset X$ such that $Y \cap S_x$ is finite for all $x \in X$.

Solution: Let $S = \{S_x : x \in S\}$. Let P be the set of all pairs, $p = \langle a_p, F_p \rangle$ such that a_p is a finite subset of X and F_p is a finite subset of S. Say $q \leq p$ iff $a_q \supseteq a_p$, $F_q \supseteq F_q$, and

$$\forall S \in F_p \forall x \in (a_q \backslash a_p)(x \notin S) .$$

Dense sets: Say $X = {S \atop X\alpha} : \alpha \in \omega_1$, where each X_{α} is countable. If G meets $\{p : a_p \setminus X_{\alpha} \neq \emptyset\}$ for each α and $\{p : S \in F_p\}$ for each $S \in S$, then $Y = {S \atop D2} = {Ap \atop D2} = {$

ccc: Suppose A is an uncountable antichain in \mathcal{P} . By the standard Δ -system and thinning arguments, we may assume that the a_p for $p \in A$ form a Δ -system, and then that the root is empty. We may then assume that $A = \{p\xi : \xi < \omega_1\}$, where $a_p\xi = \{x^1 \dots x_\ell^n\}$. Let $T\xi = F_p\xi$. Thinning again, we may assume $\alpha > \xi$ implies $x_\alpha^i \notin T\xi$ Now, fix $\alpha < \omega_1$ such that whenever $I_1 \dots I_n$ are rational intervals, if there exists a ξ such that each $x_\xi^i \in I_i$ $(i = 1 \dots n)$, then there is such a ξ less than α . Since T_α has countable closure, we may find a ξ such that each $x_\xi^i \notin T_\alpha$, and then fix rational neighborhoods I_i of each x_ξ^i missing T_α . Now, by our assumption on α , we can choose $\xi < \alpha$ – but then $p\xi$ and p_α are compatible.