
Qualifying Exam
Logic

August 31, 1995

Instructions: If you signed up for model theory, do two E and two M
problems. If you signed up for recursion theory, do two E and two R problems.
If you signed up for set theory, do two E and two S problems. If you think a
problem has been stated incorrectly, mention this to the proctor and indicate
your interpretation in your solution. In such cases, do not interpret the
problem in such a way that it becomes trivial.

E1. Let R be the set of real numbers. Prove that there is a function
f : R → R such that f maps every perfect subset of R onto R. We say P ⊆ R
is perfect iff it is closed, non-empty, and has no isolated points (for example,
the Cantor set, or any interval).

E2. Let L be the language consisting of =, two binary functions, +, ∗,
and one unary function, f . Let A be the structure whose domain of discourse
is the set of real numbers, where +, ∗ are interpreted as the usual addition
and multiplication, and f is interpreted as the sin function. Prove that the
theory of A is undecidable.

E3. Let L be any language in predicate logic without equality, consisting
of finitely many constant, function, and predicate symbols. A clause of L
is a logical sentence of the form ∀x1 . . . xn(φ1 ∨ . . . ∨ φk), where each φi is
either an atomic formula or the negation of an atomic formula. For example,
∀xy(p(x, f(g(y)))∨¬p(g(x), y)) is a clause. Prove that it is decidable whether
a clause of L is logically valid.

M1. Let L and L′ be first order languages such that L′ ⊆ L. Let T be a
theory in L. Suppose that for any two models M , N for L whose L′-reducts
M ′ and N ′ are isomorphic, M is a model of T if and only if N is a model of
T . Prove that T is equivalent to a theory in L′.

M2. Let T be a model complete theory in a countable language. Suppose
R is a binary relation in the language of T , and let K be the class of all
models M of T such that M is well ordered by RM . We say that N is an
end extension of M if N is a proper extension of M and N |= R(a, b) for all
a ∈M and b ∈ N −M .

1



Suppose that K is nonempty and each M ∈ K has an end extension
N ∈ K. Prove that for each uncountable cardinal κ there exists M ∈ K such
that RM has order type κ.

M3. Let J be an uncountable set, let A be the set of all finite subsets of
J , and let M = 〈A,R〉 where R is the subset relation on A. Let N = 〈B, S〉
be a countably indexed ultrapower of M such that the natural embedding
d : M ≺ N is proper. Prove that:

a) For each b ∈ B the set Eb = {a ∈ A : S(d(a), b)} is at most countable.
b) For each countable subset C ⊂ B, there exists b ∈ B such that S(c, b)

for all c ∈ C.

R1. Let f : ω → ω be a recursive function, and let S = {e | ϕe = ϕf(e)}.
Show that if S is recursive then it contains an index for every partial recursive
function.

R2. Let A be a uniformly recursively enumerable collection of recursively
enumerable sets. Assume that A contains all finite sets. Show that there is
a uniform enumeration of A without repetitions.

R3. Let A be a simple set. Prove that A is Turing complete iff there is a
function f ≤T A such that for all e, We ⊆ Ā implies |We| ≤ f(e).

S1. Let M be a countable transitive model for ZFC + GCH, and let I
be an infinite set in M . Let P be the partial order of finite partial functions
from I to I, and let G be P-generic over M . Prove that M [G] |= GCH.
Note: I need not be countable in M .

S2. Let Q be the set of rational numbers. Call S ⊂ Q small iff S∩(−∞, x)
is finite for all x ∈ Q. Assume Martin’s Axiom, and let F be a family of fewer
than 2ℵ0 small sets. Prove that there is a small set T ⊂ Q such that S\T is
finite for all S ∈ F .

S3. Assume α < β, R(α) ≺ R(β), and α is regular. Prove that for some
δ < α, R(δ) ≺ R(α). Here, R(α) = V (α) is the set of sets of rank less than
α, and ≺ means “elementary submodel”.
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Answers to Logic Qual August 1995

E1. List all the perfect sets as {Pα : α < c}, and list all reals as
{rα : α < c}. Let φ, ψ : c → c so that the map ξ 7→ (φ(ξ), ψ(ξ)) maps c onto
c× c. Choose xξ ∈ Pφ(ξ) \ {xη : η < ξ}, and let f(xξ) = rψ(ξ).

