Qualifying Exam Logic (Set Theory) August 31, 1999

Instructions:

Do all six problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let D_n , for $n \in \omega$, be subsets of the plane $(\mathbb{R} \times \mathbb{R})$. Assume that $D_0 \supseteq D_1 \supseteq D_2 \supseteq \cdots$, and that each D_n is dense (i.e., meets every nonempty open set). Prove that there is a dense $E \subseteq \mathbb{R} \times \mathbb{R}$ such that each $E \setminus D_n$ is finite.

E2. Let Σ be the following set of axioms in $\mathcal{L} = \{<, P\}$, where < is a binary predicate symbol and P is a unary predicate symbol:

1. < is a dense total order without first or last element.

2. $\forall xy [[x < y \land P(y)] \to P(x)].$

Prove that

(a) Σ has only finitely many complete extensions.

(b) $\{\varphi : \Sigma \vdash \varphi\}$ is decidable.

E3. Show there exists a function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1}\{r\}$ is a Bernstein set for every $r \in \mathbb{R}$. Here, a Bernstein set is an $X \subset \mathbb{R}$ such that neither X nor $\mathbb{R} \setminus X$ contains an uncountable closed (in \mathbb{R}) subset.

S1. Assume MA. Fix $\kappa < 2^{\aleph_0}$, and suppose that $A_{\alpha} \subset \omega$, for $\alpha < \kappa$, and each A_{α} has asymptotic density 0. Prove that there is a $B \subset \omega$ such that B has asymptotic density 0 and $A_{\alpha} \subseteq^* B$ for each α . Here, $A \subseteq^* B$ means that $A \setminus B$ is finite, and B has asymptotic density 0 iff $\lim_{n \to \infty} |B \cap n|/n = 0$.

S2. Call $E \subseteq \mathbb{R}$ distance-unique iff for each $x, y, u, v \in E$: If $y-x = v-u \neq 0$ then y = v and x = u. Let P be the statement that \mathbb{R} is the union of countably many distance-unique sets.

- a. Prove that there is an uncountable distance-unique set.
- b. Prove that CH implies P.
- c. Prove that P implies CH.

Hint for c: Fix $A \subset \mathbb{R}$ and $t_{\alpha} \in \mathbb{R}$ for $\alpha < \omega_2$ such that $|A| = \aleph_1$ and such that the $A + t_{\alpha}$ are all disjoint. Show that if E is distance-unique, then $|\{\alpha : |E \cap (A + t_{\alpha})| \geq 2\}| \leq \aleph_1$.

S3. Let $\kappa > \omega$ be regular. Assume that $\{\alpha < \kappa : L(\alpha) \models Z\}$ is stationary in κ . Prove that κ is inaccessible in L. Here, Z =Zermelo set theory (ZF - Replacement).

Qualifying Exam Logic (Recursion Theory) August 31, 1999

Instructions:

Do all six problems. If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let D_n , for $n \in \omega$, be subsets of the plane $(\mathbb{R} \times \mathbb{R})$. Assume that $D_0 \supseteq D_1 \supseteq D_2 \supseteq \cdots$, and that each D_n is dense (i.e., meets every nonempty open set). Prove that there is a dense $E \subseteq \mathbb{R} \times \mathbb{R}$ such that each $E \setminus D_n$ is finite.

E2. Let Σ be the following set of axioms in $\mathcal{L} = \{<, P\}$, where < is a binary predicate symbol and P is a unary predicate symbol:

1. < is a dense total order without first or last element.

2. $\forall xy [[x < y \land P(y)] \to P(x)].$

Prove that

(a) Σ has only finitely many complete extensions.

(b) $\{\varphi : \Sigma \vdash \varphi\}$ is decidable.

E3. Show there exists a function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1}\{r\}$ is a Bernstein set for every $r \in \mathbb{R}$. Here, a Bernstein set is an $X \subset \mathbb{R}$ such that neither X nor $\mathbb{R} \setminus X$ contains an uncountable closed (in \mathbb{R}) subset.

R1. Prove that there is a decidable total order \triangleleft of ω such that the theory of $(\omega; \triangleleft)$ is not decidable. The *theory* of $(\omega; \triangleleft)$ is the set of sentences in $\triangleleft, =$ which are true in $(\omega; \triangleleft)$.

R2. Let $W_e = \operatorname{dom}(\varphi_e)$. Prove that there is an infinite decidable $S \subseteq \omega$ such that W_e is an infinite subset of S for all $e \in S$, and such that $W_a \subseteq W_e$ whenever $a \in W_e$ and $e \in S$.

R3. A set $A \subseteq \omega$ is simple iff A is r.e., $\omega \setminus A$ is infinite, and A meets every infinite r.e. set. For $V \subseteq \omega \times \omega$, let $V_e = \{x : (e, x) \in V\}$. Prove or disprove: There exists an r.e. set V such that $\{V_e : e \in \omega\}$ is precisely the set of all non-simple r.e. sets. Qualifying Exam Logic August 31, 1999 THE ANSWERS

E1. Let $\{U_n : n \in \omega\}$ list all open balls with rational center and radius. Choose $p_n \in U_n \cap D_n$, and let $E = \{p_n : n \in \omega\}$.

E2. Consider the following five sentences:

 $\begin{aligned} \psi_0 &: \ \forall x \left[P(x) \right] \\ \psi_1 &: \ \forall x \left[\neg P(x) \right] \\ \psi_2 &: \ \exists y \forall x \left[P(x) \Leftrightarrow x < y \right] \\ \psi_3 &: \ \exists y \forall x \left[P(x) \Leftrightarrow x \leq y \right] \\ \psi_4 &: \ \neg \psi_0 \land \neg \psi_1 \land \neg \psi_2 \land \neg \psi_3 \end{aligned}$

Each $\Sigma \cup \{\psi_i\}$ is complete (it's \aleph_0 -categorical), and $\Sigma \vdash \varphi$ iff $\Sigma \cup \{\psi_i\} \vdash \varphi$ for each i < 5.

