Qualifying Exam Logic August 29, 1996

Instructions: If you signed up for Recursion Theory, do two E and two R problems. If you signed up for Model Theory, do two E and two M problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

- E1. Suppose that A_n is a subset of the ordinal $(\omega_1)^3$ for each $n \in \omega$, and suppose that $\bigcup_{n \in \omega} A_n = (\omega_1)^3$. Prove that some A_n has order type $(\omega_1)^3$. Here, $(\omega_1)^3$ denotes ordinal exponentiation $(\omega_1$ to the third power).
- E2. Let $\mathcal{L} = \{<\} \cup \{c_q : q \in \mathbb{Q}\}$, where \mathbb{Q} is the set of rationals. Let \mathfrak{A} be the natural model for \mathcal{L} ; that is, $A = \mathbb{Q}$, each c_q is interpreted as q, and q is interpreted as the usual order on \mathbb{Q} . Prove that the theory of \mathfrak{A} is decidable.
- E3. Describe a finite set of axioms, S, in a finite language, such that for each finite n > 0: S has a model of size n iff n is a power of 2.

In the Recursion Theory problems, φ_e is the $e^{\rm th}$ partial recursive function of one variable, using some standard enumeration.

- R1. Prove that there are sets $A_n \subseteq \omega$, for $n \in \omega$, such that each A_n is recursive in A_m , but no A_n is primitive recursive in any A_m unless n = m.
- R2. Let S be the set of all $e \in \omega$ such that $dom(\varphi_e)$ is an initial segment of ω (possibly, all of ω). Prove that S is not recursive in 0'.
- R3. Prove that there is a total recursive function f such that each $\varphi_{f(x)}$ is total and $\varphi_{f(x)}(x) = f(x) + x$.

- M1. Let \mathfrak{A} be a structure for \mathcal{L} , and let U be a unary predicate symbol. Assume $|U_{\mathfrak{A}}| = \mathbf{c}$ (where $\mathbf{c} = 2^{\aleph_0}$). Prove that \mathfrak{A} has an elementary extension, \mathfrak{B} , such that $|U_{\mathfrak{B}}| = \mathbf{c}^+$. Note that we are assuming nothing about $|\mathfrak{A}|$ or the size of \mathcal{L} .
 - M2. Let $\mathcal{L} = \{<\}$. Describe a complete theory T in \mathcal{L} such that
 - 1. In every model \mathfrak{A} for \mathcal{L} , $<_A$ totally orders A
 - 2. There are 2^{\aleph_0} different 1-types consistent with T.
- M3. Let T be a complete theory with infinite models. Assume that T has some model with an automorphism σ of order 2 (that is, σ^2 is the identity but σ isn't). Let \mathfrak{A} be any model of T. Prove that \mathfrak{A} has an elementary extension \mathfrak{B} such that \mathfrak{B} has an automorphism of order 2.

Answers to Logic Qual January 1996

- E1. Identify $(\omega_1)^3$ with $\omega_1 \times \omega_1 \times \omega_1$, ordered lexically.
- E2. Prove that it has a decidable complete set of axioms: dense total order without endpoint, plus the ordering of the c_q .
- E3. S can say that < totally orders the universe, I is a proper initial segment of <, and P defines a bijection from the universe onto the power set of I. So, I is a 1-place predicate and P is a 2-place predicate; the bijection is really $x \mapsto \{y \in I : P(x,y)\}$. You can say the map is onto using finitely many axioms by saying that for each set in the range, the lexically next set is in the range as well.
- R1. Just let all the A_n be recursive, and construct them in ω steps to defeat all possible primitive recursive computations of one from another.
 - R2. S is a complete Π_2^0 set.
 - R3. f can be a constant function.
- M1. Form an elementary chain of \mathbf{c}^+ models, starting with \mathfrak{A} . At limits, take unions. At successors, take an ultrapower using an ultrafilter on ω .
- M2. List the rationals, \mathbb{Q} , as $\{q_n : n \in \omega\}$. Form A by replacing each q_n by a sequence of n points, and let T be the theory or \mathbb{Q} .
- M3. Let \mathfrak{C} be the model with the automorphsim. Then, embed \mathfrak{A} into a $|\mathfrak{A}|$ saturated elementary extension of (\mathfrak{C}, σ) .