E2. In A, one may define π as the first positive x such that sin(x) = 0,
and then define y to be an integer iff sin(πy) = 0. Then, just use the fact
that the theory of the integers with +, ∗ is undecidable.

E3. The only way a clause can be logically valid is if one of the φi is the
negation of some other φj.

M1. Let T ′ be the set of all consequences of T in L′. Let M be a model
of T ′. Let S ′ be the set of all sentences in L′ true in M . Then S ′ ⋃T is
finitely satisfiable. By the compactness theorem S ′ ⋃T has a model N . The
L′-reducts of M and N are elementarily equivalent. Then M and N have
elementary extensions M1 and N1 whose L′-reducts are isomorphic. N1 is a
model of T , so by hypothesis M1 and hence M is a model of T . Therefore
T ′ is a theory in L′ which is equivalent to T .

M2. Since T is model complete, whenever M ⊆ N and M,N ∈ K, N is
an elementary extension of M . By the elementary chain theorem, the union
of a chain of end elementary extensions of M is again an elementary extension
and thus a model of T . Since each extension is an end extension, this union
is also well ordered by R and hence belongs to K. Given a cardinal κ, by
transfinite recursion we may form a sequence of models Mα ∈ K,α ≤ κ such
that Mα =

⋃
β<αMβ for limit ordinals α, and Mα is an end extension of Mβ.

By the downward Lowenheim-Skolem theorem we may also take Mα to be of
cardinality ω ∪ |α|. Then Mκ ∈ K has order type κ.

M3. a) N = ΠUM for some nonprincipal ultrafilter U over ω. Each
b ∈ B has the form b = 〈bn : n ∈ ω〉U , and each bn belongs to A and hence
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is finite. If a ∈ Eb, then {n ∈ ω : a ⊆ bn} ∈ U . Therefore Eb is contained in
the countable set

⋃
n P (bn). b) For each n ∈ ω the model M satisfies the

sentence φn which says that for each C ⊂ A of size ≤ n there exists a ∈ A
such that S(c, a) for all c ∈ C. By  Los’ theorem, N |= φn for each n. Then
b) follows because N is ω1-saturated.

R1. Else find a recursive function g without fixed points by setting
g(e) = f(e) if e is not a fixed point and equal to an index for a function
not represented in S otherwise.

R2. A variation on Friedberg’s theorem that this holds for the class of all
r.e. sets (see, e.g., Odifreddi’s book, page 230).

R3. Left-to-right: Since A is complete, A can compute whether We ⊆ Ā.
If so then, by simplicity of A, We must be finite, and A can compute the size
of We by the completeness of A. Right-to-left: Mimic Martin’s proof that
every effectively simple set is Turing complete.

S1. In M , let κ = |I|. Note that κ becomes countable in M [G]. In M [G],
let λ be any infinite cardinal; so λ = ω or λ > κ. Then 2λ = λ+ holds in
M [G] because in M , there are only λ+ nice P-names for subsets of λ.

S2. Let F = {Sα : α < κ}. Let P be the set of all pairs p = (fp, bp)
such that fp is a finite partial function from κ to ω and bp ∈ Q. Let T (p) be⋃{Sα ∩ (fp(α),∞) : α ∈ dom(fp)}. Think of T (p) as an approximation to T
and bp as a promise that no further rationals below bp will be added to T . So,
define p ≤ q iff fp extends fq, bp ≥ bq, and (−∞, bq)∩T (p) = (−∞, bq)∩T (q).
Let T =

⋃{T (p) : p ∈ G}, where G meets enough dense sets.

S3. Using R(α) ≺ R(β), α is strongly inaccessible. Hence, by a Löwen-
heim-Skolem-Tarski argument, there is a δ < α such that R(δ) ≺ R(α).
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