
Qualifying Exam
Logic (Set Theory)
August 31, 1999

Instructions:
Do all six problems. If you think that a problem has been stated incorrectly,

mention this to the proctor and indicate your interpretation in your solution.
In such cases, do not interpret the problem in such a way that it becomes
trivial.

E1. Let Dn, for n ∈ ω, be subsets of the plane (R × R). Assume that
D0 ⊇ D1 ⊇ D2 ⊇ · · ·, and that each Dn is dense (i.e., meets every nonempty
open set). Prove that there is a dense E ⊆ R×R such that each E\Dn is finite.

E2. Let Σ be the following set of axioms in L = {<,P}, where < is a binary
predicate symbol and P is a unary predicate symbol:

1. < is a dense total order without first or last element.
2. ∀xy [[x < y ∧ P (y)] → P (x)].

Prove that
(a) Σ has only finitely many complete extensions.
(b) {ϕ : Σ ` ϕ} is decidable.

E3. Show there exists a function f : R → R such that f−1{r} is a Bernstein
set for every r ∈ R. Here, a Bernstein set is an X ⊂ R such that neither X nor
R\X contains an uncountable closed (in R) subset.

S1. Assume MA. Fix κ < 2ℵ0 , and suppose that Aα ⊂ ω, for α < κ, and
each Aα has asymptotic density 0. Prove that there is a B ⊂ ω such that B
has asymptotic density 0 and Aα ⊆∗ B for each α. Here, A ⊆∗ B means that
A\B is finite, and B has asymptotic density 0 iff limn→∞ |B ∩ n|/n = 0.

S2. Call E ⊆ R distance-unique iff for each x, y, u, v ∈ E: If y−x = v−u 6= 0
then y = v and x = u. Let P be the statement that R is the union of countably
many distance-unique sets.

a. Prove that there is an uncountable distance-unique set.
b. Prove that CH implies P .
c. Prove that P implies CH.

Hint for c: Fix A ⊂ R and tα ∈ R for α < ω2 such that |A| = ℵ1 and
such that the A + tα are all disjoint. Show that if E is distance-unique, then
|{α : |E ∩ (A+ tα)| ≥ 2}| ≤ ℵ1.

S3. Let κ > ω be regular. Assume that {α < κ : L(α) |= Z} is stationary
in κ. Prove that κ is inaccessible in L. Here, Z = Zermelo set theory (ZF−
Replacement).
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Instructions:
Do all six problems. If you think that a problem has been stated incorrectly,

mention this to the proctor and indicate your interpretation in your solution.
In such cases, do not interpret the problem in such a way that it becomes
trivial.

E1. Let Dn, for n ∈ ω, be subsets of the plane (R × R). Assume that
D0 ⊇ D1 ⊇ D2 ⊇ · · ·, and that each Dn is dense (i.e., meets every nonempty
open set). Prove that there is a dense E ⊆ R×R such that each E\Dn is finite.

E2. Let Σ be the following set of axioms in L = {<,P}, where < is a binary
predicate symbol and P is a unary predicate symbol:

1. < is a dense total order without first or last element.
2. ∀xy [[x < y ∧ P (y)] → P (x)].

Prove that
(a) Σ has only finitely many complete extensions.
(b) {ϕ : Σ ` ϕ} is decidable.

E3. Show there exists a function f : R → R such that f−1{r} is a Bernstein
set for every r ∈ R. Here, a Bernstein set is an X ⊂ R such that neither X nor
R\X contains an uncountable closed (in R) subset.

R1. Prove that there is a decidable total order � of ω such that the theory
of (ω; �) is not decidable. The theory of (ω; �) is the set of sentences in �,=
which are true in (ω; �).

R2. Let We = dom(ϕe). Prove that there is an infinite decidable S ⊆ ω
such that We is an infinite subset of S for all e ∈ S, and such that Wa ⊆ We

whenever a ∈ We and e ∈ S.

R3. A set A ⊆ ω is simple iff A is r.e., ω\A is infinite, and A meets every
infinite r.e. set. For V ⊆ ω × ω, let Ve = {x : (e, x) ∈ V }. Prove or disprove:
There exists an r.e. set V such that {Ve : e ∈ ω} is precisely the set of all
non-simple r.e. sets.
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E1. Let {Un : n ∈ ω} list all open balls with rational center and radius.
Choose pn ∈ Un ∩Dn, and let E = {pn : n ∈ ω}.

