LOGIC QUALIFYING EXAM, AUGUST 29, 1991

INSTRUCTIONS: Do any four problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

NOTATION: ω and \mathbf{Q} are the sets of natural numbers and rationals. We is the domain of the recursive function with Godel number e. X < TY means that X is Turing reducible to Y and Y is not Turing reducible to X. R_{α} is the set of all sets of rank less than α . ZFC is Zermelo-Fraenkel set theory with choice. cub means closed unbounded.

ELEMENTARY PROBLEMS

- E1. Prove that if κ and λ are cardinals with $\omega \leq \lambda \leq \kappa$, then $(\kappa^+)^{\lambda} \leq \max(\kappa^{\lambda}, \kappa^+)$.
- E2. Let T be the theory of equivalence relations such that each equivalence class is infinite. Prove that T is not finitely axiomatizable.

RECURSION THEORY

- R1. Let A be an r.e. set. Show that there exists an $e \in \omega$ such that $W_e = \{x : e + x \in A\}$.
 - R2. Prove that there are sets $X_q \subseteq \omega$, $q \in \mathbb{Q}$, such that whenever q < r, $X_q < T$ X_r .

MODEL THEORY

- M1. Suppose $\kappa \geq \omega$ is a cardinal, \mathfrak{U}_{α} , $\alpha < \kappa$, is an elementary chain, and for each $\alpha < \kappa$, \mathfrak{U}_{α} is elementarily embeddable in \mathfrak{B}_{α} . Prove that there is an ultrafilter D over κ such that $\bigcup_{\alpha} \mathfrak{U}$ is elementarily embeddable in the ultraproduct $\Pi_{\overline{D}} \mathfrak{B}_{\alpha}$.
- M2. Let u be a countably infinite recursively saturated model. Prove that u has a nontrivial automorphism.

SET THEORY

S1. Let κ be an uncountable inaccessible cardinal. Prove that the set

$$\{\alpha < \kappa : (R_{\alpha}, \in) \models ZFC\}$$

has a cub subset but is not a cub set.

S2. If $f,g \in {}^{\omega_1}\omega_1$, let f < g mean $(\forall \alpha < \omega_1)(f(\alpha) < g(\alpha))$. Prove that it is consistent with ZFC to have $2^{\omega} = 2^{\omega_1} = 2^{\omega_2} = \omega_3$, together with a family $\mathfrak{F} \subseteq {}^{\omega_1}\omega_1$ of size ω_2 such that for each $f \in {}^{\omega_1}\omega_1$ there exists $g \in \mathfrak{F}$ with f < g.