INSTRUCTIONS: Do any four problems, including at most two elementary problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Answer true or false for each of the following statements. If true, indicate a reason. If false, give a counter-example. α , β , γ range over ordinals.

(Sample). $\forall \alpha \forall \beta \forall \gamma (\alpha \cdot \beta = \beta \cdot \alpha)$.

Answer: False. $\omega \cdot 2 \neq 2 \cdot \omega$.

- a. $\forall \alpha \forall \beta \forall \gamma (\alpha < \beta \Rightarrow \alpha + \gamma < \beta + \gamma)$.
- b. $\forall \alpha \forall \beta \forall \gamma (\alpha < \beta \Rightarrow \gamma + \alpha < \gamma + \beta)$.
- c. $\forall \alpha \forall \beta \forall \gamma ((\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma)$.
- d. $\forall \alpha \forall \beta \forall \gamma (\gamma \cdot (\alpha + \beta) = \gamma \cdot \alpha + \gamma \cdot \beta)$.
- e. $\forall \alpha \forall \beta \forall \gamma ((\alpha + \beta = \beta + \alpha) \land (\beta + \gamma = \gamma + \beta) \Rightarrow (\alpha + \gamma = \gamma + \alpha)).$
- E2. Let T be a recursive set of sentences in a finite language L. Assume that for each sentence ϕ of L, either $T \cup \{\phi\}$ is inconsistent or $T \cup \{\phi\}$ has a finite model. Prove that the set $\{\phi: T \models \phi\}$ is recursive.
- E3. In the language with one unary function symbol f, prove that the theory $\{\forall x f(f(x)) = x\}$ has countably many complete extensions, and describe them.

LOGIC QUALIFYING EXAM, JANUARY 1992, MODEL THEORY

- M1. Let $D(\mathfrak{A})$ denote the diagram of a model \mathfrak{A} , that is, the set of all atomic and negated atomic sentences true in \mathfrak{A}_A . Suppose that T is a complete theory, \mathfrak{A} is a model of T, and $T \cup D(\mathfrak{A})$ is complete. Prove that for every elementary submodel \mathfrak{B} of \mathfrak{A} , $T \cup D(\mathfrak{B})$ is complete.
- M2. Let $\mathfrak U$ be an arbitrary model of Peano arithmetic. Prove that $\mathfrak U$ has an ultrapower $\mathfrak B$ with an element $b \in B$ such that $\{c \in B : \mathfrak B \mid c \leq b\}$ has size 2^{ω} .
- M3. Let T be a complete theory in a countable language and let κ be a cardinal. Prove that T has a countable model $\mathfrak A$ and a model $\mathfrak B$ of size κ such that every countable elementary submodel of $\mathfrak B$ is elementarily embeddable in $\mathfrak A$. Hint: Use indiscernibles.

LOGIC QUALIFYING EXAM, JANUARY 1992, RECURSION THEORY

Notation: ϕ_n is the recursive function with Gödel number n and W_n is the domain of ϕ_n . \leq_{T} means Turing reducible, and \equiv_{T} means Turing equivalent. B' denotes the jump of B.

R1. a. Show that there is an index n such that $W_n = \{n\}$. b. Use this and the Padding Lemma to show that

$$K = \{e \mid \phi_e(e) \text{ converges}\}\$$

is not an index set.

- **R2.** Given a nonrecursive r.e. set A, give a construction to show that there is a simple set S such that $S \leq_T A$.
- **R3.** Prove that for all sets $A, B \subseteq \omega$, if $A \leq_T B'$ then there is a binary relation $C \equiv_T B$ such that $\lim_s C(s, \cdot) = B$.

LOGIC QUALIFYING EXAM, JANUARY 1992. SET THEORY

- S1. Prove that there is a totally ordered set (X, <) of size \aleph_1 such that every ordinal $\alpha < \omega_2$ is isomorphic to a subset of X. Don't assume CH. Hint. Consider $\omega_1^{<\omega}$ ordered lexically, and use induction.
- S2. In the following, forcing always refers to the Cohen partial order that is, finite partial functions from ω into 2. In the ground model, M, assume that F is a *closed* set of real numbers. Prove that the following are equivalent:
 - 1. $1 \Vdash (\check{F} \text{ is closed}).$
 - 2. F is countable in M.

Hint. Uncountable closed sets contain a copy of the Cantor set.

S3. Notation: An antichain is a pairwise incompatible family. Let

$$T = \{s \mid (\exists \alpha < \omega_1)(s : \alpha \to \omega \quad and \quad s \quad is \quad 1 - 1)\},\$$

ordered by inclusion.

Prove:

- a. T has no ω_1 -branches.
- b. Every uncountable subset of T contains an uncountable antichain.