LOGIC QUALIFYING EXAM, JANUARY 1993 - RECURSION THEORY

INSTRUCTIONS: Do two elementary problems and two recursion theory problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Find three ordinals: α , β , γ such that the 6 sums:

 $\alpha + \beta$, $\alpha + \gamma$, $\beta + \alpha$, $\beta + \gamma$, $\gamma + \alpha$, $\gamma + \beta$ are all distinct.

- E2. Suppose T is a decidable set of axioms in a countable language, all models of T are infinite, and T has only finitely many non-isomorphic countable models. Prove that the set of all logical consequences of T is decidable.
- E3. Assume ZFC is consistent. Prove that there is a Turing machine M such that:
 - 1. M does not halt.
 - 2. ZFC cannot prove that M does not halt.

RECURSION THEORY PROBLEMS

- R1. One of the following statements is true and the other is false. Prove the true one and disprove the false one.
- 1. Suppose f is a recursive function such that whenever ϕ_n is total, $\phi_{f(n)}$ is total. Then there exists n such that ϕ_n is total and $\phi_{f(n)} = \phi_n$.
- 2. Suppose f is a recursive function such that whenever $\phi_n(0)$ is defined, $\phi_n(0) = \phi_{\mathbf{f}(n)}(0)$. Then there exists n such that $\phi_n(0)$ is defined and $\phi_{\mathbf{f}(n)} = \phi_n$.
 - R2. Prove that the index set $\{\langle x,y\rangle|W_x\subseteq W_y\}$ is Π_2 complete.
- R3. A set $A \subseteq \omega$ is called <u>immune</u> if it is infinite but does not contain any infinite r.e. subset. It is called <u>retraceable</u> if there is a partial recursive function ϕ such that $\phi(x) = x$ for the least element $x \in A$, and for all other elements $y \in A$, $\phi(y)$ is the next smaller element of A. Show that every retraceable set is recursive or immune.

LOGIC QUALIFYING EXAM, JANUARY 1993 - MODEL THEORY

INSTRUCTIONS: Do two elementary problems and two model theory problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Find three ordinals: α , β , γ such that the 6 sums:

 $\alpha + \beta$, $\alpha + \gamma$, $\beta + \alpha$, $\beta + \gamma$, $\gamma + \alpha$, $\gamma + \beta$ are all distinct.

- E2. Suppose T is a decidable set of axioms in a countable language, all models of T are infinite, and T has only finitely many non-isomorphic countable models. Prove that the set of all logical consequences of T is decidable.
- E3. Assume ZFC is consistent. Prove that there is a Turing machine M such that:
 - 1. M does not halt.
 - 2. ZFC cannot prove that M does not halt.

MODEL THEORY PROBLEMS

- M1. Prove that the complete theory of the model (\mathbb{Z}, \leq) has exactly 2 countable ω -homogeneous models up to isomorphism.
- M2. Let T be a complete theory with infinite models in a countable language. Prove that there is an elementary chain \mathfrak{U}_{α} , $\alpha < \omega_{1}$, of countable models of T such that whenever $\alpha < \beta < \omega_{1}$, $\mathfrak{U}_{\alpha} \cong \mathfrak{U}_{\beta}$ but $\mathfrak{U}_{\alpha} \neq \mathfrak{U}_{\beta}$.
- M3. Let $\mathfrak U$ be a model for a countable language and let $\Gamma(x)$ be a set of formulas which is consistent but not realized in $\mathfrak U$. Let $\mathfrak B = \Pi_U \mathfrak U$ be an ultrapower of $\mathfrak U$ with respect to a countably incomplete ultrafilter U. Prove that $\Gamma(x)$ is satisfied by infinitely many elements of $\mathfrak B$.