E2. Consider the following five sentences:
ψ0 : ∀x [P (x)]
ψ1 : ∀x [¬P (x)]
ψ2 : ∃y∀x [P (x) ⇔ x < y]
ψ3 : ∃y∀x [P (x) ⇔ x ≤ y]
ψ4 : ¬ψ0 ∧ ¬ψ1 ∧ ¬ψ2 ∧ ¬ψ3

Each Σ ∪ {ψi} is complete (it’s ℵ0-categorical), and Σ ` ϕ iff Σ ∪ {ψi} ` ϕ for
each i < 5.

E3. Let R = {yη : η < c}. Let c × c = {(ξβ, ηβ) : β < c}. List the
uncountable closed sets as {Pξ : ξ < c}. Choose xβ ∈ Pξβ

\ {xα : α < β}, and
let f(xβ) = yηβ

. Then for each y = yη and each P = Pξ, there is a β such
that ξβ = ξ and ηβ = η, and then, for x = xβ: f(x) = y and x ∈ Pξ. Thus,
f−1{y} ∩ P 6= ∅ for every y, P .

R1. For each n, let ϕn be the sentence which says that there are elements
a1 � a2 � · · · � an such that there are no elements between each ai, ai+1 but
such that a1 is a limit from the left and an is a limit from the right. One can
arrange for {n : (ω; �) |= ϕn} to be a non-decidable r.e. set.

R2. Using the Recursion Theorem, find a primitive recursive function f
such that x < y ⇒ f(x) < f(y), and such that Wf(x) = {f(y) : y > x}. Let
S = ran(f). Then for each e = f(x) ∈ S, we have We ⊂ S. If a = f(y) ∈ We,
then y > x, so Wa = {f(z) : z > y} ⊂ We. S is primitive recursive because f
is increasing.

To get f : The Recursion Theorem says that given a partial recursive g,
there is a d such that for all x: ϕd(x) = g(d, x). If g happens to be primitive
recursive, then ϕd will be primitive recursive also.

Here, we want f = ϕd to have the property that for each n: n ∈ dom(ϕϕd(x))
iff ∃y > x [n = ϕd(y)]. We also want ϕd to be increasing. So, let g(x, d) be a
Gödel number of the partial recursive function:

n 7→ µ〈y, C〉 [T (d, y, C) & U(C) = n & y > x] .

Choose g by primitive recursion on x so that g(x+ 1, d) > g(x, d).
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R3. To construct such a V : Let V2a3b consist of those ϕa(n) such that: the
values ϕa(0), . . . , ϕa(n) and ϕb(0), . . . , ϕb(n) are all defined, the ϕb(0), . . . , ϕb(n)
are all distinct, and ∀i, j ≤ n [ϕa(i) 6= ϕb(j)]. Then V2a3b will either be finite or
disjoint from the infinite r.e. set {ϕb(j) : j ∈ ω}. Let the Ve, for e not of the
form 2a3b, list all the cofinite sets.

S1. B will be
⋃

α<κ(Aα\F (α)), where F : κ → ω. To force B to have
asymptotic density 0, elements of P will be pairs, p = 〈fp, hp〉, where fp ∈
Fn(κ, ω), hp ∈ Fn(ω, ω), and

∀i ∈ dom(hp)∀n ≥ hp(i)
∣∣∣⋃{(Aα\fp(α)) ∩ n : α ∈ dom(fp)}

∣∣∣ < n · 2−i .

Meeting κ dense sets yields an F (and hence B), plus an H : ω → ω, such that
∀n ≥ H(i) [|B ∩ n|/n ≤ 2−i].

S2. For (a,b): Let Gα ↗ R (for α < c), where G0 = ∅, Gγ =
⋃

α<γ Gα

for limit γ, and each Gα is a divisible subgroup of R (whenever α > 0). If
|E ∩ (Gα+1\Gα)| ≤ 1 for all α, then E is distance-unique. Under CH, one can
have each Gα countable, let Gα+1\Gα = {an

α : n < ω}, and En = {an
α : α < ω1}.

For (c), to verify the hint, suppose that |{α : |E∩(A+tα)| ≥ 2}| = ℵ2. Then
there are distinct a, b ∈ A and α 6= β such that E contains the four elements:
x := a+ tα, y := b+ tα, u := a+ tβ, v := b+ tβ. Then y − x = b− a = v − u.

S3. C := {α : L(α) ≺ L(κ)} is club in κ. If (κ = λ+)L, then the Power Set
Axiom is false in L(κ), so ∀α ∈ C [L(α) 6|= Z].
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