Qualifying Exam Logic January 19, 1996

Instructions: Do two E and two R problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let S be the set of all finite sequences of natural numbers. For $s, t \in S$, define sRt iff s is obtained by replacing some element of t by a sequence of zero or more smaller numbers. For example,

() R (0) R (0,3) R (0,3,6) R (6,6) R (7)

Note that R is not transitive, but it is well-founded, so it has a rank function ρ such that $\rho(s) = \sup\{\rho(t) + 1 : tRs\}$. Prove that the range of ρ is the ordinal ω^{ω} .

E2. Let \mathcal{L} be the language consisting of = plus one unary relation symbol R. Let ϕ be a sentence of \mathcal{L} which is true in all finite structures for \mathcal{L} . Prove that ϕ is also true in all infinite structures for \mathcal{L} .

E3. Let < be a strict partial order (transitive and irreflexive) on some infinite set A of size κ . Suppose there are *fewer than* 2^{κ} different partial orders on A which are isomorphic to <. Prove that there is a subset B of Aof size less than κ such that $x \not\leq y$ for all $x, y \in A \setminus B$. In the Recursion Theory problems, φ_e is the e^{th} partial recursive function of one variable, using some standard enumeration. If **b** and **d** are Turing degrees, then $\mathbf{b} \leq \mathbf{d}$ means that **b** is recursive in **d**, and $\mathbf{b} < \mathbf{d}$ means that $\mathbf{b} \leq \mathbf{d}$ and $\mathbf{d} \not\leq \mathbf{b}$.

R1. Prove that there is a primitive recursive function $f: \omega \to \omega$ such that:

- 1. For each $x, i: \varphi_{f(x)}(i) = x \cdot f(i)$.
- 2. For each x, y: If x < y then f(x) < f(y).

R2. Let \mathbf{d}_n and \mathbf{b}_n , for $n \in \omega$, be Turing degrees. Assume that $\mathbf{d}_n < \mathbf{d}_{n+1}$ for each n, and $\mathbf{d}_m < \mathbf{b}_n$ for each m, n. Prove that there is a Turing degree \mathbf{c} such that $\mathbf{d}_n < \mathbf{c}$ and $\mathbf{b}_n \not\leq \mathbf{c}$ for each n.

R3. Say sets $A, B \subset \omega$ are *r.e. inseparable* iff they are disjoint and there is no r.e. set that contains one and is disjoint from the other. Prove that there are Δ_2^0 sets that are r.e. inseparable.

Answers to Logic Qual January 1996

E1. The empty sequence has rank 0. If s is non-empty, and n_1, \ldots, n_k are the numbers occurring in s, where $n_1 > \cdots > n_k$ and each n_i occurs exactly r_i times, then $\rho(s) = \omega^{n_1} \cdot r_1 + \cdots + \omega^{n_k} \cdot r_k$.

E2. Use the Compactness and Löwenheim-Skolem theorems. If ϕ fails in some infinite model, consider three cases: $R, \neg R$ are both infinite, R is finite and $\neg R$ is infinite, or $\neg R$ is finite and R is infinite.

E3. If there is no such B, find distinct a_{α}, b_{α} in A for $\alpha < \kappa$ such that $a_{\alpha} < b_{\alpha}$. Then, for each subset S of κ , one can construct a different isomorphic copy of < by exchanging $\{a_{\alpha}, b_{\alpha}\}$ for $\alpha \in S$.

R1. It is easy to find primitive recursive functions, s, t satisfying:

$$\varphi_{s(a,e,x)}^{(1)}(i) = \varphi_a^{(3)}(e,x,i)$$

(by the s_n^m theorem) and

$$\varphi_{t(w,j)} = \varphi_w$$
 and $t(w,j) > j$

Now, fix a such that $\varphi_a^{(3)}(z, x, i) = x \cdot \varphi_z(i)$. By the Recursion Theorem, fix e such that

$$\varphi_e(0) = s(a, e, 0)$$
 and $\varphi_e(x+1) = t(s(a, e, x), \varphi_e(x))$

Let $f(x) = \varphi_e(x)$. Then, $\varphi_{f(x)}(i) = \varphi_{s(a,e,x)}(i) = \varphi_a^{(3)}(e,x,i) = x \cdot \varphi_e(i) = x \cdot f(i)$

R2. Fix sets $D_n \subseteq \omega$ of degree \mathbf{d}_n . \mathbf{c} can be the degree of some $C \subseteq \omega \times \omega$. Choose C so that for each n, $\{i : (n, i) \in C\}$ is equal to D_n modulo some finite set; the finite sets are chosen so that there is no way to compute any \mathbf{b}_n from C.

R3. Let $A_0 = \{2n : n \in \omega\}$ and $B_0 = \{2n + 1 : n \in \omega\}$. Define $C = \{4n : 4n, 4n + 2 \in W_n\}$ and $D = \{4n + 1 : 4n + 1, 4n + 3 \in W_n\}$. Then $A = (A_0 \cup D) - C$ and $B = (B_0 \cup C) - D$ are Δ_2^0 and *r.e.* inseparable.