Qualifying Exam
Logic
August 31, 1995

Instructions: If you signed up for model theory, do two E and two M
problems. If you signed up for recursion theory, do two E and two R problems.
If you signed up for set theory, do two E and two S problems. If you think a
problem has been stated incorrectly, mention this to the proctor and indicate
your interpretation in your solution. In such cases, do not interpret the
problem in such a way that it becomes trivial.

E1l. Let R be the set of real numbers. Prove that there is a function
f : R — R such that f maps every perfect subset of R onto R. We say P C R
is perfect iff it is closed, non-empty, and has no isolated points (for example,
the Cantor set, or any interval).

E2. Let £ be the language consisting of =, two binary functions, +, %,
and one unary function, f. Let 2 be the structure whose domain of discourse
is the set of real numbers, where +, x are interpreted as the usual addition
and multiplication, and f is interpreted as the sin function. Prove that the
theory of 2 is undecidable.

E3. Let £ be any language in predicate logic without equality, consisting
of finitely many constant, function, and predicate symbols. A clause of L
is a logical sentence of the form Vi ...z,(¢1 V ...V @), where each ¢; is
either an atomic formula or the negation of an atomic formula. For example,
Vay(p(z, f(g(y)))V-p(g(x),y)) is a clause. Prove that it is decidable whether
a clause of L is logically valid.

M1. Let L and L’ be first order languages such that L' C L. Let T be a
theory in L. Suppose that for any two models M, N for L whose L'-reducts
M’ and N’ are isomorphic, M is a model of T" if and only if N is a model of
T. Prove that T is equivalent to a theory in L'.

M2. Let T be a model complete theory in a countable language. Suppose
R is a binary relation in the language of T, and let K be the class of all
models M of T such that M is well ordered by RM. We say that N is an
end extension of M if N is a proper extension of M and N |= R(a,b) for all
ae Mandbe N — M.



Suppose that K is nonempty and each M € K has an end extension
N € K. Prove that for each uncountable cardinal x there exists M € K such
that RM has order type k.

M3. Let J be an uncountable set, let A be the set of all finite subsets of
J, and let M = (A, R) where R is the subset relation on A. Let N = (B, S)
be a countably indexed ultrapower of M such that the natural embedding
d: M < N is proper. Prove that:

a) For each b € B the set B, = {a € A: S(d(a),b)} is at most countable.

b) For each countable subset C' C B, there exists b € B such that S(c,b)
for all c € C.

R1. Let f:w — w be a recursive function, and let S = {e | e = Yy }-
Show that if S is recursive then it contains an index for every partial recursive
function.

R2. Let A be a uniformly recursively enumerable collection of recursively
enumerable sets. Assume that A contains all finite sets. Show that there is
a uniform enumeration of A without repetitions.

R3. Let A be a simple set. Prove that A is Turing complete iff there is a
function f <7 A such that for all e, W, C A implies |W,| < f(e).

S1. Let M be a countable transitive model for ZFC + GCH, and let [
be an infinite set in M. Let P be the partial order of finite partial functions
from I to I, and let G be P-generic over M. Prove that M[G] E GCH.
Note: I need not be countable in M.

S2. Let Q be the set of rational numbers. Call S C Q small iff SN(—o0, x)
is finite for all z € Q. Assume Martin’s Axiom, and let F be a family of fewer
than 2% small sets. Prove that there is a small set T C Q such that S\T is
finite for all S € F.

S3. Assume a < 3, R(a) < R(f), and « is regular. Prove that for some
d < a, R(6) < R(c). Here, R(a) = V() is the set of sets of rank less than
a, and < means “elementary submodel”.



Answers to Logic Qual August 1995

E1l.  List all the perfect sets as {P, : a < ¢}, and list all reals as
{ro o <c}. Let ¢,9 : ¢ — ¢ so that the map &£ — (¢(&),1(£)) maps ¢ onto
¢ X ¢. Choose x¢ € Pye) \ {xy : < &}, and let f(xg) = ry(e).

E2. In 2, one may define 7 as the first positive x such that sin(z) = 0,
and then define y to be an integer iff sin(my) = 0. Then, just use the fact
that the theory of the integers with +,* is undecidable.

E3. The only way a clause can be logically valid is if one of the ¢; is the
negation of some other ¢;.

M1. Let 7" be the set of all consequences of T in L’. Let M be a model
of T". Let S’ be the set of all sentences in L’ true in M. Then S'UT is
finitely satisfiable. By the compactness theorem S’(JT has a model N. The
L'-reducts of M and N are elementarily equivalent. Then M and N have
elementary extensions M; and N7 whose L'-reducts are isomorphic. N; is a
model of T', so by hypothesis M; and hence M is a model of T'. Therefore
T’ is a theory in L’ which is equivalent to 7.

M2. Since T is model complete, whenever M C N and M, N € K, N is
an elementary extension of M. By the elementary chain theorem, the union
of a chain of end elementary extensions of M is again an elementary extension
and thus a model of T'. Since each extension is an end extension, this union
is also well ordered by R and hence belongs to K. Given a cardinal s, by
transfinite recursion we may form a sequence of models M, € K, a < k such
that M, = Ug<, Mp for limit ordinals «, and M, is an end extension of Mg.
By the downward Lowenheim-Skolem theorem we may also take M, to be of
cardinality w U |a|. Then M, € K has order type k.

M3. a) N = IIyM for some nonprincipal ultrafilter U over w. Each
b € B has the form b = (b, : n € w)y, and each b, belongs to A and hence
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is finite. If a € Ej, then {n € w:a Cb,} € U. Therefore E, is contained in
the countable set U,, P(b,). b) For each n € w the model M satisfies the
sentence ¢, which says that for each C' C A of size < n there exists a € A
such that S(c,a) for all ¢ € C. By Los’ theorem, N | ¢, for each n. Then
b) follows because N is wi-saturated.

R1. Else find a recursive function g without fixed points by setting
g(e) = f(e) if e is not a fixed point and equal to an index for a function
not represented in S otherwise.

R2. A variation on Friedberg’s theorem that this holds for the class of all
r.e. sets (see, e.g., Odifreddi’s book, page 230).

R3. Left-to-right: Since A is complete, A can compute whether W, C A.
If so then, by simplicity of A, W, must be finite, and A can compute the size
of W, by the completeness of A. Right-to-left: Mimic Martin’s proof that
every effectively simple set is Turing complete.

S1. In M, let k = |I]. Note that k becomes countable in M[G]. In M[G],
let A be any infinite cardinal; so A = w or A\ > k. Then 2* = \* holds in
M|[G] because in M, there are only A* nice P-names for subsets of \.

S2. Let F = {S, : @ < k}. Let P be the set of all pairs p = (f,,b,)
such that f, is a finite partial function from x to w and b, € Q. Let T'(p) be
U{Sa N (fp(a),00) : @ € dom(f,)}. Think of T'(p) as an approximation to 7'
and b, as a promise that no further rationals below b, will be added to T'. So,
define p < ¢ iff f, extends f,, b, > by, and (—o0, b,)NT'(p) = (—o0, b,) NT'(q).
Let T'=U{T(p) : p € G}, where G meets enough dense sets.

S3. Using R(a) < R((), « is strongly inaccessible. Hence, by a Léwen-
heim-Skolem-Tarski argument, there is a § < a such that R(0) < R(«).



