LOGIC QUALIFYING EXAM, AUGUST 1992

Instructions: Answer any two Elementary problems *plus* any two problems from the area (Set Theory or Model Theory) for which you are signed up.

ELEMENTARY PROBLEMS

E1. Assume GCH. For an infinite cardinal κ , let $F(\kappa)$ be the set of all non-decreasing functions from κ into ω .

(a) Prove that for all infinite $\kappa, \kappa \leq |F(\kappa)| \leq \kappa^+$.

(b) For which κ is $|F(\kappa)| = \kappa$ and for which κ is $|F(\kappa)| = \kappa^+$?

Note: $f : \kappa \to \omega$ is non-decreasing iff $(\forall \alpha < \beta < \kappa)(f(\alpha) \le f(\beta))$. For example (when κ is uncountable), $f(\alpha) = 3$ for $\alpha < \omega$ and $f(\alpha) = 6$ for $\omega \le \alpha < \kappa$.

Hint: f can't jump too often.

E2. Let ϕ be a sentence in the language $\{0, +\}$ groups which holds in all divisible torsion free abelian groups. Prove that for all but finitely many primes p, ϕ holds in the cyclic group Z_p of order p.

Note: An abelian group G is divisible if for each integer n > 0,

$$G \models (\forall x)(\exists y)ny = x.$$

G is torsion free if for each n > 0,

$$G \models (\forall x)[nx = 0 \Rightarrow x = 0].$$

E3. Suppose that there is a model $\mathcal{M} = (M, E)$ for $ZF + \neg Con(ZF)$. Prove that \mathcal{M} is not an ω -model. That is, show that the order type of $\{n \in M : \mathcal{M} \models n \text{ is a natural number}\}$ under the relation E is not ω .

SET THEORY

S1. For each sentence ψ in the language $\{\in,=\}$, let

$$T(\psi) = \{ \alpha : 0 < \alpha < \omega_1 \& L(\alpha) \models \psi \}.$$

Answer "true" or "false" for each of the following implications. If "true", indicate a reason. If "false", describe a ψ which is a counterexample. Note: ω_1 means the real ω_1 – not necessarily $\omega_1^{(L)}$.

1. $T(\psi) \neq \emptyset$ implies $T(\psi)$ is unbounded in ω_1 .

2. $T(\psi)$ is unbounded in ω_1 implies $T(\psi)$ is stationary in ω_1 .

3. $T(\psi)$ is stationary in ω_1 implies $T(\psi)$ contains a closed unbounded subset of ω_1 .

4. $T(\psi)$ contains a closed unbounded subset of ω_1 implies $T(\psi)$ is a closed unbounded subset of ω_1 .

S2. Let \mathcal{P} be the partially ordered set consisting of the finite partial functions from ω into \mathcal{Q} (the set of rationals). Let M be a countable transitive model of ZFC, and suppose, in M, $\langle \epsilon_n : n \in \omega \rangle$ is a sequence of positive real numbers. Let G be \mathcal{P} -generic over M, and in M[G], let $f = \bigcup G : \omega \to \mathcal{Q}$. Show $\bigcup_{n \in \omega} (f(n) - \epsilon_n, f(n) + \epsilon_n)$ contains every real number in M.

S3. Let M be a countable transitive model of ZFC. Suppose, that $\mathcal{P} \in M$ is a partial order such that \mathcal{P} is countable in M. Let G be \mathcal{P} -generic over M. In M[G], let S be an unbounded subset of $\omega_1^{(M)} = \omega_1^{(M[G])}$. Prove that there is a $T \subseteq S$ such that T is in M and T is unbounded in $\omega_1^{(M)}$.

MODEL THEORY

M1. Prove that the theory of torsion free abelian groups is complete. (See Note following problem E2).

M2. If \mathcal{U} is an ultrafilter, and \mathcal{A} is a structure, let $\Pi_{\mathcal{U}}\mathcal{A}$ be the ultrapower of \mathcal{A} modulo \mathcal{U} . Let \mathcal{N} be the standard model of arithmetic. Prove that there exist ultrafilters \mathcal{U} and \mathcal{V} (possibly on different index sets) such that the models $\Pi_{\mathcal{U}}(\Pi_{\mathcal{V}}\mathcal{N})$ and $\Pi_{\mathcal{V}}(\Pi_{\mathcal{U}}\mathcal{N})$ are not isomorphic.

M3. Let \mathcal{A} be an uncountable model of Peano arithmetic and let $a \in \mathcal{A}$. Prove that \mathcal{A} has an elementary extension \mathcal{B} with a countable sequence of elements $b_n, n \in \omega$, such that

$$\mathcal{B} \models a + n < b_n$$

for all $n \in \omega$, and there is no element $c \in B$ such that

$$\mathcal{B} \models a + n < c < b_n$$

for all $n \in \omega$.