E3. Let $\mathbb{R} = \{y_{\eta} : \eta < \mathfrak{c}\}$. Let $\mathfrak{c} \times \mathfrak{c} = \{(\xi_{\beta}, \eta_{\beta}) : \beta < \mathfrak{c}\}$. List the uncountable closed sets as $\{P_{\xi} : \xi < \mathfrak{c}\}$. Choose $x_{\beta} \in P_{\xi_{\beta}} \setminus \{x_{\alpha} : \alpha < \beta\}$, and let $f(x_{\beta}) = y_{\eta_{\beta}}$. Then for each $y = y_{\eta}$ and each $P = P_{\xi}$, there is a β such that $\xi_{\beta} = \xi$ and $\eta_{\beta} = \eta$, and then, for $x = x_{\beta}$: f(x) = y and $x \in P_{\xi}$. Thus, $f^{-1}\{y\} \cap P \neq \emptyset$ for every y, P.

R1. For each n, let φ_n be the sentence which says that there are elements $a_1 \triangleleft a_2 \triangleleft \cdots \triangleleft a_n$ such that there are no elements between each a_i, a_{i+1} but such that a_1 is a limit from the left and a_n is a limit from the right. One can arrange for $\{n : (\omega; \triangleleft) \models \varphi_n\}$ to be a non-decidable r.e. set.

R2. Using the Recursion Theorem, find a primitive recursive function f such that $x < y \Rightarrow f(x) < f(y)$, and such that $W_{f(x)} = \{f(y) : y > x\}$. Let $S = \operatorname{ran}(f)$. Then for each $e = f(x) \in S$, we have $W_e \subset S$. If $a = f(y) \in W_e$, then y > x, so $W_a = \{f(z) : z > y\} \subset W_e$. S is primitive recursive because f is increasing.

To get f: The Recursion Theorem says that given a partial recursive g, there is a d such that for all x: $\varphi_d(x) = g(d, x)$. If g happens to be primitive recursive, then φ_d will be primitive recursive also.

Here, we want $f = \varphi_d$ to have the property that for each $n: n \in \text{dom}(\varphi_{\varphi_d(x)})$ iff $\exists y > x [n = \varphi_d(y)]$. We also want φ_d to be increasing. So, let g(x, d) be a Gödel number of the partial recursive function:

 $n \mapsto \mu \langle y, C \rangle \left[T(d, y, C) \& U(C) = n \& y > x \right] .$

Choose g by primitive recursion on x so that g(x+1,d) > g(x,d).

R3. To construct such a V: Let $V_{2^a3^b}$ consist of those $\varphi_a(n)$ such that: the values $\varphi_a(0), \ldots, \varphi_a(n)$ and $\varphi_b(0), \ldots, \varphi_b(n)$ are all defined, the $\varphi_b(0), \ldots, \varphi_b(n)$ are all distinct, and $\forall i, j \leq n \ [\varphi_a(i) \neq \varphi_b(j)]$. Then $V_{2^a3^b}$ will either be finite or disjoint from the infinite r.e. set $\{\varphi_b(j) : j \in \omega\}$. Let the V_e , for e not of the form 2^a3^b , list all the cofinite sets.

S1. *B* will be $\bigcup_{\alpha < \kappa} (A_{\alpha} \setminus F(\alpha))$, where $F : \kappa \to \omega$. To force *B* to have asymptotic density 0, elements of \mathbb{P} will be pairs, $p = \langle f_p, h_p \rangle$, where $f_p \in Fn(\kappa, \omega), h_p \in Fn(\omega, \omega)$, and

$$\forall i \in \operatorname{dom}(h_p) \,\forall n \ge h_p(i) \quad \left| \bigcup \{ (A_\alpha \setminus f_p(\alpha)) \cap n : \alpha \in \operatorname{dom}(f_p) \} \right| < n \cdot 2^{-i} \quad .$$

Meeting κ dense sets yields an F (and hence B), plus an $H: \omega \to \omega$, such that $\forall n \geq H(i) [|B \cap n|/n \leq 2^{-i}].$

S2. For (a,b): Let $G_{\alpha} \nearrow \mathbb{R}$ (for $\alpha < \mathfrak{c}$), where $G_0 = \emptyset$, $G_{\gamma} = \bigcup_{\alpha < \gamma} G_{\alpha}$ for limit γ , and each G_{α} is a divisible subgroup of \mathbb{R} (whenever $\alpha > 0$). If $|E \cap (G_{\alpha+1} \setminus G_{\alpha})| \leq 1$ for all α , then E is distance-unique. Under CH, one can have each G_{α} countable, let $G_{\alpha+1} \setminus G_{\alpha} = \{a_{\alpha}^n : n < \omega\}$, and $E_n = \{a_{\alpha}^n : \alpha < \omega_1\}$.

For (c), to verify the hint, suppose that $|\{\alpha : |E \cap (A+t_{\alpha})| \ge 2\}| = \aleph_2$. Then there are distinct $a, b \in A$ and $\alpha \neq \beta$ such that E contains the four elements: $x := a + t_{\alpha}, y := b + t_{\alpha}, u := a + t_{\beta}, v := b + t_{\beta}$. Then y - x = b - a = v - u.

S3. $C := \{ \alpha : L(\alpha) \prec L(\kappa) \}$ is club in κ . If $(\kappa = \lambda^+)^L$, then the Power Set Axiom is false in $L(\kappa)$, so $\forall \alpha \in C [L(\alpha) \not\models Z]$.